
Sublinear Time and Space Algorithms 2016B – Lecture 3

ℓ2 Frequency Moment and Point Queries, Heavy Hitters, and

Compressed Sensing∗

Robert Krauthgamer

1 Frequency Moments and the AMS algorithm

ℓp-norm problem: Let x ∈ Rn be the frequency vector of the input stream, and fix a parameter
p > 0.

Goal: estimate its ℓp-norm ∥x∥p = (
∑

i|xi|p)1/p. We focus on p = 2.

Theorem 1 [Alon, Matthias, and Szegedy, 1996]: One can estimate the ℓ2 norm within
factor 1 + ε [with high constant probability] using a linear sketch of size (dimension) s = O(ε−2).
It implies, in particular, a streaming algorithm.

Algorithm AMS (also known as Tug-of-War):

1. Init: choose r1, . . . , rn independently at random from {−1,+1}

2. Update: maintain Z =
∑

i rixi

3. Output: to estimate ∥x∥22 report Z2

The sketch Z is linear, hence can be updated easily.

Storage requirement: O(log(nm)) bits, not including randomness; we will discuss implementation
issues a bit later.

Analysis: We saw in class that E[Z2] =
∑

i x
2
i = ∥x∥22, and Var(Z2) ≤ 3(E[Z2])2.

Exer: Refine the analysis from class to show that Var(Z2) ≤ 2(E[Z2])2.

Algorithm AMS+:

1. Run t = O(1/ε2) independent copies of Algorithm AMS, denoting their Z values by Y1, . . . , Yt,
and output their mean Ỹ =

∑
j Y

2
j /t.

Observe that the sketch (Y1, . . . , Yt) is still linear.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Storage requirement: O(t) = O(1/ε2) words (for constant success probability), not including ran-
domness.

Analysis: We saw in class that

Pr[|Ỹ − E Ỹ | ≥ εE Ỹ] ≤ Var(Ỹ)

ε2(E Ỹ)2
≤ 3

tε2
.

Choosing appropriate t = O(1/ε2) makes the probability of error an arbitrarily small constant.

Notice it is actually a (1±ε)-approximation to ∥x∥22, but it immediately yields a (1±ε)-approximation
to ∥x∥2.

How to store the n values r1, . . . , rn:

Observe that the analysis of algorithm AMS work as long as r1, . . . , rn are 4-wise independent.
(The t repetitions are independent.)

Exer: Show how the construction we saw for pairwise independent hash functions h : [n] → [M]
can be extended to construct k-wise independent hashes (random variables) using O(k log n) truly
random bits (storage).

Hint: Use higher-degree polynomials, and rely on the determinant of a Vandermonde matrix.

Exer: What would happen in the accuracy analysis if the ri’s were chosen as standard gaussians
N(0, 1)?

2 ℓ2 Point Query via CountSketch

The idea is to hash coordinates to buckets (similar to algorithm CountMin), but furthermore use
tug-of-war inside each bucket (as in algorithm AMS). The analysis will show it is a good estimate
for each x2i (instead of xi).

Theorem 2 [Charikar, Chen and Farach-Colton, 2003]: One can estimate ℓ2 point queries
using a (linear) sketch of O(α−2) memory words within error α [with constant high probability].

It achieves better accuracy than CountMin (ℓ2 instead of ℓ1), but requires more storage (1/α2

instead of 1/α).

Algorithm CountSketch:

1. Init: Set w = 4/α2 and choose a pairwise independent hash function h : [n] → [w]

2. Choose pairwise independent signs r1, . . . , rn ∈ {−1,+1}

3. Update: Maintain vector S = [S1, . . . , Sw] where Sj =
∑

i:h(i)=j rixi.

4. Output: To estimate xi return x̃i = ri · Sh(i).

Storage requirement: O(w) words, i.e., O(α−2 log(nm)) bits. The hash functions can be stored
using O(log n) bits.

