
Sublinear Time and Space Algorithms 2016B – Lecture 6

Triangle Counting, Geometric Streams and Coresets∗

Robert Krauthgamer

1 Triangle Counting

Goal: Report the number of triangles in G. We will denote it by T .

Motivation: The relative frequency of how often 2 friends of a person know each other is defined as

F =
3T∑

v∈V
(
deg(v)

2

) .
We can compute

∑
v∈V

(
t
2

)
in O(n) space, by maintaining the degree of every vertex.

Distinguishing T = 0 from T = 1 is known to require Ω(m) space [Braverman, Ostrovsky, and
Vilenchik, 2013].

We will henceforth assume a known lower bound 0 < t ≤ T .

First Approach [Bar-Yossef, Kumar and Sivakumar, 2002]:

Define vector x ∈ R(n3), where every coordinate xS for a subset S ⊂ V of 3 vertices, counts the
number of edges internal to S.

T is the number of coordinates in x that have value 3.

We will use the frequency moments Fp = ∥x∥pp for p = 0, 1, 2.

Lemma: T = F0 − 1.5F1 + 0.5F2.

Proof: If xS ∈ 0, 1, 2 then its contribution to RHS is 0. If xS = 3 then its contribution to RHS is
1− 4.5 + 4.5 = 1.

Why such formula exists?: We are looking for a function f(xS) : R → R with specific value on
0, 1, 2, 3. We can do polynomial interpolation. It would generally require degree 3, but F0 = 1{xS>0}
gives an extra degree of freedom.

Algorithm 1:

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Maintain the frequency moments p = 0, 1, 2 of vector x ∈ R(
n
3). Initially x = 0, and when an edge

(u, v) arrives, increment xS for every S of the form {u, v, w}.

Correctness: As was seen in class, we can compute frequency estimates F̂P ∈ (1± γ)Fp, and if
we set γ = O(t

εmn), we would get additive error εt ≤ εT .

Storage: The storage requirement is O(γ−2 logn) = O(ε−2(mn
t)2 log n) words.

Algorithm 2 [Buriol, Frahling, Leonardi, Marchetti-Spaccamela, and Sohler, 2006;
Ahn, Guha and McGregor, 2012]:

Notation: N =
(
n
3

)
.

1. Init: pick k random subsets S1, . . . , Sk each of size 3

2. Update: maintain each xSi (explicitly)

3. Output: let c be the number of sets Si for which xSi = 3, and report T̃ = c ·N/k

Analysis: As was seen in class, we can get additive error εt ≤ εT by choosing k = O(TN
ε2t2

) =

O(n3

ε2t
),

The storage requirement is of course O(k) words.

Algorithm 2+:

Improve the previous algorithm by choosing sets Si more selectively. Specifically, pick only sets S
for which xS ≥ 1. The size of this set is N ′ ≤ mn, which is often much smaller than n3.

Note that the estimator needs to know (a good estimate of) N ′ = ∥x∥0.

The storage requirement would be k′ = O(mn
ε2t

) words.

Exer: Show how to implement this sampling in the streaming model.

Hint: ℓ0-sampling (one that returns a coordinate and its value)

Exer: Which of the algorithms above can be implemented in the presence of edge deletions
(dynamic graphs)?

2 Geometric Streams and Coresets

Geometric stream: The input is a stream of points in Rd denoted P = ⟨p1, . . . , pn⟩.

Problem definition: The goal is to minimize some cost function CP : Rd → R, where CP (x)
represents the cost of using x as a solution (“center”) for input P .

For example, in the Minimum Enclosing Ball (MEB) the goal is to find a ball of minimum radius
that contains P . This problem is captured by the cost function

CMEB
P (x) = max

p∈P
∥p− x∥2.

Other clustering problems where a similar approach may work: enclosing the points in a box (axis-

2

parallel or not) or in a slab (between two parallel hyperplanes), or in a cylinder (the center x is
replaced by a line).

Definition: We say that such a cost function C is monotone if

∀x ∈ Rd, Q ⊂ P, CQ(x) ≤ CP (x).

Definition [Agarwal, Har-Peled, and Varadarajan, 2004]: Given a monotone C, we say
that Q ⊂ P is an α-coreset for P if

∀x ∈ Rd, T ⊂ Rd, CQ∪T (x) ≤ CP∪T (x) ≤ α · CQ∪T (x).

The idea is that by storing the small subset Q we can approximate the optimum for P within factor
α, even if more points will be added later.

Plan: We will show that MEB admits a small coreset, and that small coresets (with certain
properties) yield low-storage streaming algorithms.

Theorem 1: For every d ≥ 2 and ε ∈ (0, 1/2), the cost function CMEB
P has a (1 + ε)-coreset of

size O(1/ε(d−1)/2).

Merge Property: If Q is an α-coreset of P , and Q′ is an α′-coreset of P ′, then Q ∪ Q′ is an
(α · α′)-coreset of P ∪ P ′.

Reduce Property: If Q is an α-coreset of P , and R is a β-coreset of Q, then R is an (αβ)-coreset
of P .

Disjoint Union Property (“strong” version of merge): If Q is an α-coreset of P , and Q′ is
an α′-coreset of P ′, then Q ∪Q′ is an max{α, α′}-coreset of P ∪ P ′.

Lemma: Every monotone coreset satisfies the Merge and Reduce properties. CMEB
P satisfies also

the Disjoint Union property.

Exer: Prove this lemma.

