1 Introduction

Embeddings and Distortion. An embedding of a metric space \((X, d_X)\) into a metric space \((Y, d_Y)\) is a map \(f : X \to Y\). Its (bi-Lipschitz) distortion is the least \(D \geq 1\) such that
\[
\forall x, y \in X. \quad d_X(x, y) \leq d_Y(f(x), f(y)) \leq D \cdot d_X(x, y).
\]

Some related results previously seen in class

Claim. Every \(n\)-point metric space embeds isometrically (i.e., with distortion 1) into \(\ell^n_\infty\).

Theorem (Bourgain 1985). Every \(n\)-point metric space embeds into \(\ell_2\) with distortion \(O(\log n)\).

Theorem (Johnson-Lindenstrauss). Every \(n\)-point metric subspace of \(\ell^d_2\) embeds into \(\ell^k_2\) with distortion \((1 + \varepsilon)\), where \(k = O(\varepsilon^{-2} \log n)\).

Tree Metrics. Consider an undirected graph \(G = (V, E)\) with non-negative edge weights \(\{w_e\}_{e \in E}\).

Exercise: Show that the function \(d_G : V \times V \to \mathbb{R}\), which maps every pair \(x, y \in V\) to the length of a shortest path between \(x\) and \(y\) in \(G\) w.r.t. \(w\), is a metric on \(V\).

A metric space \((Y, d_Y)\) is called a tree metric space if there exists a tree \(G\) such that \(Y\) embeds isometrically into \(G\).

“Dream Goal”: Embed an arbitrary metric space \((X, d_X)\) into a tree metric space with “small” distortion.

Motivation. We first note that every finite tree metric space can be embedded isometrically into \(\ell_1\).

Exercise: Prove it.

Additionally, many optimization and online problems involve a metric defined on a set of points. It is often useful to embed a metric space into a simpler one while keeping
the distances approximately. Specifically, many such problems can be efficiently solved or
can be better approximated on trees.

Bear the following example, called \(k \)-median, in mind. You are given a metric space
\((X, d_X)\) and an integer \(k \). The goal is to choose a set \(S \subseteq X \) of size at most \(k \), that
minimizes the objective function \(\sum_{x \in X} d_X(x, S) \). This problem is known to be NP-Hard,
however it can be solved optimally on trees in polynomial time. The heuristic is as follows.

Embed \(X \) into a tree metric \(Y \), solve the problem on \(Y \), and construct a respective solution
in \(X \).

Details are omitted at this point, mainly due to the fact that, unfortunately, this
approach does not work so well.

Embedding a Cycle into a Single Tree. Let \((C_n, d_{C_n})\) denote the shortest-path metric
on an unweighted \(n \)-cycle. One can easily show that embedding the cycle into a
spanning tree incurs a distortion \(D \geq \Omega(n) \). In fact, Rabinovich and Raz [RR98] showed
that every embedding of the cycle into a tree (not necessarily a spanning tree, and may
have additional vertices) incurs distortion \(\geq \Omega(n) \).

2 Randomized Embeddings

However, not all is lost. If we consider a \textit{random} embedding of \(C_n \), then we can bound
the distortion \textit{in expectation}. Let \(T \) be the random tree that results from deleting a single
edge of \(C_n \) chosen uniformly at random. Notice that this embedding satisfies the following
two properties (proved in class).

1. For every \(x, y \in C_n \). \(d_{C_n}(x, y) \leq d_T(x, y) \).
2. For every \(x, y \in C_n \). \(\mathbb{E}[d_T(x, y)] \leq 2d_{C_n}(x, y) \).

Exercise: Extend the result to a weighted cycle.

New Goal. Embed an arbitrary metric space \((X, d_X)\) into a random dominating tree
metric with “small” \textit{expected} distortion.

In fact, we will show a somewhat stronger result.

Definition 1. A \(k \)-hierarchically well-separated tree (\(k \)-HST) is a rooted weighted tree
\(T = (V(T), E(T)) \) satisfying the following properties.

1. For every node \(v \in V(T) \), all edges connecting \(v \) to a child are of equal weight.
2. The edge weight along a path from the root to a leaf decrease by a factor of at least
\(k \).
Theorem 1 ([FRT04]). Let (X, d_X) be an n-point metric space. There exists a randomized polynomial-time algorithm that embeds X into the set of leaves of a 2-HST $T = (V(T), E(T))$ such that the following holds (we may assume that $X \subseteq V(T)$).

