
Randomized Algorithms 2017A – Lecture 5

Effective Resistance and Algorithms for SAT∗

Robert Krauthgamer

1 Reminder: Graphs as Electrical Networks

Recall that in an electrical network, we view a graph as a collection of (undirected) resistors. When
we create a potential difference ϕuv between two vertices, it induces an electrical flow (current),
which is (i) a feasible flow in the sense of flow preservation (KCL), and (ii) creates potentials
(voltages) on all other vertices (KVL), and (iii) the flow is inverse proportional to the potential
difference, and directed accordingly (Ohm’s Law).

Observation: The amount of flow shipped from u to v grows linearly with ϕuv.

Example: Suppose G is a path on the vertices u,w, v, and we create potential difference ϕuv.
Then (KCL)

ϕuw = fuwruw = fwvrwv = ϕwv.

Since the LHS and RHS sum up to ϕuv, each of them is exactly 1
2ϕuv, and thus fuw = fwv = 1

2ϕuv

is the amount of flow.

Observation: In fact, we can also multiply the add two difference potential functions, and the
flows will add up (and vice versa).

2 Effective Resistance

Effective Resistance: The effective resistance between vertices u, v in an electrical network,
denoted Reff(u, v), is the potential difference ϕuv we need to create between u and v to induce
exactly one unit of current flowing from u to v.

To understand it, suppose that when we create potential difference of a unit, some F ∗ units flow
from u to v (recall it depends on G). Now if we scale the potential difference by some ϕuv, the
amount of flow will scale to ϕuvF

∗, and for this (flow amount) to be equal to 1, we should of course

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

choose the scaling factor to be ϕuv = 1/F ∗, i.e., Reff(u, v) = 1/F ∗. Perhaps a more appropriate
name for F ∗ could be Feff(u, v), but actually it is called effective conductance Ceff(u, v).

The name comes from the viewpoint that the entire network can be “simulated” by a single resistor
between u, v, with resistance ruv = Reff(u, v), then the effective resistance between u, v (in it) would
be the same. Indeed, if we create a unit potential difference, then 1 = ϕuv = fuv Reff(u, v), thus the
amount of flow is fuv = 1/Reff(u, v) = F ∗, exactly as in G.

Observe that Reff(u, v) is symmetric.

We can now show that the effective resistance is essentially the same as the commute time.

Theorem 7: Let G = (V,E) be an undirected graph. Then

∀u, v ∈ V, Cuv = 2|E|Reff(u, v).

Lemma 8: Let Nz be the electrical network corresponding to G, when we inject deg(u) units of
flow at every vertex u ∈ V , and extract

∑
u∈V deg(u) = 2|E| units of flow at z. Then the potential

differences ϕNz satisfy

∀u ∈ V, ϕNz
uz = Huz.

Proof of Lemma 8 and Theorem 7: Was seen in class.

Theorem (Thomson’s Principle revisited): Let f be a unit of flow that flow from u to v that
minimizes the energy. Then

Reff(u, v) = E(f).

Proof: Was seen in class.

Theorem (Rayleigh’s Monotonicity Law): If {r(e)} and {r′(e)} are sets of resistances on the
edges of the same graph G, such that r(e) ≤ r′(e) for all e ∈ E,

∀u, v ∈ V, Reff
(r)(u, v) ≤ Reff

(r′)(u, v).

The proof follows directly from Thomson’s Principle above.

Corollary: For all (u, v) ∈ E, we have Reff(u, v) ≤ 1 and thus Cuv ≤ 2|E|.

The proof follows by observing that adding an edge is equivalent to reducing the resistance of an
edge.

This proves our Theorem 3 (claimed earlier without a proof).

Vertex cut (series composition in disguised form): Suppose every u− v path goes through
a vertex w. Then

Reff(u, v) = Reff(u,w) + Reff(w, v).

Exer: Prove this using composition of the flows. (Another proof is by multiplying by 2|E| and
using commute time.)

2

Example 1: The path: C1n = H1n + Hn1 = 2H1n by symmetry. By the vertex-cut (series
composition), Reff(1, n) = n− 1, and thus C1n = 2(n− 1)Reff(1, n) = 2(n− 1)2. We conclude that
H1n = (n− 1)2.

