
Randomized Algorithms 2017A – Lecture 4

Random Walks on Graphs∗

Robert Krauthgamer

1 Random Walks on Graphs

Let G = (V,E) be an undirected graph.

A random walk on G is the following random process that proceeds in discrete steps. Start at some
initial vertex v0 ∈ V , then at each time step, pick a random neighbor (same as random incident
edge) of the current vertex and move to that vertex.

Formally, for each vertex v ∈ V let N(v) ⊂ V be the set of its neighbors, and its degree be
deg(v) = |N(v)|. Now define random variables X0, X1, . . . where X0 = v0, and for each t ≥ 0, set
Xt+1 to each w ∈ N(Xt) with probability 1/deg(Xt).

Remark: Given Xt, we know the distribution of future steps (Xt+1, Xt+2, . . .) and it will not change
if we are also given any additional information about earlier steps (Xt−1, Xt−2, . . .). This is called
a Markovian process.

Potential usage: We will see how random walks can be used to design various algorithms. For
example, to check if u, v ∈ V are connected, we could start a random walk at u and see if it
reaches v within a reasonable amount of time. We need to analyze the probability to reach v, but
implementing the walk surely requires very little storage!

Throughout, we shall assume that G is connected.

2 Hitting Time

The hitting time from vertex u to vertex v, denoted Huv, is the expected number of steps for a
random walk that starts at u to hit v. Formally, define the random variable T = min{t ≥ 0 : Xt = v}
and let Huv = E[T ].

Notice that it depends on G, but it is not a random variable (despite capital letter notation). Notice
also that it is not symmetric, i.e., in some cases Huv ̸= Hvu.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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Example: Consider an n-clique, i.e., G = Kn. Then Huv = n − 1 for all u ̸= v, because T is a
geometric random variables with parameter p = 1/(n − 1). And by definition Huu = 0 (for every
G).

Lemma 1: We have directed triangle inequality

∀u, v, w ∈ V, Huw ≤ Huv +Hvw.

Proof: Was seen in class, using one random walk that starts at u.

Exer: Let G = Kn1,n2 , i.e., a complete bipartite graph with sizes n1, n2. Analyze Huv for all
possible u, v ∈ V .

Exer: Let G be a path on n vertices. Give an explicit formula for Huv for all possible u, v ∈ V ,
and show in particular that Huv = O(n2).

Hint: Denote the vertices 1, 2, . . . , n, and write linear equations Huv = 1+ 1
2Hu−1,v +

1
2Hu+1,v and

solve these
(
n
2

)
equations over

(
n
2

)
variables. A simpler version is to consider huv only for u < v

(the other case follows by symmetry), express each Huv = Hu,u+1 +Hu+1,u+2 + · · · +Hv−1,v, and
now the earlier equations give us n− 1 equations using n− 1 variables.

We will soon see that the hitting time is always (for every connected G) bounded by a polynomial
in n. The next exercise shows this is not true for directed graphs.

Exer: Consider the analogous definitions of random walks and hitting time for directed graphs,
and show (that for every n) there exists a directed graph on n vertices and two vertices u, v such
that Huv = 2Ω(n).

3 Commute Time

The commute time between vertices u and v is defined as Cuv = Huv+Hvu = Cvu. It can be viewed
as the expected time for a random walk that starts at u, to return to u after at least one visit to
v. It is sometimes viewed as a symmetric version of the hitting time.

Lemma 2: We have the triangle inequality

∀u, v, w ∈ V, Cuw ≤ Cuv + Cvw.

The proof follows immediately from Lemma 1.

Theorem 3: For all (u, v) ∈ E, we have Cuv ≤ 2|E|.

Before seeing the proof, let’s see some consequences.

Corollary 4: For all u, v ∈ V , we have Cuv ≤ 2(n− 1)|E| < n3 (recall G is connected).

