Randomized Algorithms 2017A — Final (Take-Home Exam)

Robert Krauthgamer and Moni Naor

February 26, 2017
Due within 48 hours

General instructions. The exam has 2 parts.

Policy: You may consult textbooks and the class material (lecture notes and homework), but
no other sources (like web search). You should work on these problems and write up the solutions
by yourself with no help from other students.

Part I (25 points)

Answer 2 of the following 3 questions. Give short answers, sketching the proof or giving a convincing
justification in 2-5 sentences (even for true/false questions). You may use without proof theorems
stated in class, provided you state the appropriate theorem that you are using. As usual, assume
n (or |V|) is large enough.
A. Let G be a graph drawn from the distribution G(n, p) for p = 1/100.
Is it true that Pr[G is bipartite] > 1/27
B. A triangle in a graph is just a 3-cycle subgraph. Notice that two triangles can be edge-disjoint
even if they share a vertex.

Is it true that K, the complete graph on n vertices, contains p = Q(n?) triangles that are
pairwise edge-disjoint (i.e., every edge of K,, belongs to at most one triangle)?

Hint: Can you add a triangle at random?

C. Is it true that in every undirected graph G and for every two vertices u, v, adding edges to G
can only reduce the commute time C, ,?

Part II (75 points)
Answer 3 of the following 4 questions.

1. A tournament is a directed graph, where for every two nodes u, v, exactly one of the two
directed edges (u,v) and (v,u), appears. A dominating set in a tournament is a set of nodes
S, where for every node v € S there is a node u € S such that the edge (u,v) exists.

Suppose a tournament on n nodes is given as an adjacency matrix. Suggest a Las Vegas
algorithm that finds a dominating set of size O(logn) in expected runtime O(nlogn).

2. Recall that we used the method of compression to analyze Cuckoo Hashing. Use the method
to show that when throwing n balls to n bins, the expectation of the maximum load is
O(logn/loglogn).

3. In the Euclidean MST problem, that input is n points x1,...,z, € [m]¢ for m = d = n/10,
and the goal is to compute their minimum spanning tree, where costs are by fo-distances, i.e.,
the complete graph with weights w;; = ||z; — z;]|2.

Describe a randomized (1 + ¢)-approximation algorithm that solves this problem faster than
the naive computation that computes all pairwise distances and then runs Kruskal’s algorithm,
which in our case takes O(n?) time. (You can omit logarithmic factors.)

4. Analyze the construction below of a distance oracle with additive stretch +2 for unweighted
graph G = (V, E), which clearly implies a multiplicative stretch 3 (strictly speaking, it is not
a distance oracle because its query time is not fast enough). You should analyze its accuracy
(additive stretch) and its storage requirement, where s = s(n) is a parameter that you should
optimize.

Preprocess(G):

(1) store L = {v € V : deg(v) < s} (the low-degree vertices) and the induced subgraph G[L];
(2) choose a random subset W C V of O(s~'nlogn) vertices (with or without repetitions);
(3) for each w € W, compute a BFS tree T, rooted at w.

Query(u,v): return
ld i d
min{ G[L}(%U)vgg‘% T (U,)},

using the convention that dgz)(u,v) = oo whenever at least one of u,v is not in L.

Notation: deg(-) denotes degree in G, and G[L] denotes the subgraph induced on L by G. As
usual, dg(+,-) is the shortest-path distance in graph H.

Good Luck.
THE END.

