1 Distinct Elements

Problem Definition: Let $x \in \mathbb{R}^n$ be the frequency vector of the input stream, and let $\|x\|_0 = |\{i \in [n] : x_i > 0\}|$ be the number of distinct elements in the stream. It’s also called the F_0-moment of σ.

Naive algorithms: Storage $O(n)$ (a bit for each possible item) or $O(m \log n)$ (list of seen items) bits.

Algorithm FM [Flajolet and Martin, 1985]:

It employs a “hash” function $h : [n] \rightarrow [0, 1]$ where each $h(i)$ has an independent uniform distribution on $[0, 1]$. (This is an “idealized” description, because even though we can generate n truly random bits, we cannot store and re-use them.)

Idea: We will have exactly $d^* = \|x\|_0$ distinct hashes, and since they are random, by symmetry their minimum should be at $1/(d^* + 1)$.

1. Init: $z = 1$
2. When item $i \in [n]$ is seen, update $z = \min\{z, h(i)\}$
3. Output: $1/z - 1$

Storage requirement: $O(1)$ words (not including randomness); we will discuss implementation issues later.

Denote by $d^* := \|x\|_0$ the true value, and let Z denote the final value of z (to emphasize it is a random variable).

Lemma 1: $\mathbb{E}[Z] = 1/(d^* + 1)$.

Note: This is the expectation of Z and not of its inverse $1/Z$ (as used in the output).

Proof: Formally, we use a trick to avoid the integral calculation (which is actually straightfor-
ward). Choose an additional random value X uniformly from $[0, 1]$ (for sake of analysis only), then by the law of total expectation
\[
\mathbb{E}[Z] = \mathbb{E}\left[\mathbb{P}[X < Z \mid X]
ight] = \mathbb{E}\left[\mathbb{E}\left[1_{\{X < Z\}} \mid Z\right]\right] = \mathbb{E}\left[1_{\{X < Z\}}\right] = 1/(d^* + 1).
\]

Lemma 2: $\mathbb{E}[Z^2] = \frac{2}{(d+1)(d+2)}$ and thus $\text{Var}[Z] \leq (\mathbb{E}[Z])^2$.

Exer: Prove this lemma using the above trick with two new random values (and/or prove both by calculating the integral).

Algorithm FM+:

1. Run $k = O(1/\varepsilon^2)$ independent copies of algorithm FM, keeping in memory Z_1, \ldots, Z_k (and functions h^1, \ldots, h^k)
2. Output: $1/\bar{Z} - 1$ where $\bar{Z} = \frac{1}{k} \sum_{i=1}^{k} Z_i$

As before, averaging reduces the standard deviation by factor \sqrt{k}, and then by Chebyshev's inequality, WHP $\bar{Z} \in d^* \pm O(d^*/\sqrt{k}) = d^* \pm \varepsilon d^*$.

Storage requirement: $O(k)$ words (not including randomness); we will discuss implementation issues later.

Remark: The storage can be improved similarly to the probabilistic counting. It suffices to store a $(1 + \varepsilon)$-approximation of z, which can reduce the number of bits from $O(\log n)$ (in a “typical” implementation of the real-valued hashes) to $O(\log \log n)$. A particularly efficient 2-approximation is to store the number of zeros in the beginning of z’s binary representation.

Remark: Notice this algorithm does not work under deletions.

2 Alternative algorithm for Distinct Elements

Algorithm Bottom k [Bar Yossef, Jayram, Kumar, Sivakumar, and Trevisan, 2002]:

Idea: Use only one hash function, and store the k smallest values seen.

1. Init: $z_1 = \cdots = z_k = 1$
2. When item $i \in [n]$ is seen, update $z_1 < \cdots < z_k$ to be the k smallest distinct values among \{ $z_1, \ldots, z_k, h(i)$ \}
3. Output: $X := k/z_k$

Storage requirement: Again, $O(k)$ words (not including randomness); we will discuss implementation issues later.

Remark: Notice the output will not make sense if $k > d^*$, because z_k will maintain its initial value of 1. Figure out where this is needed in the analysis.
Lemma 3: For suitable \(k = O(1/\varepsilon^2) \),
\[
\Pr[X > (1 + \varepsilon) d^*] \leq 0.05, \\
\Pr[X < (1 - \varepsilon) d^*] \leq 0.05.
\]

Thus, \(X \in (1 \pm \varepsilon) d^* \) with probability \(\geq 90\% \).

Intuition: The event \(X = k/z_k > (1 + \varepsilon) d^* \) is equivalent to \(z_k < \frac{k}{(1+\varepsilon)d^*} \), which means that at least \(k \) hashes are smaller than some threshold, while each of the \(d^* \) distinct hashes seen meets this threshold independently with probability \(\frac{k}{(1+\varepsilon)d^*} \), hence we expect only \(\frac{k}{1+\varepsilon} \) hashes to meet the threshold. If we set \(k \geq 1/\varepsilon^2 \), then the standard deviation is \(\sqrt{k} \leq \varepsilon k \), and we can use Chebyshev’s inequality.