Correctness: We saw in class that Pr[|x̃i − xi|2 ≥ α2∥x∥22] ≤ 1/4, i.e., with high (constant)

2

probability, x̃i ∈ xi ± α∥x∥2.

Exer: Explain how to amplify the success probability to 1 − 1/n2 using the median of O(log n)
independent copies.

3 Application 1: Heavy Hitters

Problem Definition: For parameter ϕ ∈ (0, 1) and p ∈ [1,∞), define

HHp
ϕ(x) = {i ∈ [n] : |xi| ≥ ϕ∥x∥p}.

Observe that its cardinality is bounded by
∣∣∣HHp

ϕ(x)
∣∣∣ ≤ 1/ϕp.

We will focus on p = 1 and ϕ is “not too small”.

Approximate Heavy Hitters:

Parameters: ϕ, ε ∈ (0, 1).

Goal: return a set S ⊆ [n] such that

HHp
ϕ ⊆ S ⊆ HHp

ϕ(1−ε).

Reduction from HH to point query (for p = 1):

Assume we have an algorithm for ℓ1 point queries with parameter α = εϕ/2. Amplify the success
probability to 1− 1

3n (if needed).

1. compute, using that algorithm, an estimate x̃i for every i ∈ [n] (this step takes time O(n log n)
or even more)

2. report the set S = {i : x̃i ≥ (ϕ − εϕ/2)∥x∥1} (it is easy to know ∥x∥1 when x ≥ 0, but more
difficult in general)

Storage requirement: We can employ algorithm CountMin+ for ℓ1 point queries, which requires
O(α−1 log n) words, and has error probability 1/n2, which is small enough. Then our approximate
HH algorithm will take O(ϕ−1ε−1 log2 n) bits.

Correctness: With probability ≥ 2/3, all the n estimates are correct within additive ε/2. In this
case, S contains all the ϕ-HH, and is contained in the (ϕ(1− ε))-HH.

Exer: Extend the above approach to p = 2 (using CountSketch). How much storage it requires?
Use the AMS sketch to estimate the ℓ2-norm.

4 Application 2: Compressed Sensing (or Sparse Recovery)

Problem Definition: The input is a “signal” x ∈ Rn, but instead of reading it directly we have
only via linear measurements, i.e., we can observe/access yi = ⟨Ai, x⟩ for A1, . . . , Ap ∈ Rn of our

3

choice. Informally, the goal is to design few Ai’s and then to use them recover x. We shall focus
on non-adaptive Ai, i.e., the entire sequence has to be determined in advance.

Let Ap×n be a matrix whose rows are the Ai’s, then we know that Ax = y. A trivial solution is to
choose A that is invertible, which requires p = n. In general, this is optimal, because for smaller p
there might be infinitely many solutions x to Ax = y.

Initial goal: Suppose that x is k-sparse (has at most k nonzeros, i.e., ∥x∥0 = k). What p = p(n, k)
is needed to recover x?

True goal: Suppose x is approximately k-sparse. For what p can we recover an approximation to
x?

Remark: In most applications, it’s preferable that A has bounded precision (i.e., the entries of A
are integers of bounded magnitude), as otherwise y must be “acquired” with very high precision.
Sometimes it’s even important that A’s entries are nonnegative.

CountMin Approach: Recall that CountMin is a (randomized) linear sketch of x ∈ Rn, hence
it can be viewed as multiplying x by some matrix A with p = O(α−1 logn) rows.

Sparse 0-1 vector: Suppose first x ∈ {0, 1}n and is k-sparse. Then ∥x∥1 = k, and a CountMin+
sketch of accuracy α = 1

3k succeeds with probability at least 1 − 1/n in estimating all xi’s within
additive ±α∥x∥1 ≤ ±1

3 , which can distinguish whether xi is 0 or 1.

Sparse vector: If the nonzeros of x have different magnitudes, the above approach might require
α ≪ 1

k .

