Sublinear Time and Space Algorithms 2016B — Lecture 4
Precision Sampling and High Frequency Moments*

Robert Krauthgamer

1 Precision Sampling

Sum Estimation: Suppose the input is ai,...,a, € [0,1], and we want to estimate its sum
S =), a; using only a “partial reading” of the a;’s.

The Subsampling Model: Read only a random subset J C [n] of size |J| = m, and output
S=4 ZjeJ as.

We analyze instead sampling elements from [n] with replacement, i.e., J is a multiset. Then

E[S] = S and

n

- n2 2
JjeJ

(In fact, this is just like averaging of m copies of a basic estimator, which samples one element and
scales it by n, with standard deviation n.) By Chebyshev’s inequality Pr[S € S + 2n/y/m]| > 3/4.
For example, to achieve additive error O(1) we need m = Q(n).

Exer: Prove similar bounds for subsampling m elements without replacement, and also for
subampling each element independently with probability m/n.

Exer: Show that Q(n) samples are really needed, even if we allow both additive error 10 and
multiplicative error 1.1.

Hint: Consider S with O(1) nonzeros.

The “Precision” Model: The algorithm gets “noisy readings” a; for every a;. The algorithm
chooses in advance (non-adaptively) some precisions u; and then it is guaranteed additive approx-

imation |a; — a;| < u;. The algorithm’s cost is the “total precision” < 3, u%

Comparison with subsampling explains the scaling by %: no information about item ¢ means u; = 1
and costs n%l = 1/n ~ 0, and nearly-full information means u; = 1/n and costs % n=1.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.



Idea: Choose the u;’s at random (iid).
Precision Sampling Lemma [Andoni, Krauthgamer and Onak, 2011]:

Fix an integer n > 2, and consider iid uy,...,u, ~ Exp(l) (called precisions). Then for every
a,...,a, € [0,1], and estimates ai,...,a, € [0,1] that satisfy |a; — a;| < w;, the estimator
S = max; a;/u; satisfies

Prifs—1<8§<45+1] >3/

Moreover, with high probability, the PSL estimator has total cost O(logn).

Remarks: Exp(1) is the continuous distribution with pdf e™* on (0,00). Intuition: its discrete

analogue is the geometric distribution; indeed, both are memoryless.
Proof: Was seen in class, using the fact that the exponential distribution is min-stable.

Exer: Can you improve the multiplicative error to 1 + €? How would it increase the estimator
cost? Can you guarantee additive error € by changing the requirement from a;?

Hint: Use independent repetitions.

2 High Frequency Moments

Let z € R™ be the frequency vector of the input stream.

Theorem [Indyk and Woodruff, 2005]: For every p € (2,00), one can estimate normah

within factor 1 + ¢ [with high constant probability]| using a linear sketch of size (dimension) s =
O(n1_2/p(% logn)9M). It implies a streaming algorithm using O(slogn) bits of storage.

We will see a different algorithm that relies on Precision Sampling, due to [Andoni, Krauthgamer
and Onak, 2011]. We will see in class a simplified version, due to Andoni, that achieves only O(1)
approximation, and omits discussion of randomness (how to replace full independence with limited
independence).

Algorithm PSLsketch:

1. Init: set w = O(n'~271og®M n) and pick a random hash function & : [n] — [w]
2. pick independent signs 71, ...,7, € {£1} and random uy, ..., u, ~ Exp(1)

3. Update: maintain vector S = [S1,...,Sy] where S;j = 3., rixi/u;/p.

4. Output: to estimate |||/ report max;ei,|S;[?

The sketch S is linear, hence can be updated easily.

Storage requirement: O(wlogn) bits, not counting storing the randomness.
Correctness:

To use the PSL, let a; = |x;|?, then 37, a; = ||z|p, and let @; = S|P - u;.



If we show that WHP for every i € [n],

| — 2l <ellllp,
then we can use the PSL (the range a; € [0, 1] needs to be scaled by ||z||5, which is equivalent to
dividing all a;’s by ||z|/h, but the algorithm need not know this quantity.)

The additive error is further scaled by factor €, hence by the PSL, WHP the algorithm’s estimate
is

P = Gy % 4 e||z||P C [1/4,4 Ee|lz|P=[1/4—¢,4 b,
Q%\Sg\ max ;- € max it €!x\lp[/7]§i:az ellzly = [1/4 — &, 4+ €]l|l=}

We saw in class the following weaker bound.

Lemma: For every i € [n], WHP

1 p
Sh(i) — Tiﬂfi/ui/p <cellz[lp.

Proof of lemma: Was seen in class. It uses the norm-comparison inequality |||z < n'/2=1/?||z]|,,
which follows from Holder’s inequality.

Remark: Holder’s inequality actually asserts that for all p, g € [1, o] satisfying 1/p+ 1/q =1,
vav be Rn? <a’7 b> < ||a”prHq

Notice that it generalizes the Cauchy-Schwartz inequality.



