
Randomized Algorithms 2017A – Lecture 11

Graph Laplacians and Spectral Sparsification∗

Robert Krauthgamer

1 Graph Laplacians

High-level motivation: We saw dimension reduction for ℓ2 (the JL-lemma). What is the
analogue for graphs (and combinatorial objects in general)? The idea is to find a sparse graph G′

that is “similar” to G, either (1) in the sense of cuts in the graph, or (2) viewing a graph as a real
matrix (i.e., a linear operator).

Graph Laplacians: Let G = (V,E,w) be an undirected graph with edge weights we ≥ 0, where
wij = 0 effectively means that ij /∈ E. As usual, it is illustrative to think of the unit-weight case.

Notation: Assume V = {1, . . . , n} and let ei ∈ Rn be the i-th standard basis vector. For an edge
uv ∈ E, define

zuv := eu − ev ∈ Rn

Zuv := zuvz
ᵀ
uv ∈ Rn×n.

Remark: zuv = −zvu but Zuv = Zvu.

Definition: The Laplacian matrix of G is the matrix

LG :=
∑
uv∈E

wuvZuv ∈ Rn×n. (1)

Alternative definition: Then LG is the matrix with diagonal entries (LG)ii = di, and off-diagonal
entries (LG)ij = −wij .

Fact 1: The matrix L = LG is symmetric, non-diagonals entries are Lij = −wij , and its diagonal
entries are Lii = di, where di =

∑
j:ij∈E wij is the degree of vertex i.

It is useful to put these values in a diagonal matrixD = diag(d⃗). If G is unweighted, then L = D−A
where A is the adjacency matrix.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

2 Basics of Symmetric Matrices

The Spectral Theorem: Every symmetric matrix M ∈ Rn×n can be written as

M = UΛUᵀ,

where Λ is a diagonal matrix and U is an orthogonal matrix (i.e., UUᵀ = I). This is called the
spectral decomposition of M . Denoting the i-th column of U by ui ∈ Rn, we get that {u1, . . . , un}
is an orthonormal basis consisting of the eigenvectors of M , each associated with the eigenvalue
λi = Λii, and we can rewrite the above as

M =
n∑

i=1

λiuiu
ᵀ
i .

PSD matrices: A symmetric matrix M ∈ Rn×n is called positive semidefinite (PSD) if it can be
written as M = BBᵀ. This is equivalent to requiring that all eigenvalues of M are non-negative,
and also equivalent to requiring that

∀x ∈ Rn, xᵀMx ≥ 0.

Exer: Show that every Symmetric Diagonally Dominant (SDD) matrix M (defined as Mii ≥∑
j ̸=i|Mij | for all i) is PSD.

Fact 2: For every graph G, the Laplacian matrix LG is PSD. Moreover, the number of nonzero
eigenvalues of LG (equivalently, rank(LG) = n − 1), is exactly n minus the number of connected
components in G. Thus, G is connected if and only if LG has n− 1 nonzero eigenvalues.

Proof: For every x ∈ Rn,

xᵀLGx =
∑
uv∈E

wuv(x
ᵀZuvx) =

∑
uv∈E

wuv(z
ᵀ
uvx)

2 =
∑
uv∈E

wuv(xu − xv)
2 ≥ 0.

We leave the second part as an exercise, and just observe that for x = 1⃗, the above expression is 0,
and thus we always have an eigenvalue λ = 0, i.e., rank(LG) ≤ n− 1.

3 Spectral Sparsifiers

Definition: A (1± ε)-spectral sparsifier of a graph G = (V,E,w) is a graph G′ = (V,E′, w′) (on
the same vertex set) such that

∀x ∈ Rn, xᵀLG′x ∈ (1± ε) xᵀLGx. (2)

Theorem 3 [Spielman-Srivastava, 2008]: For every ε ∈ (0, 1/2), every n-vertex graph G =
(V,E,w) has a (1 ± ε)-spectral sparsifier G′ with |E′| = O(ε−2n logn) edges. Moreover, G′ is a
reweighted subgraph of G, and it can be computed in randomized polynomial time (given G and ε
as input).

