Sublinear Time and Space Algorithms 2018B — Lecture 10
Geometric Streams and Coresets*

Robert Krauthgamer

1 Geometric Streams and Coresets

Geometric stream: The input is a stream of points in R? denoted P = (py,...,pn).

Problem definition: The goal is to minimize some cost function Cp : RY — R, where Cp(7)
represents the cost of using x as a solution (“center”) for input P.

For example, in the Minimum Enclosing Ball (MEB) the goal is to find a ball of minimum radius
that contains P. This problem is captured by the cost function

CMEB (. _ 2l
P () r&ag\lp P

Other clustering problems where a similar approach may work: enclosing the points in a box (axis-
parallel or not) or in a slab (between two parallel hyperplanes), or in a cylinder (the center x is
replaced by a line).

Definition: We say that such a cost function C' is monotone if

veeRYQ C P, Co(z) < Cp(x).

Definition [Agarwal, Har-Peled, and Varadarajan, 2004]: Given a monotone C, we say
that Q C P is an a-coreset for P if

Vz e RY T c RY, Cour(z) < Cpur(r) < a- Cqur(r).

The idea is that by storing the small subset () we can approximate the optimum for P within factor
«, even if more points will be added later.

Plan: We will show that MEB admits a small coreset, and that small coresets (with certain
properties) yield low-storage streaming algorithms.

Theorem 1: For every d > 2 and ¢ € (0,1/2), the cost function CMEP has a (1 + ¢)-coreset of
size O(1/ed=1/2),

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

Before proving the theorem, let’s discuss the implications to streaming algorithms.

Merge Property: If Q is an a-coreset of P, and @Q’ is an o'-coreset of P’, then Q U Q' is an
(- @')-coreset of P U P'.

Reduce Property: If @ is an a-coreset of P, and R is a [3-coreset of @, then R is an («/f3)-coreset
of P.

Disjoint Union Property (“strong” version of merge): If Q is an a-coreset of P, and @’ is
an «o'-coreset of P’, then Q U Q' is a max{«, o’ }-coreset of P U P’.

Lemma: Coresets for monotone C satisfy the Merge and Reduce properties. Coresets for C}‘DJ EB

satisfy also the Disjoint Union property.
Exer: Prove this lemma.

Theorem 2: Suppose the cost function C' is monotone, admits (1+¢’)-coreset of size f (&) for every
¢’ € (0,1/2), and that these coresets have the the Disjoint Union property. Then there is a streaming
algorithm for minimizing C'p, that achieves 1+ O(e) approximation using O(f(g/logn)-logn) words
of space.

Remark: this algorithm outputs both an estimate for the optimal cost and a near-optimal center
T e R4

Remark: We (implicitly) assume that when |P| < 2f(e’) (small inputs), (i) a coreset as above can
be computed using space O(f(¢’)), and (ii) a solution x that minimizes Cp(x) can be computed.

Proof of Theorem 2: The algorithm uses the “merge and reduce” approach. We will first
describe it as a non-streaming algorithm, based on a hierarchical partitioning of the stream.

Suppose the stream is partitioned into “blocks” of size B, which is a “buffer” size to be chosen later,
and let ¢’ = £/logn. Now build a binary tree on these blocks in the natural order. Specifically, at
level 0 (the n/B leaves of the tree), each node i gets as input the i-th block and outputs it without
processing. At level h = 1,...,logy(n/B), the input for each node is the concatenation of its two
children’s outputs @ and @'. The node then computes a (1 + &’)-coreset R for QU Q’, and outputs
this R.

At the top level h, after the algorithm computes a final coreset R, it computes also an optimal
€ R? and outputs this Z and its cost Cp(%).

The output of each node at level h > 1 is a subset of size f(&’), and this bound extends also to
level h = 0 by setting B = f(&').

Correctness: We prove by induction that the output of every node at level h is a (1 + &’)"-coreset
of the points fed into its descendant leaves. Indeed, consider a node at level h. Suppose it receives
from its children two sets @ and @’ that are (1 + &’)"~!-coresets of the respective original points
P and P'. Then by the Disjoint Union property, QU Q' is a (1 + &’)"~!-coreset of P U P’. By the
Reduce property, this node’s output R is a (1 + &’)"-coreset of P U P,

The output Z is optimal for the final (1 + 6’)h—c0reset R, and thus achieves approximation factor
(14N <eh <ef <14 2.

Streaming Implementation: We will run log,(n/B) algorithms in parallel, one for each level of the
tree. The algorithm at each level h > 1 reads a virtual stream produced by the algorithm of level
h —1, and produces a virtual stream for level h+ 1. It uses a buffer of size 2B to store the inputs P
and P’ from the “next” two children. When these arrive, it computes a new coreset R and outputs
this R, and now the buffer is emptied and the process starts again.

The total storage requirement (for all levels) is O(Blog(n/B)) = O(f(e/logn) - logn) words of
space.

QED.

Corollary 3: Minimum Enclosing Ball has a streaming algorithm that achieves (1+¢)-approximation

. . (d+1)/2
with storage requirement O(%).

Exer: Show that the particular coreset we design below for MEB, can be easily computed in
a streaming fashion directly (without the “merge and reduce” approach) yielding a streaming
algorithm with storage O(f(e)) = O(el4=1/2),

2 Coreset for Minimum Enclosing Ball

(u,)

l[ull2llvfl2*

Grids in R% For non-zero vectors u,v € R? define angle(u,v) = arccos
We say that U ¢ R?\ {0} is a 6-grid (or f-cover) if

VeeRY, JuelU, 0< angle(z,u) < 6.

We will need the following theorem (without proof).

Theorem 4: For every 6 > 0 there exists a 6-grid U of size O(1/6971). In fact, we may assume
it consists of unit-length vectors.

Proof of Theorem 1: Fix a #-grid U (of unit-length vectors) for § = /. Given P, define

Q= U {argmax(p,u)}.

uelU pepr

That is, @ stores for each direction u € U an “extreme” point in this direction (as measured by
projection on).

To prove that @Q is a (14 62)-coreset, consider z € R% and T C R?, and let us show that Cp_r(z) <
(14 ¢)Cqur(x). There exists z € P UT that realizes the LHS, i.e., Cpyr(z) = ||z — z||2 (a point
in PUT that is farthest from x).

We now have two cases. If z € T', then clearly ||z — z[|2 < Cour(x).

Otherwise (z € P), there is u € U such that 0 < angle(z — z,u) < . Let ¢ € P be the point that
maximizes (g, u). Then g € @, and we get that

Cour(z) = llg — 2|2

Since z € P is a candidate for this maximization, (g, u) > (z,u), and we get (recall v has unit
length)

lg — |2 > (g —x,u) > (z —z,u) > cosb |z — z|a.

A more geometric way to see the last inequality: let 2’ be the projection of z on the line {z + yu :
v € R}, and let ¢’ be the projection of ¢ on the same line. Since z € P is a candidate for the
maximization (projection on the line),

lg = zll2 = l¢" = 2ll2 > ||z — 2ll2 = cos b - ||z — x|,

where the last inequality follow from the angle angle(u, z — 2) < 6 in the triangle z, z, 2’.

_1

o hence

To complete the proof, recall that ||z — x|z = Cpur(z) and use cosd > 1 — 62/2 >
Cour(z) > =Cpur(z).

Finally, use Theorem 4 to bound the size of the coreset

Q| < U = 0(1/e\=1/2),

