Randomized Algorithms 2017A — Lecture 7
Dimension Reduction in #5*

Robert Krauthgamer

1 The Johnson-Lindenstrauss (JL) Lemma

The Johnson-Lindenstrauss (JL) Lemma: Let z1,...,2, € R? and fix 0 < ¢ < 1. Then
there exist y1,...,%, € R¥ and k = O(¢~2logn), such that

Vi, j € [n], lyi —yjll2 € (1 £ e)||lzi — xjl2.

Moreover, there is a randomized linear mapping L : R? — R¥ (oblivious to the given points), such
that if we define y; = Lx;, then with probability at least 1 — 1/n all the above inequalities hold.

Throughout, all norms are fo, unless stated otherwise.

Remark: Note there is no assumption on the input points (e.g., that they lie on a low-dimensonal
space).

Idea: The map L is essentially (up to normalization) a matrix of standard Gaussians. In fact,
random signs +1 would also work!

Since L is linear, Lz; — Lzj; = L(z; — x;), and it suffices to verify that L preserves the norm of
arbitrary vector WHP (instead of arbitrary pair of vectors).

Lemma 2 (Main): Let G € R%* be a random matrix of standard Gaussians, for suitable
k= O(s 2logn).

vweR?,  Prl||Gu| ¢ is)\/Ean] < 2/n3.

In fact, the proof shows that the failure probability is at most § when k = O(¢ 2 log %)

Using main lemma: Let L =G/ Vk, and recall we defined y; = Lz;. For every i < j, apply the
lemma to x; — x;, then with probability at least 1 — 2/ n3,

ly: = yill = IIL(x; —a7)| = |G xi — 25)||/VE € (L £ &) s — .

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.



Now apply a union bound over (g) pairs.
QED
It remains to prove the main lemma.

Fact 3 (the sum of Gaussians is Gaussian): Let X ~ N(0,0%) and Y ~ N(0,0%) be
independent Gaussian random variables. Then X +Y ~ N(0, 03( + 032,).

The proof is by writing the CDF function (integration), recall that PDF is \/%e"EQ/Q.

Corollary 4 (Gaussians are 2-stable): Let X,..., X, be independent standard Gaussians
N(0,1), and let 01,...,0, € R. Then Y, 0:X; ~ N(0,Y, 02).

Follows by induction.
Proof of main lemma: Was seen in class, using the next claim.

Claim 5: Let Y have chi-squared distribution with parameter k, i.e., Y = Zle Xl-2 for indepen-
dent Xi,..., X} ~ N(0,1). Then

VE € (07 1)7 Pr[Y 2 (1 —+ 5)2k] S e*(3/4)52k'

Remark: The claim and its proof are similar to Hoeffding bounds. Indeed, one may compare Claim
5 to the case Y ~ 2 B(k,1/2) which has the same expectation.

Proof of Claim 5: Was seen in class.

Exer: Show that the main lemma (and thus the JL Lemma) extends to every matrix G whose
entries are iid from a distribution that has mean 0, variance 1, and satisfies a sub-Gaussian tail
bound E[e!¥X] < ¢ for some constant C' > 0. And use it to conclude in particular for a matrix of
+1.

Hint: Use the following trick. Introduce a standard Gaussian Z independent of X, then E[e!?] =

et2/2, and thus

)

Ex[etXQ] _ EX[G(\/ZtX2)2/2] —Ex Ez[ertXQZ} —Ey EX[€\/2tZ2X] < Ez[620t22]

and the last term can be evaluated using the previous exercise.

2 Fast JL Transform

Computing the JL map of a vector requires the multiplication of a matrix L € R**¢ with a vector
r € R, which generally takes O(kd) time, because L is a dense matrix.

Question: Can we compute it faster?

Sparse JL: Some constructions (see Kane-Nelson, JACM 2014) use a sparse matrix L, namely,
only an e-fraction of the entries are nonzero, leading to a speedup by factor € (and even more if =
is sparse).



We will see another approach, where L is dense but its special structure leads to fast multiplication,
close to O(d + k) instead of O(kd).

Theorem 6 [Ailon and Chazelle, 2006]: There is a random matrix L € R¥*? that satisfies the
guarantees of the JL lemma and for which matrix-vector multiplication takes time O(dlogd + k3).

We will see a simplified version of this theorem (faster but higher dimension).
Theorem 7: For every d > 1 and 0 < § < 1, there is a random matrix L € R¥*¢ for k =
O(e721og?(d/d) log(1/8)), such that

weR:,  Prl|Lv| ¢ (1 ig)uuu} <1/6,

and multiplying L with a vector v takes time O(dlogd + k).
Super-Sparse Sampling: A basic idea is to just sample one entry of v (each time).

Let S € R**? be a matrix where each row has a single nonzero entry of value /d/k in a uniformly
random location. This is sometimes called a sampling matrix (up to appropriate scaling). For every
v e R?,

d
El(Sv)i] =) s(Vd/k-z;)* = ¢]lv]|*.
j=1
k
E[llSv*) = ) E[(Sv)] = |lv]|*.
i=1

The expectation is correct, however the variance can be huge, e.g., if v has just one nonzero
coordinate, then for S to be likely to sample it, we need k = Q(d).

We shall first see how to transform v into a vector y € R? with no “heavy” coordinate, meaning
that

Iyl . 1

lyll: ~ V'

and later we will prove that super-sparse sampling works for such vectors.

Definition: A Hadamard matriz is a matrix H € R%*? that is orthogonal, i.e., HT H = I and all
its entries are in {4+1//d}.

Observe that by definition ||Hv||3 = (Hv)T (Hv) = vTvT = |jv||a.

When d is a power of 2, such a matrix exists, and can be constructed by induction as follows (called
a Walsh-Hadamard matrix).

ma= (B M) s



It is easy to verify it is indeed a Hadamard matrix, i.e., that all entries are £1/ Vd and Hng =1.
Lemma 8: Multiplying Hy by a vector can be performed in time O(dlogd).
Exer: Prove this lemma, using divide and conquer.

Randomized Hadamard matrix: Let D € R%*? be a diagonal matrix whose ith diagonal
entry is an independent random sign r; € {1}. Observe that HD is a random Hadamard matrix,
because its entries are still +1/v/d and (HD)T(HD) = DT HTHD = DD = I.

Lemma 9: Let HD be a random Hadamard matrix as above. Then

d
V0 # v € RY, Iz)r

|HDv|so _ [21n(4d/0)
> <4/2.
!nHDvnQ N | =Y

Proof of Lemma 9: Was seen in class, using the following concentration bound.

Hoeffding’s (generalized) inequality: Let Xi,..., X, be independent random variables where
X; € [a;,b;]. Then X =3, X; satisfies

V>0, Pr[|X —E[X]| > ¢] < 2e 2/ Eilbmar®,

Lemma 10: Let S € R¥*¢ be a super-sparse sampling matrix (i.e., each row has a single nonzero
entry of value y/d/k in a uniformly random location). Then

vy € R yllz = Lllyloo <A RISyl # (1)) < 2721/,

Exer: Prove this lemma using Hoeffding’s inequality.

Proof of Theorem 7: Was seen in class, using Lemmas 9 and 10.