2

Remarks:

(1) This theorem improves [Spielman-Teng, 2004] and [Benczur-Karger, 1996]. It was later improved
by removing the log n factor in sparsity, which is the optimal bound [Batson-Spielman-Srivastava].

(2) We will focus on the existence of G′; a randomized polynomial-time algorithms is quite straight-
forward, and with more effort the runtime can be further improved to near-linear.

(3) We assume WLOG that G is connected.

Proposition 4: Suppose G′ is a (1 ± ε)-spectral sparsifier of G, and denote the weight of a cut
(S, S̄) by w(S, S̄) :=

∑
uv∈E:u∈S,v∈S̄ wuv (and similarly for G′). Then

∀S ⊂ V, w′(S, S̄) ∈ (1± ε) w(S, S̄).

(Such a graph G′ is usually a called a cut sparsifier.)

Proof: Was seen in class by considering 0-1 vectors x.

Exer: Suppose G′ is a (1 ± ε)-spectral sparsifier of G, and denote the eigenvalues of LG by
λ1 ≥ · · · ≥ λn, and those of L′

G by λ′
1 ≥ · · · ≥ λ′

n. Show that

∀i ∈ [n], λ′
i ∈ (1± ε)λi.

Hint: use the Courant-Fischer (min-max) characterization of eigenvalues.

4 Matrix Chernoff

Löwner ordering: We write A < 0 to denote that A is PSD. We extend it to a partial ordering
between symmetric matrices, defining A < B if A−B < 0.

Observe that (2) can be written as

(1− ε)LG 4 LG′ 4 (1 + ε)LG.

Matrix Chernoff bound [Tropp, 2012]: Let X1, . . . , Xk be independent random n × n sym-
metric matrices. Suppose that

∀i ∈ [k], 0 4 Xi 4 I and µ · I 4
k∑

i=1

E[Xi] 4 µ · I.

Then for all ε ∈ [0, 1],

Pr
[
λmax(

∑k
i=1Xi) ≥ (1 + ε)µ

]
≤ n · e−ε2µ/3,

Pr
[
λmin(

∑k
i=1Xi) ≤ (1 + ε)µ

]
≤ n · e−ε2µ/2.

3

5 Construction of Spectral Sparsifiers

We prove Theorem 3 using the following algorithm.

Algorithm SS:

1. Init w′ = 0 and k := 6ε−2n lnn

2. Viewing G as an electrical network where each edge e ∈ E has resistance re = 1/we, compute
for every edge e ∈ E its effective resistance Reff(e)

3. For i = 1, . . . , k

4. Pick an edge e at random with probability pe :=
we Reff(e)

n−1

5. Increase w′
e by 1

k
1
pe
we =

n−1
k·Reff(e)

6. Output the graph defined by w′, i.e., the Laplacian LG′ =
∑

e∈E w′
eZe, similarly to (1).

Observe that G′ is sparse, because E′ = {e ∈ E : w′
e > 0} has size |E′| ≤ k.

The next lemma shows that this algorithm (step 4) is well-defined. It requires expressing effective
resistances explicitly using the Laplacian.

Lemma 5: The edge probabilities pe sum up to 1.

Expressing effective resistances via Laplacians: Consider the electrical network correspond-
ing to G, i.e., each edge e ∈ E is resistor with resistance re = 1/we. If we fix the potentials according
to some vector ϕ ∈ Rn, then some electrical flow (current) f will go through the resistors, and some
will flow in/out of the vertices. Denote by a vector x ∈ Rn the flow injected to the vertices (opposite
of the excess flow at each vertex). Then for every u ∈ V (recall du :=

∑
v∈N(u)wuv),

xu =
∑

v∈N(u)

fuv (KCL)

=
∑

v∈N(u)

ϕu − ϕv

ruv
(Ohm)

= dv · ϕv −
∑

v∈N(u)

wvuϕu.