Proof: Follows from Lemma 2 (the triangle inequality) along a shortest path between u and v,
and then applying Theorem 3.
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4 Cover Time

The cover time from vertex u, denoted covu(G), is the expected number of steps until a random walk
that starts at u has visited all vertices of G. Formally, let T ′ = min{t ≥ 0 : {X0, X1, . . . , Xt} = V }
and let covu(G) = E[T ′].

The cover time of a graphG is defined as cov(G) = maxu covu(G), i.e., according to the “worst-case”
starting vertex.

Example: In the n-clique, the cover time is O(n log n), because it is just the coupon collector
problem.

Theorem 5: If G is a connected graph on n vertices, then cov(G) ≤ 2(n− 1)|E|.

Proof: Was seen in class, using a spanning tree T of the graph.

Theorem 6 (Matthews’ bound): Let G be a connected graph on n vertices, and let Hmax =
max{Huv : u, v ∈ V }. Then

Hmax ≤ cov(G) ≤ O(log n)Hmax.

Proof: Was seen in class.

Exer: Show that each of these inequalities is tight (up to constants) for some graph G.

5 Undirected Connectivity

Undirected st-connectivity (USTCON): In this problem, the input is a undirected graph G
and two vertices s, t and the goal is to determine if s, t are the in the same connected component
(equivalently, there is a path between them).

Theorem 6 [Aleliunas, Karp, Lipton, Lovasz, and Rackoff, 1979]: USTCON ∈ RL, i.e.,
USTCON can be solved by a randomized algorithm (Turing machine) that uses O(log n) bits of
space and has one-sided error.

Proof: Was seen in class.

Remark: It was a big open problem to solve USTCON in deterministic logarithmic space, and
Reingold proved it in 2005.

6 Electrical Networks

It turns out that random walks are “equivalent” to electrical networks (composed of resistors), and
this “physical” interpretation gives alternative ways to prove things. We first introduce the basic
concept.

Given an undirected graph G = (V,E), we think of it as an electrical circuit with unit resistors.
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The basic property of electrical circuits is that current flows when there is a potential difference
(e.g., between the endpoints of a resistor).

What happens when two vertices are connected to the positive and negative terminals of a battery?
We create a “potential difference” between these two vertices, which induces a current (or electrical
flow) in the network, which satisfies the following laws:

Kirchhoff’s Current Law: At every vertex, the total incoming flow equals the total outgoing
flow.

Kirchhoff’s Voltage Law: The sum of potential differences along every (directed) cycle is zero.

Ohm’s Law: The current flowing from u to v through an edge {u, v} of resistance ruv is exactly
ϕuv

ruv
, where ϕuv is the potential difference on (the endpoints of) the resistor.

We assumed unit resistors, but in general, if G has edge weights, then each edge e would have
resistance re = 1/we (i.e., its conductance is ce = 1/re = we), and this corresponds to a random
walk according to the edge weights, i.e., each outgoing edge is picked with probability proportional
to we.

Remark: (KVL) explains why we call it “potential difference”. It implies that we can assign a
potential to each vertex, i.e., define ϕ′ : V → R, such that ϕuv = ϕ′

u−ϕ′
v for every edge. Obviously,

this map is unique up to translation (if G is connected).

Q: What characterization electrical flow, in comparison say to other flows (that satisfy KCL, i.e.,
flow conservation)?

Thomson’s Principle: Among all flows f that ship a unit flow from s to t, the electrical flow
minimizes the total energy dissipation

E(f) =
∑
uv∈E

f2
uvruv.

Proof: Was seen in class.

7 Effective Resistance

The effective resistance between vertices u, v in an electrical network, denoted Reff(u, v), is the
potential difference we need to create between u and v to induce a unit of current between them,
i.e., the potential difference from u to v when one unit of current flows from u and v. In other
words, the entire network can be simulated as a single resistor between u, v.

Observe that Reff(u, v) is symmetric.

Next class we will see that the effective resistance is essentially the same as the commute time.
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