Theorem 2: Suppose the cost function C is monotone, that it admits (1 + ε′)-coresets of size
f(ε′) for every ε′ ∈ (0, 1/2), and that these coresets have the Disjoint Union property. Then
there is a streaming algorithm for minimizing CP , that achieves 1 + O(ε) approximation using
O(f(ε/ log n) · log n) words of space.

Remark: We (implicitly) assume that when |P | ≤ 2f(ε′) (small inputs), (i) a coreset as above can
be computed using space O(f(ε′)), and (ii) a solution x that minimizes CP (x) can be computed.

Proof of Theorem 2: The algorithm uses the “merge and reduce” approach. We will first
describe it as a non-streaming algorithm, based on a hierarchical partitioning of the stream.

Suppose the stream is partitioned into “blocks” of size B, which is a “buffer” size to be chosen later,
and let ε′ = ε/ log n. Now build a binary tree on these blocks in the natural order. Specifically, at
level 0 (the n/B leaves of the tree), each node i gets as input the i-th block and outputs it without
processing. At level h = 1, . . . , log2(n/B), the input for each node is the concatenation of its two
children’s outputs Q and Q′. The node then computes a (1 + ε′)-coreset R for Q ∪ Q′, and then
outputs this R.

3

At the top level h, the algorithm further computes for the final R an optimal x̃ ∈ Rd and outputs
this x̃.

The output of each node at level h ≥ 1 is a subset of size f(ε′), and this bound extends also to
level h = 0 by setting B = f(ε′).

Correctness: We prove by induction that the output of every node at level h is a (1 + ε′)h-coreset
of the points fed into its descendant leaves. Indeed, consider a node at level h. Suppose it receives
from its children two sets Q and Q′ that are (1 + ε′)h−1-coresets of the respective original points
P and P ′. Then by the Disjoint Union property, Q ∪Q′ is a (1 + ε′)h−1-coreset of P ∪ P ′. By the
Reduce property, this node’s output R is a (1 + ε′)h-coreset of P ∪ P ′.

The output x̃ is optimal for the final (1 + ε′)h-coreset R, and thus achieves approximation factor
(1 + ε′)h ≤ eε

′h ≤ eε ≤ 1 + 2ε.

Streaming Implementation: We will run log2(n/B) algorithms in parallel, one for each level of the
tree. The algorithm at each level h ≥ 1 reads a virtual stream produced by the algorithm of level
h−1, and produces a virtual stream for level h+1. It uses a buffer of size 2B to store the inputs P
and P ′ from the “next” two children. When these arrive, it computes a new coreset R and outputs
this R, and now the buffer is emptied and the process starts again.

The total storage requirement (for all levels) is O(B log(n/B)) = O(f(ε/ log n) · log n) words of
space.

QED.

Corollary 3: The Minimum Enclosing Ball has a streaming algorithm that achieves (1 + ε)-

approximation with storage requirement O(log
(d+1)/2 n

ε(d−1)/2).

Remark: In the particular case of MEB that we will see below, the coreset can actually be
easily computed in a streaming fashion, yielding a streaming algorithm with storage O(f(ε)) =
O(ε(d−1)/2).

3 Coreset for Minimum Enclosing Ball

Grids in Rd: For non-zero vectors u, v ∈ Rd define angle(u, v) = arccos ⟨u,v⟩
∥u∥2∥v∥2 .

We say that U ⊂ Rd \ {0} is a θ-grid (or δ-cover) if

∀x ∈ Rd, ∃u ∈ U, 0 ≤ angle(x, u) ≤ θ.

We will need the following theorem (without proof).

Theorem 4: For every δ > 0 there exists a δ-grid U of size O(1/θd−1). In fact, we may assume
it consists of unit-length vectors.

Proof of Theorem 1: Fix a θ-grid U for θ =
√
ε. Given P , define

Q =
∪
u∈U

{argmax
p∈P

⟨p, u⟩}.

4

That is, Q stores for each direction u ∈ U the “extreme” point in this direction (as measured by
projection on u).

To prove that Q is a (1 + θ2)-coreset, consider T ⊂ Rd and x ∈ Rd. Let z ∈ Rd be the farthest
point from x in P ∪ T , then CP∪T (x) = ∥z − x∥2.

We now have two cases. If z ∈ T , then clearly ∥z − x∥2 ≤ CQ∪T (x).

Otherwise (i.e., z ∈ P), there is u ∈ U such that 0 ≤ angle(z − x, u) ≤ θ. Let q ∈ P be the point
that maximizes ⟨q, u⟩. Then q ∈ Q, and we get that

CQ∪T (x) ≥ ∥q − x∥2.

Since z ∈ P is a candidate for this maximization, ⟨q, u⟩ ≥ ⟨z, u⟩, and we get (recall u has unit
length)

∥q − x∥2 ≥ ⟨q − x, u⟩ ≥ ⟨z − x, u⟩ ≥ cos θ · ∥z − x∥2.

A more geometric way to see the last inequality: let z′ be the projection of z on the line {x+ γu :
γ ∈ R}, and let q′ be the projection of q on the same line. Since z ∈ P is a candidate for the
maximization (projection on the line),

∥q − x∥2 ≥ ∥q′ − x∥2 ≥ ∥z′ − x∥2 ≥ cos θ · ∥z − x∥2,

where the last inequality follow from the angle angle(u, z − x) ≤ θ in the triangle x, z, z′.

To complete the proof, recall that ∥z − x∥2 = CP∪T (x) and use cos θ ≥ 1 − θ2/2 ≥ 1
1+θ2

, hence

CQ∪T (x) ≥ 1
1+εCP∪T (x).

Finally, use Theorem 4 to bound the size of the coreset

|Q| ≤ |U | = O(1/ε(d−1)/2).

5