1. For every $x, y \in X$, $d(x, y) \leq d_T(x, y)$.
2. For every $x, y \in X$, $\mathbb{E}[d_T(x, y)] \leq O(\log n)d_X(x, y)$.

Note that since the distortion is bounded in expectation, we can still apply the approximation heuristic considered earlier for problems in which the objective function is linear.

Back to k-Median.

Lemma 1. The k-median problem can be solved efficiently on the metric space induced by the set of leaves of a 2-HST.

Corollary 1. There exists a randomized approximation algorithm for the k-median problem with expected ratio $O(\log n)$.

Proof sketch. Given a metric space (X, d_X) and an integer k, we apply Theorem 1 and randomly embed X into a 2-HST T. We solve the problem on the leaves of T and return the solution.

3 Partitions, Laminar Families and Trees.

Definition 2. A set-family $\mathcal{L} \subseteq 2^X$ is called laminar if for every $A, B \in \mathcal{L}$, if $A \cap B \neq \emptyset$ then $A \subseteq B$ or $B \subseteq A$.

A laminar family $\mathcal{L} \subseteq 2^X$ such that $\{x\} \in \mathcal{L}$ for all $x \in X$, induces a tree T such that $V(T) = \mathcal{L}$ and the leaves of T are exactly $\{\{x\} : x \in X\}$ in a straightforward manner.

We can construct a laminar family by repeatedly partitioning X. In order to make sure the algorithm halts, we can, e.g. decrease the diameter of the sets in the partition in each iteration. Let Π be a partition of X. Every $A \in \Pi$ is called a cluster, and for every $x \in X$, let $\Pi(x)$ denote the unique cluster $A \in \Pi$ such that $x \in S$. Denote the diameter of X by Δ. By scaling we may assume without loss of generality that $\min_{x, y \in X} d_X(x, y) = 1$.
Input: X.

Output: A laminar family $L \subseteq 2^X$ such that $\{\{x\} : x \in X\} \subseteq L$.

1: $\Pi_0 \leftarrow \{X\}$, $L \leftarrow \{X\}$
2: for $i = 1$ to $\log \Delta$ do
3: $\Pi_i \leftarrow \emptyset$.
4: for all $A \in \Pi_{i-1}$ do
5: if $|A| > 1$ then
6: Let Π be a partition of A into clusters of diameter at most $2^{-i}\Delta$.
7: $\Pi_i \leftarrow \Pi_i \cup \Pi$.
8: $L \leftarrow L \cup \Pi$.
9: return L.

Algorithm 1: Constructing a Laminar Family

It remains to show how to construct the partitions Π_i, $i \in \llbracket \log \Delta \rrbracket$, and how to set the weights of the tree edges.

4 From Low-Diameter Decompositions to Low-Distortion Embeddings

Definition 3. A metric space (X,d_X) is called β-decomposable for $\beta > 0$ if for every $\delta > 0$ there is a probability distribution μ over partitions of X, satisfying the following properties.

(a). Diameter Bound: For every $\Pi \in \text{supp}(\mu)$ and $A \in \Pi$, $\text{diam}(A) \leq \delta$.

(b). Separation: For every $x,y \in X$,

$$\Pr_{\Pi \sim \mu} [\Pi(x) \neq \Pi(y)] \leq \beta \cdot \frac{d_X(x,y)}{\delta}.$$

Theorem 2 ([Bar96], [FRT04]). Every n-point metric space is $8 \log n$-decomposable.

In fact, Fakcharoenphol, Rao and Talwar [FRT04] gave a somewhat stronger result, which will prove essential in the analysis of the embedding. We replace the separation property in Definition 3 by the following, stronger requirement.

(b'). For every $x,y \in X$, if $d_X(x,y) < \frac{\delta}{8}$ then

$$\Pr_{\Pi \sim \mu} [\Pi(x) \neq \Pi(y)] \leq \frac{d_X(x,y)}{\delta} \cdot 8 \log \frac{|B(\{x,y\},\delta/2)|}{|B(\{x,y\},\delta/8)|},$$

where $B(\{x,y\},r) = \{z \in X : d_X(\{x,y\},z) \leq r\}$ for all $r > 0$.

4 / 7
We can now update Algorithm 1 and construct the tree embedding.

Input: X.
Output: A 2-HST with X being the set of leaves.