Exer: Prove the above lemma.

3 \(\ell_1 \) Point Query via CountMin

Problem Definition: Let \(x \in \mathbb{R}^n \) be the frequency vector of the input stream, and let \(\|x\|_p = (\sum_i |x_i|^p)^{1/p} \) be its \(\ell_p \)-norm. Let \(\alpha \in (0, 1) \) and \(p > 0 \) be parameters known in advance.

The goal is to estimate every coordinate with additive error, namely, given query \(i \in [n] \), report \(\tilde{x}_i \) such that WHP
\[
\tilde{x}_i \in x_i \pm \alpha \|x\|_p.
\]

Observe: \(\|x\|_1 \geq \|x\|_2 \geq \ldots \geq \|x\|_\infty \), hence higher norms (larger \(p \)) give better accuracy. We will see an algorithm for \(\ell_1 \), which is the easiest.

Exer: Show that the \(\ell_1 \) and \(\ell_2 \) norms differ by at most a factor of \(\sqrt{n} \), and that this is tight. Do the same for \(\ell_2 \) and \(\ell_\infty \).

It is not difficult to see that \(\ell_\infty \) point query is hard. For instance, with \(\alpha = 1/2 \) we could recover an arbitrary binary vector \(x \in \{0, 1\}^n \), which (at least intuitively) requires \(\Omega(n) \) bits to store.

Theorem 4 [Cormode-Muthukrishnan, 2005]: There is a streaming algorithm for \(\ell_1 \) point queries that uses a (linear) sketch of \(O(\alpha^{-1} \log n) \) memory words to achieve accuracy \(\alpha \) with success probability \(1 - 1/n^2 \).

We will initially assume all \(x_i \geq 0 \).

Algorithm CountMin:

(Assume all \(x_i \geq 0 \).)
1. Init: Set \(w = 4/\alpha \) and choose a random hash function \(h : [n] \to [w] \).
2. Update: Maintain table/vector \(S = [S_1, \ldots, S_w] \) where \(S_j = \sum_{i : h(i) = j} x_i \).
3. Output: To estimate \(x_i \) return \(\tilde{x}_i = S_{h(i)} \).
The update step can indeed be implemented in a streaming fashion: When item i arrives, we need to update $x \leftarrow x + e_i$. This update is easy because the sketch is a linear map $S : \mathbb{R}^n \rightarrow \mathbb{R}^w$ (observe that $S_j = \sum_i 1_{\{h(i) = j\}} x_i$), and thus $S(x + e_i) = S(x) + S(e_i)$.

We call S a sketch to emphasize it is a succinct version of the input.

Analysis (correctness): We saw in class that $\tilde{x}_i \geq x_i$ and $\Pr[\tilde{x}_i \geq x_i + \alpha \|x\|_1] \leq 1/4$.

Algorithm CountMin+:
1. Run $t = \log n$ independent copies of algorithm CountMin, keeping in memory the vectors S^1, \ldots, S^t (and functions h^1, \ldots, h^t)
2. Output: the minimum of all estimates $\hat{x}_i = \min_l S^l_{h^l(i)}$

Analysis (correctness): As before, $\hat{x}_i \geq x_i$ and
$$\Pr[\hat{x}_i > x_i + \alpha \|x\|_1] \leq (1/4)^t = 1/n^2.$$ By a union bound, with probability at least $1 - 1/n$, for all $i \in [n]$ we will have $x_i \leq \hat{x}_i \leq x_i + \alpha \|x\|_1$.

Space requirement: $O(\alpha^{-1} \log n)$ words (for success probability $1 - 1/n^2$), without counting memory used to represent/store the hash functions.

General x (allowing negative entries):
Algorithm CountMin actually extends to general x that might be negative, and achieves the guarantee
$$\Pr[\tilde{x}_i \in x_i \pm \alpha \|x\|_1] \leq 1/4.$$ Exer: complete the proof.

But now to amplify the success probability, we use median instead of minimum.