But a deeper inspection of CountMin shows that every coordinate has a good chance to “not collide”
with any nonzero coordinate. This behavior is amplified by the repetitions + median trick’s, and
then WHP the estimator is exact, i.e., x̂i = xi.

Approximately sparse vector: We will now prove an even more general result.

For z ∈ Rn, denote by ztop(k) the vector z after zeroing all but the k heaviest entries (largest in
absolute value), breaking ties arbitrarily. Notice this vector is the “best” k-sparse approximation
to z. Similarly, denote by ztail(k) ∈ Rn the vector z after zeroing the k heaviest entries. Then
ztail(k) = z − ztop(k) is the “error” of approximating z by a k-sparse vector.

Theorem 3 [Cormode and MuthuKrishnan, 2006]: CountMin+ with parameter α = ε/k
can be used to recover a vector x′ ∈ Rn that satisfies

∥x− x′∥1 ≤ (1 + 3ε)∥xtail(k)∥1.

In fact, x′ = x̂top(k) and is thus k-sparse. (Recall x̂ ∈ Rn is the estimate of algorithm CountMin.)

The above condition is usually called an ℓ1/ℓ1 guarantee.

Remark 1: Observe that if x is k-sparse, then this method recovers it (exactly). In general, it
guarantees the output’s “quality” (distance from true x) is comparable to the best k-sparse vector.

Remark 2: Different constructions achieve/optimize for other guarantees like different norms, deter-
ministic recovery, small explicit description of A, or fast recovery time. Often, the optimal number
of measurements is O(k log(n/k)) (ignoring dependence on ε).

4

Lemma 3a: CountMin with parameter α = ε/k computes, with high probability, an estimate
x̂i ∈ xi ± α∥xtail(k)∥1, i.e., ∥x− x̂∥∞ ≤ α∥xtail(k)∥1.

Exer: Prove this lemma.

Hint: Show that with high probability, both (a) coordinate i will not collide with the k (other)
heaviest coordinates and (b) the contribution from the rest (tail) is comparable to the expectation.

Lemma 3b: If ∥x− x̂∥∞ ≤ α∥xtail(k)∥1 then ∥x− x̂top(k)∥1 ≤ (1 + 3kα)∥xtail(k)∥1.

Notice that we bound the error using ℓ1 norm (stronger).

Proof of lemma: We will use zT to denote the vector z after zeroing all coordinates outside
T ⊂ [n].

Let T̂ ⊂ [n] be the indices of the k heaviest coordinates in x̂, then by definition x′ = x̂top(k) = x̂T̂ .

Let T ⊂ [n] be the indices of the k heaviest coordinates in x, hence xT = xtop(k).

Now calculate (all norms are ℓ1-norms):

∥x− x′∥ = ∥xT̂ − x′
T̂
∥+ ∥x¬T̂ ∥ by supp(x′) ⊆ T̂

= ∥xT̂ − x′
T̂
∥+ ∥x∥ − ∥xT̂ ∥

≤ ∥xT̂ − x′
T̂
∥+ ∥x∥ − ∥x′

T̂
∥ + ∥xT̂ − x′

T̂
∥ by ∥a∥ ∈ ∥b∥ ± ∥a− b∥

= 2∥xT̂ − x′
T̂
∥+ ∥x∥ − ∥x′

T̂
∥

≤ 2∥xT̂ − x′
T̂
∥+ ∥x∥ − ∥x′T ∥ by supp(x′) ⊆ T̂

≤ 2∥xT̂ − x′
T̂
∥+ ∥x∥ − ∥xT ∥ + ∥x′T − xT ∥ by ∥a∥ ∈ ∥b∥ ± ∥a− b∥

≤ (2
∣∣T̂ ∣∣α+ 1 +

∣∣T̂ ∣∣α)∥xtail(k)∥.
QED.

Exer: Can you extend the above sparse recovery to ℓ2/ℓ2 guarantee by using CountSketch (instead
of CountMin)? How many measurements would it require?

5