1. $\Pi_0 \leftarrow \{X\}$.
2. $V(T) \leftarrow \Pi_0$, $E(T) \leftarrow \emptyset$.
3. for $i = 1$ to $\log \Delta$ do
4. \quad $\Pi_i \leftarrow \emptyset$.
5. \quad for all $A \in \Pi_{i-1}$ do
6. \quad \quad if $|A| > 1$ then
7. \quad \quad \quad $\Pi_i \leftarrow \Pi_i \cup \Pi$.
8. \quad \quad $V(T) \leftarrow V(T) \cup \Pi$.
9. \quad add to $E(T)$ an edge from A to every cluster in Π, of weight δ.
10. return T.

Algorithm 2: Constructing a Random Embedding into a 2-HST

Applying Theorem 2, we now turn to prove Theorem 1. Note that the leaves of T are exactly the sets $\{x\}$ for all $x \in X$, and thus for every $x \in X$, we can identify $\{x\} \in V(T)$ with x. Clearly T is a 2-HST. Consider next $x, y \in X$ and let i_0 be the unique integer such that $d_X(x, y) \in (2^{-i_0} \Delta, 2^{-(i_0-1)} \Delta]$, and let i^* be the first index for which $\Pi_{i^*}(x) \neq \Pi_{i^*}(y)$. By the diameter bound of the partition we get that $i^* \leq i_0$. We therefore conclude the following.

Claim 1. $d_T(x, y) \geq d_X(x, y)$.

Proof. $d_T(x, y) \geq 2 \cdot 2^{-i^*} \geq 2^{-i_0+1} \Delta \geq d_X(x, y)$.

Claim 2. $d_T(x, y) \leq 2^{-i^*+2} \Delta$.

Proof. Denote by $u \in V(T)$ the least common ancestor of x, y. Consider the path from u to x. Since T is a 2-HST we get that the length of the path is at most

$$\sum_{i=i^*}^{\infty} 2^{-i} \Delta = 2^{-i^*+1} \Delta.$$

The length of the xy-path in T is at most twice as long.

The following claim concludes the proof of Theorem 1.

Corollary 2. $\mathbb{E}[d_T(x, y)] \leq O(\log n) d_X(x, y)$.

Proof. Since $1 \leq i^* \leq i_0$, then $\mathbb{E}[d_T(x, y)] = \sum_{i=1}^{i_0} \mathbb{E}[d_T(x, y)|i^* = i] \cdot \Pr[i^* = i]$. By Claim 2, $\mathbb{E}[d_T(x, y)|i^* = i] \leq 2^{-i+2} \Delta$, and by Theorem 2, $\Pr[i^* = i] \leq \frac{d_X(x, y)}{2^{-i} \Delta} \cdot \log \frac{|B\{(x, y), 2^{-i+1} \Delta\}|}{|B\{(x, y), 2^{-i} \Delta\}|}$.

Therefore

$$\mathbb{E}[d_T(x, y)] \leq \sum_{i=1}^{i_0} 2^{-i+2} \Delta \cdot \frac{d_X(x, y)}{2^{-i} \Delta} \cdot \log \frac{|B\{(x, y), 2^{-i-1} \Delta\}|}{|B\{(x, y), 2^{-i-3} \Delta\}|} = 4d_X(x, y) \sum_{i=1}^{i_0} \log \frac{|B\{(x, y), 2^{-i-1} \Delta\}|}{|B\{(x, y), 2^{-i-3} \Delta\}|}.$$

5 / 7
All but a constant number of elements of the sum are canceled, and therefore \(\mathbb{E}[d_T(x,y)] \leq O(\log n)d_X(x,y) \).

5 Randomized Low-Diameter Decompositions

We now turn to prove Theorem 2. The following algorithm samples a partition of \(X \). We will show that the distribution induced by the algorithm satisfies the conditions of the theorem.

Input: \(X, \delta \).

Output: A partition \(\Pi \) as in Theorem 2

1. \(\Pi \leftarrow \emptyset \).
2. let \(\pi \) be a random ordering of \(X \).
3. independently choose \(R \in (\delta/4, \delta/2] \) uniformly at random.
4. for all \(j \in [n] \) do
5. let \(B_j = B(\pi(j), R) \).
6. let \(C_j = B_j \setminus \bigcup_{j' < j} B_{j'} \).
7. if \(C_j \neq \emptyset \) then \(\Pi \leftarrow \Pi \cup \{C_j\} \).
8. return \(\Pi \).