Chernoff-Hoeffding concentration bounds: Let $X = \sum_{i \in [n]} X_i$ where $X_i \in [0, 1]$ for $i \in [n]$ are independently distributed random variables. Then
\[
\forall t > 0, \quad \Pr[|X - \mathbb{E}[X]| \geq t] \leq 2e^{-2t^2/n}.
\]
\[
\forall 0 < \varepsilon \leq 1, \quad \Pr[X \leq (1 - \varepsilon) \mathbb{E}[X]] \leq e^{-\varepsilon^2 \mathbb{E}[X]/2}.
\]
\[
\forall 0 < \varepsilon \leq 1, \quad \Pr[X \geq (1 + \varepsilon) \mathbb{E}[X]] \leq e^{-\varepsilon^2 \mathbb{E}[X]/3}.
\]
\[
\forall t \geq 2e \mathbb{E}[X], \quad \Pr[X \geq t] \leq 2^{-t}.
\]

Algorithm CountMin++:
1. Run $k = O(\log n)$ independent copies of algorithm CountMin, keeping in memory the vectors S^1, \ldots, S^k (and functions h^1, \ldots, h^k)
2. Output: To estimate x_i report the median of all basic estimates $\hat{x}_i = \text{median}\{S^l_{h^l(i)} : l \in [k]\}$

Exer: Prove that
$$\Pr[\hat{x}_i \in x_i \pm \alpha \|x\|_1] \leq 1/n^2.$$
Hint: Define an indicator Y_j for the event that copy $j \in [k]$ succeeds, then use one of the concentration bounds.

Exer: Use these concentration bounds to amplify the success probability of the algorithms we saw for Distinct Elements and for Probabilistic Counting (say from constant to $1 - 1/n^2$).

Hint: use independent repetitions + median.

4 Hash Functions

Recall that two (discrete) random variables X, Y are independent if

$$
\forall x, y \quad \Pr[X = x, Y = y] = \Pr[X = x] \cdot \Pr[Y = y].
$$

This is equivalent to saying that the conditioned random variable $X|Y$ has exactly the same distribution as X. In particular, it implies $E[XY] = E[X] \cdot E[Y]$.

Pairwise independent random variables: A collection of random variables X_1, \ldots, X_n is called **pairwise independent** if for all $i \neq j \in [n]$, the variables X_i and X_j are independent.

Example: Let $X, Y \in \{0, 1\}$ be random and independent bits, and let $Z = X \oplus Y$. Then X, Y, Z are clearly not mutually (fully) independent, but they are pairwise independent.

Observation: When X_1, \ldots, X_n are pairwise independent, the variance $\Var(\sum_i X_i)$ is exactly the same as if they were fully independent, because

$$
\Var(\sum_i X_i) = \mathbb{E}[\left(\sum_i X_i\right)^2] - (\mathbb{E}[\sum_i X_i])^2 = \sum_{i,j} \mathbb{E}[X_i X_j] - (\sum_i \mathbb{E}[X_i])^2.
$$

A different way to see it, is via the following well-known (and easy) fact: If X_1, \ldots, X_n are pairwise independent (and have finite variance), then $\Var(\sum_i X_i) = \sum_i \Var(X_i)$.

Pairwise independent hash family: A family H of hash functions $h : [n] \rightarrow [M]$ is called **pairwise independent** if for all $i \neq j \in [n],$

$$
\forall x, y \quad \Pr_{h \in H}[h(i) = x, h(j) = y] = \Pr[h(i) = x] \Pr[h(j) = y].
$$

A common scenario is that each $h(i)$ is uniformly distributed over $[M]$.

Universal hashing: A family H of hash functions $h : [n] \rightarrow [M]$ is called **2-universal** if for all $i \neq j \in [n],$

$$
\forall x, y \quad \Pr_{h \in H}[h(i) = x, h(j) = y] \leq 1/M.
$$

Observe that 2-universality is a weaker requirement that pairwise independence, but it suffices for many algorithms.

Construction of pairwise independent hashing:
Assume $M \geq n$ and that M is a prime number (if not, we can pick a larger M that is a prime). Pick random $p, q \in \{0, 1, 2, \ldots, M-1\} = [M]$ and set accordingly $h_{p,q}(i) = pi + q \pmod{M}$.

The family $H = \{h_{p,q} : p, q\}$ is pairwise independent because for all $i \neq j$ and all x, y,

$$\Pr_{h \in H}[h(i) \equiv x, h(j) \equiv y] = \Pr_{p,q}[(\frac{i}{j} \pmod{\frac{p}{q}}) \equiv (\frac{x}{y})] = \Pr_{p,q}[(\frac{p}{q}) \equiv (\frac{i}{j})^{-1} (\frac{x}{y})] = \frac{1}{M^2},$$

where we relied on the above matrix being invertible.

Storing a function $h_{p,q}$ from this family can be done by storing p, q, which requires $\log |H| = O(\log M)$ bits. In general, $\log |H|$ bits suffice to store an index of $h \in H$.

Exer: Show that the correctness of algorithm CountMin (for ℓ_1 point query) extends to using a universal hash function, and analyze how much additional storage the hash function requires.

Exer: Show that the correctness of algorithm Bottom k (for Distinct Elements) can be extended to using a pairwise independent hash function $h : [n] \to [n^2]$ (instead of continuous range $[0, 1]$), and analyze how much additional storage the hash function requires.

Hint: Our analysis used events of the form $\{h(i) < \text{threshold}\}$, and relied on independence for every pair $h(i), h(j)$.
