1. Let \(x \in \mathbb{R}^n \) be the frequency vector of a stream of \(m \) items (insertions only).

Show how to use the CountMin+ sketch seen in class (for \(\ell_1 \) point queries) to estimate the median item in the stream in the following sense: assuming there is \(j^* \in [n] \) such that \(\sum_{i=1}^{j^*} x_i = \frac{1}{2} m \), report an index \(j \in [n] \) that with high probability satisfies \(\sum_{i=1}^{j} x_i \in (\frac{1}{2} \pm \epsilon) m \).

2. Give a complete analysis of algorithm CountMin++ seen in class, for \(\ell_1 \) point query of a general frequency vector \(x \in \mathbb{R}^n \) (i.e., allowing negative entries), as follows.

 (a) Show for CountMin (the basic algorithm) that for every \(i \in [n] \),
 \[
 \Pr[|\bar{x}_i - x_i| \geq \alpha||x||_1] \leq \frac{1}{4}.
 \]
 Explain whether it is okay to use a 2-universal or pairwise independent hash function.

 (b) Show for algorithm CountMin++ (which runs \(k = O(\log n) \) copies of CountMin and reports their median) that for every \(i \in [n] \),
 \[
 \Pr[|\bar{x}_i - x_i| \geq \alpha||x||_1] \leq \frac{1}{n^2}.
 \]
 Hint: Define an indicator \(Y_l \) for the event that copy \(l \in [k] \) succeeds, then use one of the concentration bounds.

 (c) Conclude by stating explicitly the storage required by this algorithm, including storage of hash functions.

3. Let \(A \) be a 0-1 matrix of size \((2^k - 1) \times k\) whose rows \(A_i \) are exactly all the nonzero vectors in \(\{0, 1\}^k \). For a random \(p \in \{0, 1\}^k \), define \(h_p : [2^k - 1] \to \{0, 1\} \) by \(h_p(i) := (Ap)_i = \langle A_i, p \rangle \), where all operations are performed modulo 2.

 Prove that the family \(H = \{h_p : p \in \{0, 1\}^k\} \) is pairwise independent.

 Conclude by stating explicitly the performance of this construction (number of bits needed to store \(n = 2^k - 1 \) pairwise independent random bits \(h(1), \ldots, h(n) \)).