Sublinear Time and Space Algorithms 2016B — Lecture 3
/5 Frequency Moment and Point Queries, Heavy Hitters, and
Compressed Sensing*

Robert Krauthgamer

1 Frequency Moments and the AMS algorithm

{,-norm problem: Let z € R" be the frequency vector of the input stream, and fix a parameter
p > 0.

Goal: estimate its £,-norm ||z||, = (3,|z:[?)}/P. We focus on p = 2.

Theorem 1 [Alon, Matthias, and Szegedy, 1996]: One can estimate the ¢ norm within
factor 1 + € [with high constant probability] using a linear sketch of size (dimension) s = O(s72).
It implies, in particular, a streaming algorithm.

Algorithm AMS (also known as Tug-of-War):

1. Init: choose r1,...,r, independently at random from {—1, +1}
2. Update: maintain Z =), ryz;

3. Output: to estimate ||z||3 report Z2

The sketch Z is linear, hence can be updated easily.

Storage requirement: O(log(nm)) bits, not including randomness; we will discuss implementation
issues a bit later.

Analysis: We saw in class that E[Z2] =}, 27 = ||z|3, and Var(Z?) < 3(E[Z?])%.
Exer: Refine the analysis from class to show that Var(Z2) < 2(E[Z?])2.
Algorithm AMS+:

1. Run t = O(1/?) independent copies of Algorithm AMS, denoting their Z values by Vi,...,Y,
and output their mean ¥ =}, Yj2 /t.

Observe that the sketch (Y7,...,Y}) is still linear.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.



Storage requirement: O(t) = O(1/¢?) words (for constant success probability), not including ran-
domness.

Analysis: We saw in class that

% Y Y Var(Y
Pr[[Y —EY| >eEY] < 52?£(Y))2 < ts%

Choosing appropriate t = O(1/£?) makes the probability of error an arbitrarily small constant.

Notice it is actually a (14-¢)-approximation to ||x||3, but it immediately yields a (14-¢)-approximation
to ||z]|2-

How to store the n values ri,...,7r,:

Observe that the analysis of algorithm AMS work as long as ry,...,r, are 4-wise independent.
(The t repetitions are independent.)

Exer: Show how the construction we saw for pairwise independent hash functions h : [n] — [M]
can be extended to construct k-wise independent hashes (random variables) using O(klogn) truly
random bits (storage).

Hint: Use higher-degree polynomials, and rely on the determinant of a Vandermonde matrix.

Exer: What would happen in the accuracy analysis if the r;’s were chosen as standard gaussians
N(0,1)?

2 /5 Point Query via CountSketch

The idea is to hash coordinates to buckets (similar to algorithm CountMin), but furthermore use
tug-of-war inside each bucket (as in algorithm AMS). The analysis will show it is a good estimate
for each 2? (instead of z;).

Theorem 2 [Charikar, Chen and Farach-Colton, 2003]: One can estimate ¢» point queries
using a (linear) sketch of O(a~2) memory words within error a [with constant high probability].

It achieves better accuracy than CountMin (fs instead of /1), but requires more storage (1/a?
instead of 1/«).

Algorithm CountSketch:

1. Init: Set w = 4/a? and choose a pairwise independent hash function h : [n] — [w]
2. Choose pairwise independent signs r1,...,7r, € {—1,+1}

3. Update: Maintain vector S = [Si,..., Sw] where Sj =37, v riz;.

4. Output: To estimate z; return z; = r; - Sh(i).

Storage requirement: O(w) words, i.e., O(a~2?log(nm)) bits. The hash functions can be stored
using O(logn) bits.

Correctness: We saw in class that Pr[|#; — ;] > o?||z||3] < 1/4, i.e., with high (constant)



probability, Z; € x; £ af|z||2.

Exer: Explain how to amplify the success probability to 1 — 1/n? using the median of O(logn)
independent copies.

3 Application 1: Heavy Hitters

Problem Definition: For parameter ¢ € (0,1) and p € [1, 00), define

HHG(x) ={i € [n]: |zi| = ¢}

Observe that its cardinality is bounded by ‘HHZ(Q:)‘ < 1/¢P.

We will focus on p =1 and ¢ is “not too small”.
Approximate Heavy Hitters:
Parameters: ¢, € (0,1).

Goal: return a set S C [n] such that

P P
HH, C S CHHY, .

Reduction from HH to point query (for p =1):

Assume we have an algorithm for ¢; point queries with parameter a = £¢/2. Amplify the success
probability to 1 — 2= (if needed).

1. compute, using that algorithm, an estimate Z; for every i € [n] (this step takes time O(nlogn)
or even more)

2. report the set S = {i: &; > (¢ — e¢/2)||x|1} (it is easy to know ||z||; when x > 0, but more
difficult in general)

Storage requirement: We can employ algorithm CountMin+ for ¢; point queries, which requires
O(a~!logn) words, and has error probability 1/n?, which is small enough. Then our approximate
HH algorithm will take O(¢~'e~"log?n) bits.