In matrix notation, this is just

x = LGϕ.

It also works in the opposite direction, i.e., if we inject flow x ∈ Rn to the vertices, then the vertex
potentials will be fixed to ϕ = L−1

G x (formally, this should be the pseudo-inverse because LG is
singular, see more below, but we will generally gloss over this issue).

Recall that the effective resistance Reff(uv) is defined as the potential difference between u, v ∈ V
when shipping one unit of flow from u to v, i.e., injecting flow zuv = eu−ev (as the vector x). Then
the vertex potentials are given by ϕ = L−1

G zuv, and

Reff(uv) = ϕu − ϕv = (eu − ev)
ᵀϕ = zᵀuvL

−1
G zuv. (3)

4

Matrix powering and pseudo-inverse: Let M be a symmetric matrix, and recall we can
always write it as M = UΛUᵀ, where Λ = diag(λ1, . . . , λn). Given α ∈ R, we can define the matrix
power by essentially powering each eigenvalue separately, i.e.,

Mα := U diag(λα
1 , . . . , λ

α
n)U

ᵀ.

It clearly generalizes the usual matrix powers (for natural α), e.g., M · M = (UΛUᵀ)(UΛUᵀ) =
UΛ2Uᵀ = M2.

For us, the really important values of α are {−1, 1/2,−1/2}. For α = −1, the only problem is with
zero eigenvalues λi = 0, in which case just we leave them intact (not inverting these eigenvalues).
This is called the Moore-Penrose pseudo-inverse, denote M †. Observe that M and M † have the
same kernel.

For α = 1/2, we basically restrict attention to PSD matrices, i.e., all λi ≥ 0, and then there is no
problem. For α = −1/2, we combine both, i.e., restrict attention to PSD matrices (e.g., a Laplacian
LG), and power only the positive eigenvalues.

Observe that using these definitions, (L
1/2
G)2 = LG and that L−1

G LG operates like the identity on

every x ⊥ 1⃗.

Proof of Lemma 5: Was seen in class using the cyclic property of trace.

Proof of Theorem 3: Was seen in class. The basic idea is to use the Matrix Chernoff bound,
but since it is “built” for scenarios where the expectation is µI, we need to rotate/change the basis,

achieved by multiplying by L
−1/2
G . More precisely, we define

yuv := L
−1/2
G zuv,

and now claim (as an exercise) that

(1− ε)LG 4 LG′ =
∑
e∈E

w′
eZe 4 (1 + ε)LG (4)

if and only if (modulo the pseudo-inverse/kernel issue)

(1− ε)I 4 L
−1/2
G (

∑
e∈E

w′
ezez

ᵀ
e)L

−1/2
G =

∑
e∈E

w′
eyey

ᵀ
e 4 (1 + ε)I

(we just multiplied from left and right by L
−1/2
G) We denote the random edge chosen at iteration

i ∈ [k] by ei, and then the matrix of interest can be written as

M ′ =
∑
e∈E

w′
eyey

ᵀ
e =

k∑
i=1

n− 1

k · Reff(ei)
yeiy

ᵀ
ei . (5)

To complete the proof of Theorem 3, we bound M ′ using the matrix Chernoff bound (after checking
the conditions).

Exer: Explain how to modify the analysis when the sampling loop in steps 3-5 of Algorithm
SS is changed to the following: for each edge e ∈ E, repeat k′ = O(ε−2 log n) times, where each
repetition increases the weight w′

e (as in step 6) independently with probability pe.

5

Exer: Show how to modify the algorithm and its analysis to use estimates p̃e instead of pe (e.g.,
maybe these estimates can be computed very quickly), under the assumption that every p̃e ≥ pe,
and that

∑
e∈E p̃e ≤ C.

Hint: you may use the preceding exercise.

6

