
Sublinear Time and Space Algorithms 2016B – Lecture 9

More Lower Bounds and Algorithms for Sequences∗

Robert Krauthgamer

1 Set Disjointness and Approximating ℓ∞-norm

Problem definition: The inputs are x, y ∈ {0, 1}n and the goal is to determine whether the
cardinality of {i ∈ [n] : xi = yi = 1} is one or zero.

We can view x, y as subsets of [n], and the goal is to decide if the two sets intersect (exactly once)
or are disjoint. This is sometimes called the unique intersection property.

Theorem 1 [Kalyanasundaram and Schnitger, 1992] and [Razborov, 1992]: The com-
munication complexity (with unbounded number of rounds) of Set Disjointness in {0, 1}n is Ω(n),
even with shared randomness.

Stated without proof.

Corollary 2: Every randomized streaming algorithm that approximates ℓ∞-norm in Rn within
factor 2.99 requires Ω(n) bits.

Proof: Was seen in class.

2 Multiparty Disjointness and ℓp-norm

Problem definition: There are t players, with respective inputs x(1), . . . , x(t) ∈ {0, 1}n and the
goal is to determine whether

• for all i ̸= j, {i ∈ [n] : x(i) = x(j) = 1} = ∅; or
• there is k ∈ [n] such that for all i ̸= j, {i ∈ [n] : xi ∧ yi = 1} = {k}.

(It may be easier to think of it as set intersection
∣∣x(i) ∧ x(j)

∣∣.)
We usually consider the model where all messages are written on a blackboard that is seen by all
players (equivalently, it is broadcasted to all players without counting it n times).

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1



Theorem 3 [Gronemeier, 2009], following [Bar-Yossef, Jayram, Kumar and Sivaku-
mar, 2002] and [Chakrabarti, Khot and Sun, 2003]: The communication complexity (with
unbounded number of rounds) of t-party Set Disjointness in {0, 1}n is Ω(n/t), even with shared
randomness.

Stated without proof.

Remarks:
(a) It follows that at least one player has to send Ω(n/t2) bits.
(b) The bound holds even in the one-way model, where the messages go first from Player 1 to 2,
then from Player 2 to 3, and so forth.

Corollary 4: Every streaming algorithm that 2-approximates the ℓp-norm, for p > 2, in Rn,
requires Ω(n1−2/p) bits of storage.

Remark: Holds even for insertions-only streams.

Proof: Was seen in class.

3 Application 3 of point queries: Range Queries

Problem Definition: Let x ∈ Rn be the frequency vector of the input stream, and let ε ∈ (0, 1)
be a parameter known in advance.

Given a range query [i, j] (where i, j ∈ [n]), report an estimate for
∑j

l=i xl that with high (constant)
probability is within additive error ε∥x∥1.

Observe there are O(n2) possible queries, which include the n possible point queries. The challenge
is to avoid accumulation of error from the different coordinates.

Theorem: There is a randomized streaming algorithm for ℓ1 range queries in Rn that has storage
requirement of O(poly(ε−1 log n)) words.

Proof sketch: Was seen in class.

4 Streaming Algorithms for LIS

Problem Definition: The input is a stream of numbers/letters (e.g., a string) of length n. The
goal is to compute the length of the longest increasing subsequence (LIS).

Observation: the LIS is easily computed by the Patience Sorting algorithm, which is just dynamic
programming, where each table entry P (i) stores the smallest letter a such that there is an increasing
subsequence of length i ending with a.

Theorem 5 [Gopalan-Jayram-Kumar-K.’07]: Every randomized streaming algorithm for
computing LIS requires storage Ω(n).

Proof: Was seen in class.

2



Theorem 6 [Gopalan-Jayram-Kumar-K.’07]: There is a deterministic streaming algorithm
that computes (1 + ε)-approximation for the LIS of a stream using storage of O(

√
n/ε) words.

Proof: Was seen in class.

Remark: The O(
√
n) storage is optimal for deterministic algorithms [Gal-Gopalan’07, Ergun-

Jowhari’08] but it is open whether randomized algorithms can do better.

Exer: Show that a similar argument works to estimate the distance to monotonicity, i.e., the
minimum number of letter deletions that make the stream increasing, which can be described as
n− LIS.

In fact, for this problem the best algorithm known is deterministic with approximation 1+ ε using
polylogarithmic space.

Theorem 7 [Naumovitz-Saks’15]: There is a deterministic streaming algorithm that computes
(1 + ε)-approximation for the distance to monotonicity using storage of O(ε−2 log5 n) words.

5 Testing Monotonicity

Problem definition:

Input: A list x⃗ = (x1, . . . , xn) of numbers.

Definition: A list is called monotone if it is increasing (WLOG strictly). It is called ε-close to
(being) monotone if its distance to monotonicity is at most εn (i.e., it can be made monotone by
deleting at most ε-fraction of the entries). Otherwise, it is called ε-far from monotone.

Goal: Determine whether x⃗ is monotone or ε-far from monotone (called testing).

Theorem 8 [Ergun-Kannan-Kumar-Rubinfeld-Viswanathan’98]: There is a randomized
algorithm that tests whether an input list is monotone (i.e., determines WHP whether the list is
monotone or ε-far from monotone) and runs in time O(1ε log n).

Main idea: do binary search for a random element contained in the list

Algorithm TestMonotonicity:

1. Repeat the following 2/ε times: Choose a random index i ∈ [n] and perform a binary search in
x⃗ for the value xi.

2. Accept if all binary searches succeed (find xi and the search path contains no out-of-order pair).
Otherwise, reject.

Analysis: Was seen in class.

Exer: Is there an ε-far (but not 2ε-far) input on which the binary search fails with probability
≫ ε?

Exer: Is there an ε-far list for which a single iteration fails with probability O(ε) (meaning the
analysis cannot be improved).

3