Algorithm 3: Constructing a Random Partition

Clearly for every \(C \in \Pi \), \(\text{diam}(C) \leq \delta \). Fix \(x, y \in X \), and let \(x_1, x_2, \ldots, x_n \) be an ordering of \(X \) in ascending distance from \(\{x, y\} \) (breaking ties arbitrarily). Fix \(j \in [n] \). We say that \(x_j \) settles \(x, y \) if \(B(x_j, R) \) is the first ball (in the order induced by \(\pi \)) that has non-empty intersection with \(\{x, y\} \). We say that \(x_j \) cuts \(x, y \) if \(|B(x_j, R) \cap \{x, y\}| = 1 \), and \(x_j \) separates \(x, y \) if \(x_j \) both settles \(x, y \) and cuts \(x, y \).

Notice that the event that \(x_j \) cuts \(x, y \) depends only on the choice of \(R \) and is independent of the choice of \(\pi \). Assume, without loss of generality that \(d_X(j, x) \leq d_X(j, y) \).

Claim 3. \(\Pr[x_j \text{ separates } x, y] \leq \frac{1}{j} \cdot \frac{4d_X(x,y)}{\delta} \).

Proof. First note that

\[
\Pr[x_j \text{ separates } x, y] = \Pr[x_j \text{ separates } x, y \mid x_j \text{ cuts } x, y] \cdot \Pr[x_j \text{ cuts } x, y].
\]

Note that \(x_j \) cuts \(x, y \) if and only if \(R \in [d_X(j, x), d_X(j, y)) \). Since \(R \) is uniformly distributed over \((\delta/4, \delta/2]\), and from the triangle inequality we get that

\[
\Pr[x_j \text{ cuts } x, y] = \Pr[R \in [d_X(j, x), d_X(j, y))] \leq \frac{d_X(j,y) - d_X(j,x)}{\delta/4} \leq \frac{4d_X(x,y)}{\delta}.
\]

Conditioned on \(x_j \) cutting \(x, y \), assume toward contradiction that there exists \(j' < j \) such that \(x_{j'} \) precedes \(x_j \) in the order induced by \(\pi \). Since \(d_X(x_{j'}, \{x, y\}) \leq d_X(x_j, \{x, y\}) =
\(d_X(x_j, x) \leq R\), it follows that \(\{x, y\} \cap B(x_j, R) \neq \emptyset\) and therefore \(x_j\) does not settle \(x, y\), a contradiction. Therefore,

\[
\Pr[x_j \text{ separates } x, y \mid x_j \text{ cuts } x, y] \leq \Pr[x_j \text{ precedes } x_{j'} \text{ for all } j' < j] \leq \frac{1}{j}
\]

Since \(\Pr[\Pi(x) \neq \Pi(y)] \leq \sum_{j \in [n]} \Pr[x_j \text{ separates } x, y]\) we get that

\[
\Pr[\Pi(x) \neq \Pi(y)] \leq \sum_{j \in [n]} \frac{4d_X(x, y)}{j\delta} \leq 4 \frac{d_X(x, y)}{\delta} \cdot (\log n + 1) \leq \frac{d_X(x, y)}{\delta} \cdot 8 \log n.
\]

In order to get a stronger result, we need a more delicate analysis. Assume that \(d_X(x, y) \leq \delta/8\), then if \(x_j \in B(\{x, y\}, \delta/8)\), then \(\Pr[x_j \text{ separates } x, y] = 0\). In addition, if \(x_j \notin B(\{x, y\}, \delta/2)\), then \(\Pr[x_j \text{ separates } x, y] = 0\). Therefore

\[
\Pr[\Pi(x) \neq \Pi(y)] \leq \sum_{j \in B(\{x, y\}, \delta/2) \setminus B(\{x, y\}, \delta/8)} \frac{4d_X(x, y)}{j\delta} \leq \frac{d_X(x, y)}{\delta} \cdot 4 \log \frac{|B(\{x, y\}, \delta/2)|}{|B(\{x, y\}, \delta/8)|}.
\]

Exercise: A metric space \((X, d_X)\) is called \(\beta\)-padded-decomposable for \(\beta > 0\) if for every \(\delta > 0\) there is a probability distribution \(\mu\) over partitions of \(X\), satisfying the following properties.

(a). Diameter Bound: For every \(\Pi \in \text{supp}(\mu)\) and \(A \in \Pi\), \(\text{diam}(A) \leq \delta\).

(b). Padding: For every \(x \in X\) and \(\varepsilon < \delta/8\),

\[
\Pr_{\Pi \sim \mu}[B(x, \varepsilon) \subseteq \Pi(x)] \leq \beta \cdot \frac{\varepsilon}{\delta}.
\]

Show that every \(n\)-point metric space is \(O(\log n)\)-padded-decomposable.

References

