Sublinear Time and Space Algorithms 2016B — Lecture 6
Triangle Counting, Geometric Streams and Coresets*

Robert Krauthgamer

1 Triangle Counting

Goal: Report the number of triangles in G. We will denote it by T

Motivation: The relative frequency of how often 2 friends of a person know each other is defined as
3T

Soev (“57)

We can compute) (;) in O(n) space, by maintaining the degree of every vertex.

F:

Distinguishing 7" = 0 from 7" = 1 is known to require Q(m) space [Braverman, Ostrovsky, and
Vilenchik, 2013].

We will henceforth assume a known lower bound 0 < ¢t < T

First Approach [Bar-Yossef, Kumar and Sivakumar, 2002]:

Define vector = € R(g), where every coordinate xg for a subset S C V of 3 vertices, counts the
number of edges internal to S.

T is the number of coordinates in x that have value 3.
We will use the frequency moments F, = ||z||} for p = 0,1, 2.
Lemma: T = Fy— 1.5F; +0.5F5.

Proof: If xg € 0,1, 2 then its contribution to RHS is 0. If xg = 3 then its contribution to RHS is
1—-45+45=1.

Why such formula exists?: We are looking for a function f(xg) : R — R with specific value on
0,1,2,3. We can do polynomial interpolation. It would generally require degree 3, but Fp = 11,0y
gives an extra degree of freedom.

Algorithm 1:

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

Maintain the frequency moments p = 0, 1, 2 of vector = € RG). Initially z = 0, and when an edge
(u,v) arrives, increment zg for every S of the form {u, v, w}.

Correctness: As was seen in class, we can compute frequency estimates F p € (1£~)F,, and if

we set v = O(L-), we would get additive error et < eT.

Storage: The storage requirement is O(y?logn) = O(e~?(™2)?logn) words.

Algorithm 2 [Buriol, Frahling, Leonardi, Marchetti-Spaccamela, and Sohler, 2006;
Ahn, Guha and McGregor, 2012]:

Notation: N = (}).

1. Init: pick k¥ random subsets St,..., S each of size 3

2. Update: maintain each xg, (explicitly)

3. Output: let ¢ be the number of sets S; for which zg, = 3, and report T=c- N/k

Analysis: As was seen in class, we can get additive error et < €T by choosing k = O(%) =
1’L3
O(E)a

The storage requirement is of course O(k) words.
Algorithm 2+

Improve the previous algorithm by choosing sets S; more selectively. Specifically, pick only sets S

for which zg > 1. The size of this set is N’ < mn, which is often much smaller than n3.

Note that the estimator needs to know (a good estimate of) N’ = ||z]|o.

mn

T3;) words.

The storage requirement would be &' = O(
Exer: Show how to implement this sampling in the streaming model.
Hint: {y-sampling (one that returns a coordinate and its value)

Exer: Which of the algorithms above can be implemented in the presence of edge deletions
(dynamic graphs)?

2 Geometric Streams and Coresets

Geometric stream: The input is a stream of points in R? denoted P = (P1y- -y Pn)-

Problem definition: The goal is to minimize some cost function Cp : RY — R, where Cp(x)
represents the cost of using x as a solution (“center”) for input P.

For example, in the Minimum Enclosing Ball (MEB) the goal is to find a ball of minimum radius
that contains P. This problem is captured by the cost function

CMEB (2) = max||p — z||s.
P (z) I;legllp P

Other clustering problems where a similar approach may work: enclosing the points in a box (axis-

parallel or not) or in a slab (between two parallel hyperplanes), or in a cylinder (the center x is
replaced by a line).

Definition: We say that such a cost function C is monotone if

vz e RY,Q C P, Co(z) < Cp(x).

Definition [Agarwal, Har-Peled, and Varadarajan, 2004]: Given a monotone C, we say
that @ C P is an «a-coreset for P if

Vz € RE, T c RY, Cqur(z) < Cpur(z) < a- Cqur(z).

The idea is that by storing the small subset) we can approximate the optimum for P within factor
a, even if more points will be added later.

Plan: We will show that MEB admits a small coreset, and that small coresets (with certain
properties) yield low-storage streaming algorithms.

Theorem 1: For every d > 2 and ¢ € (0,1/2), the cost function CMEP has a (1 + €)-coreset of
size O(1/e(d=1)/2),

Merge Property: If Q is an a-coreset of P, and Q' is an o'-coreset of P’, then Q U @’ is an
(- @')-coreset of P U P'.

Reduce Property: If Q) is an a-coreset of P, and R is a [-coreset of @, then R is an (af3)-coreset
of P.

Disjoint Union Property (“strong” version of merge): If @ is an a-coreset of P, and @’ is
an o'-coreset of P’, then Q U Q' is an max{«, o'}-coreset of P U P’.

MEB
Cp

Lemma: Every monotone coreset satisfies the Merge and Reduce properties. satisfies also

the Disjoint Union property.
Exer: Prove this lemma.