Notice this is also the cover time of that path.

Example 2: The lollipop: The “lollipop” graph is a path of n/2 edges from u to v, where this
last vertex v forms a clique with n/2 − 1 new vertices. It can be easily seen Huv = (n/2)2 while
Hvu = Θ(n3) and also cov(G) = Θ(n3).

Exer: Prove these bounds (it’s actually easy to get precise formulas).

Hint: Use the effective resistance formula and Theorem 5 (the spanning tree).

Series Composition: Consider two graphs, G1 and G2 on disjoint sets of vertices, and in each
of them fix two vertices si, ti ∈ Gi for i = 1, 2. Their series composition is the graph Ḡ obtained
by taking their disjoint union but identifying t2 with s1. Then

Reff
Ḡ(s1, t2) = Reff

G1(s1, t1) + Reff
G2(s2, t2).

Notice this is exactly the same as the vertex cut above.

Parallel Composition: Let G1 and G2 be as above. Their parallel composition is the graph Ḡ
obtained by taking their disjoint union but identifying s1 with s2 (call it s̄), and identifying t1 with
t2 (call it t̄). Then

1

Reff
Ḡ(s̄, t̄)

=
1

Reff
G1(s1, t1)

+
1

Reff
G2(s2, t2)

.

Exer: Prove this using Ohm’s Law.

3 Algorithm for 2-SAT

Problem definition: In the 2-SAT problem, the input is a 2-CNF formula F with m clauses
over n boolean variables, and the goal is the decide if F is satisfiable.

This problem is in P (notice it is not MAX-2SAT). In contrast, for every k ≥ 3, the k-SAT problem
is NP-hard.

Exer: Show that 2-SAT can be solved in polynomial time.

Algorithm A:

1. Start with an arbitrary assignment

2. While the assignment does not satisfy F

2.1 pick an arbitrary unsatisfied clause, pick one of its variables at random, and flip its value

3. output the satisfying assignment

3

Formally, if F is unsatisfiable, then it will never stop, hence we need to stop the algorithm at some
point, and we can call that Algorithm A’. Anyway, our goal is to prove that if F is satisfiable, then
the algorithm will (probably) find one quickly enough.

Theorem [Papadimitriou, 1991]: The expected number of iterations for the above algorithm
to find a satisfying assignment, assuming one exists, is O(n2).

Proof: Was seen in class.

4 Algorithm for 3-SAT

Can we generalize it to 3-SAT? We of course don’t expect a polynomial runtime.

Naive approach: Let a∗ and Yt ∈ {0, 1, . . . , n} be as before, then for every 0 < j < n,

Pr[Yt = j + 1|Yt = j] ≥ 1/3

Pr[Yt = j − 1|Yt = j] ≤ 2/3,

and as before, we may consider (for sake of analysis) these are equalities. In other words, Yt is a
random walk but with a drift to the left. What is Hmax?

Each hitting time Hn−j,n satisfies

Hn−j,n = 1 + 1
2(Hn−j−1,n +Hn−j+1,n),

and of course Hn,n = 0 and H0,n = 1 +H1,n. It is easy to verify, by induction, that

Hn−j,n = 2n+2 − 2j+2 − 3(n− j),

which gives a bound of O(2n) on the expected number of steps to reach a satisfying assignment.

Key insights:

1. An initial assignment that is random starts around n/2.

2. If we did not reach a satisfying assignment after “enough” steps, we have probably drifted to
the left, and it’s better to start from a new random assignment.

Thus, the algorithm below performs a short random walk with a random start. Of course, it should
be repeated many times (this would be Algorithm B’).

Algorithm B:

1. Start with an assignment chosen uniformly at random

2. Repeat 3n times

2.1 if the assignment satisfies F , report it and exit

2.2 pick an arbitrary unsatisfied clause, pick one of its variables at random, and flip its value

Theorem [Schoening, 1999]: Algorithm B above finds a satisfying assingment, assuming one
exists, with probability at least (34)

n/ poly(n). Thus a satisfying assignment can be found, with
high probability, by (4/3)n poly(n) repetitions of the algorithm.

4

Proof: Was seen in class.

5