Correctness: With probability > 2/3, all the n estimates are correct within additive €/2. In this
case, S contains all the ¢-HH, and is contained in the (¢(1 —¢))-HH.

Exer: Extend the above approach to p = 2 (using CountSketch). How much storage it requires?
Use the AMS sketch to estimate the fo-norm.

4 Application 2: Compressed Sensing (or Sparse Recovery)

Problem Definition: The input is a “signal” x € R", but instead of reading it directly we have
only via linear measurements, i.e., we can observe/access y; = (4;,x) for Ay,..., A, € R" of our



choice. Informally, the goal is to design few A;’s and then to use them recover x. We shall focus
on non-adaptive A;, i.e., the entire sequence has to be determined in advance.

Let Ay, be a matrix whose rows are the A;’s, then we know that Az =y. A trivial solution is to
choose A that is invertible, which requires p = n. In general, this is optimal, because for smaller p
there might be infinitely many solutions x to Az = y.

Initial goal: Suppose that = is k-sparse (has at most k nonzeros, i.e., ||z]jo = k). What p = p(n, k)
is needed to recover x?

True goal: Suppose x is approximately k-sparse. For what p can we recover an approximation to
x?

Remark: In most applications, it’s preferable that A has bounded precision (i.e., the entries of A
are integers of bounded magnitude), as otherwise y must be “acquired” with very high precision.
Sometimes it’s even important that A’s entries are nonnegative.

CountMin Approach: Recall that CountMin is a (randomized) linear sketch of z € R™, hence
it can be viewed as multiplying by some matrix A with p = O(a~!logn) rows.

Sparse 0-1 vector: Suppose first € {0, 1}" and is k-sparse. Then ||z||; = k, and a CountMin+
sketch of accuracy a = :,%k succeeds with probability at least 1 — 1/n in estimating all x;’s within

additive +al|z||; < +%, which can distinguish whether z; is 0 or 1.

Sparse vector: If the nonzeros of x have different magnitudes, the above approach might require
1
a K -

But a deeper inspection of CountMin shows that every coordinate has a good chance to “not collide”
with any nonzero coordinate. This behavior is amplified by the repetitions + median trick’s, and
then WHP the estimator is exact, i.e., ; = x;.

Approximately sparse vector: We will now prove an even more general result.

For z € R", denote by z,,() the vector z after zeroing all but the k heaviest entries (largest in
absolute value), breaking ties arbitrarily. Notice this vector is the “best” k-sparse approximation
to z. Similarly, denote by zyx) € R™ the vector z after zeroing the k heaviest entries. Then
Ztail(k) = % — Ztop(k) 1S the “error” of approximating z by a k-sparse vector.

Theorem 3 [Cormode and MuthuKrishnan, 2006]: CountMin+ with parameter o = ¢/k
can be used to recover a vector ' € R" that satisfies

lz = 2'll1 < (14 3¢)[|zsaiw) -
In fact, 2’ = Tyop(k) and is thus k-sparse. (Recall € R™ is the estimate of algorithm CountMin.)
The above condition is usually called an ¢ /¢; guarantee.

Remark 1: Observe that if x is k-sparse, then this method recovers it (exactly). In general, it
guarantees the output’s “quality” (distance from true z) is comparable to the best k-sparse vector.

Remark 2: Different constructions achieve/optimize for other guarantees like different norms, deter-
ministic recovery, small explicit description of A, or fast recovery time. Often, the optimal number
of measurements is O(klog(n/k)) (ignoring dependence on ¢).



Lemma 3a: CountMin with parameter a = ¢/k computes, with high probability, an estimate
2 € x;  a|lzaayllns e |7 — 2o < al|Tiairryll1-

Exer: Prove this lemma.

Hint: Show that with high probability, both (a) coordinate i will not collide with the k (other)
heaviest coordinates and (b) the contribution from the rest (tail) is comparable to the expectation.

Lemma 3b: 1If ||z — &[jcc < al[ziaiqmll1 then [z — Ziopr It < (14 3ka)|[zaim ll1-
Notice that we bound the error using ¢; norm (stronger).

Proof of lemma: We will use 27 to denote the vector z after zeroing all coordinates outside
T C [n].

Let T C [n] be the indices of the k heaviest coordinates in Z, then by definition z" = Z;,px) = 4.
Let T C [n] be the indices of the k heaviest coordinates in x, hence x1 = Ty (1)

Now calculate (all norms are ¢1-norms):

o = &/|| = lla — alpll + lla_z by supp(a’) C 7
=l — 2yl + o] =l
< o — 2ol + 2| — N + [l — 2 by [lall € [b]) £ fla —b]
— 2l — ol + [l - Il
< 2fas. — 2yl + 2| - [l by supp(a’) C 7
< 2z — oyl + el — JNERI + Nl — by [lall € [6]) % fla — b]

< 2|7 |+ 1+ |T]e) | T |-
QED.

Exer: Can you extend the above sparse recovery to ¢5/¢s guarantee by using CountSketch (instead
of CountMin)? How many measurements would it require?