Theorem 2: Suppose the cost function C' is monotone, that it admits (1 + &’)-coresets of size
f(&') for every ¢ € (0,1/2), and that these coresets have the Disjoint Union property. Then
there is a streaming algorithm for minimizing Cp, that achieves 1 + O(e) approximation using
O(f(g/logn) - logn) words of space.

Remark: We (implicitly) assume that when |P| < 2f (&) (small inputs), (i) a coreset as above can
be computed using space O(f(¢’)), and (ii) a solution z that minimizes Cp(x) can be computed.

Proof of Theorem 2: The algorithm uses the “merge and reduce” approach. We will first
describe it as a non-streaming algorithm, based on a hierarchical partitioning of the stream.

Suppose the stream is partitioned into “blocks” of size B, which is a “buffer” size to be chosen later,
and let ¢’ = ¢/logn. Now build a binary tree on these blocks in the natural order. Specifically, at
level 0 (the n/B leaves of the tree), each node i gets as input the i-th block and outputs it without
processing. At level h = 1,...,logy(n/B), the input for each node is the concatenation of its two
children’s outputs @ and @’. The node then computes a (1 + &’)-coreset R for Q U @', and then
outputs this R.

At the top level h, the algorithm further computes for the final R an optimal # € R? and outputs
this z.

The output of each node at level h > 1 is a subset of size f(¢’), and this bound extends also to
level h = 0 by setting B = f(&').

Correctness: We prove by induction that the output of every node at level h is a (1 + ’)"-coreset
of the points fed into its descendant leaves. Indeed, consider a node at level h. Suppose it receives
from its children two sets @ and @’ that are (1 + &’)"~!-coresets of the respective original points
P and P'. Then by the Disjoint Union property, QU Q" is a (1 + &’)"~!-coreset of P U P’. By the
Reduce property, this node’s output R is a (1 + &’)'-coreset of P U P'.

The output # is optimal for the final (1 + &’)?-coreset R, and thus achieves approximation factor
1+ <ef™ <ef <14 2.

Streaming Implementation: We will run logy(n/B) algorithms in parallel, one for each level of the
tree. The algorithm at each level h > 1 reads a virtual stream produced by the algorithm of level
h —1, and produces a virtual stream for level h+ 1. It uses a buffer of size 2B to store the inputs P
and P’ from the “next” two children. When these arrive, it computes a new coreset R and outputs
this R, and now the buffer is emptied and the process starts again.

The total storage requirement (for all levels) is O(Blog(n/B)) = O(f(e/logn) - logn) words of
space.

QED.

Corollary 3: The Minimum Enclosing Ball has a streaming algorithm that achieves (1 + ¢)-
approximation with storage requirement O(%).

Remark: In the particular case of MEB that we will see below, the coreset can actually be
easily computed in a streaming fashion, yielding a streaming algorithm with storage O(f(¢)) =

O(eld=1/2),
3 Coreset for Minimum Enclosing Ball

(u,)

l[ull2llvfl2*

Grids in R% For non-zero vectors u,v € R? define angle(u,v) = arccos
We say that U ¢ R?\ {0} is a 6-grid (or -cover) if

VeeRY, JuelU, 0<angle(z,u)<0.

We will need the following theorem (without proof).

Theorem 4: For every § > 0 there exists a d-grid U of size O(1/6%~1). In fact, we may assume
it consists of unit-length vectors.

Proof of Theorem 1: Fix a 6-grid U for § = /. Given P, define

Q= U {arg;r;ax(p, u)}.

uelU

That is, @ stores for each direction u € U the “extreme” point in this direction (as measured by
projection on).

To prove that Q is a (1 + 6?)-coreset, consider T' C R? and = € R?. Let z € R? be the farthest
point from z in PUT, then Cpyur(z) = ||z — z|2-

We now have two cases. If z € T', then clearly ||z — z||2 < Cour(x).
Otherwise (i.e., z € P), there is u € U such that 0 < angle(z — x,u) < . Let ¢ € P be the point
that maximizes (q,u). Then ¢ € @, and we get that

Cqur(x) > llq — (2.
Since z € P is a candidate for this maximization, (¢, u) > (z,u), and we get (recall u has unit
length)

lg = xlla > (g = x,u) > (2 = x,u) > cos b - ||z — x|

A more geometric way to see the last inequality: let 2’ be the projection of z on the line {z + yu :
v € R}, and let ¢’ be the projection of ¢ on the same line. Since z € P is a candidate for the
maximization (projection on the line),

lg —ll2 = ll¢" = 2ll2 > ||z — 2ll2 > cos b - ||z — z]l2,

where the last inequality follow from the angle angle(u, z — z) < 6 in the triangle z, z, 2’.

_1

T hence

To complete the proof, recall that ||z — x|z = Cpur(z) and use cos§ > 1 — 62/2 >
Cour(z) > =Cpur(z).

Finally, use Theorem 4 to bound the size of the coreset

Q| < U = 0(1/e"=1/32),

