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More Streaming Lower Bounds∗

Robert Krauthgamer

1 Gap Hamming Distance (GHD)

Problem definition: Alice and Bob’s inputs are x, y ∈ {0, 1}n, respectively, and their goal is to
determine whether the hamming distance between x, y is ≤ n

2 −
√
n or ≥ n

2 +
√
n.

Theorem 3 [Woodruff, 2004]: The randomized one-way communication complexity of GHD is
Ω(n), even with shared randomness.

Proof from [Jayram, Kumar and Sivakumar, 2008]: Was seen in class, by reduction from
the Indexing problem.

We mention in passing a stronger result, where the number of rounds is unbounded.

Theorem [Chakrabarti and Regev, 2011]: The communication complexity (with unbounded
number of rounds) of GHD is Ω(n), even with shared randomness.

2 Streaming Lower Bounds: Approximate ℓ0

Theorem 4: Every streaming algorithm that (1 + ε)-approximates ℓ0 in Rn for 1/
√
n ≤ ε < 1,

even a randomized one with error probability 1/6, requires storage of Ω(1/ε2) bits.

Remark: For smaller 0 < ε < 1/
√
n, the required storage is Ω(n), because any algorithm for such

“smaller” ε “solves” ε = 1/
√
n which is covered by the above theorem.

Proof: Was seen in class, by reduction from GHD.

Exer: Prove the same bound for insertions-only streams.

Hint: Observe that 2∥x+ y∥0 = ∥x∥0 + ∥y∥0 + ∥x− y∥0 for all x, y ∈ {0, 1}n.

Exer: Show a similar lower bound for (1 + ε)-approximation of ℓ1-norm and ℓ2-norm.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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3 Set Disjointness and Approximating ℓ∞-norm

Problem definition: The inputs are x, y ∈ {0, 1}n and the goal is to determine whether the
cardinality of {i ∈ [n] : xi = yi = 1} is one or zero.

We can view x, y as subsets of [n], and the goal is to decide if the two sets intersect (exactly once)
or are disjoint. This is sometimes called the unique intersection property.

Theorem 5 [Kalyanasundaram and Schnitger, 1992] and [Razborov, 1992]: The com-
munication complexity (with unbounded number of rounds) of Set Disjointness in {0, 1}n is Ω(n),
even with shared randomness.

Stated without proof.

Corollary 6: Every randomized streaming algorithm that approximates ℓ∞-norm in Rn within
factor 2.99 requires Ω(n) bits.

Proof: We sketched in class a lower bound for 1.99-approximation that holds even for insertion-
only stream.

Exer: Improve the approximation factor to 2.99, by using negative entries in the input vector
(deletions in the stream).

Exer: Extend the above lower bound to p passes over the input.

4 Multiparty Disjointness and ℓp-norm

Problem definition: There are t players, with respective inputs x(1), . . . , x(t) ∈ {0, 1}n and the
goal is to determine whether

• for all i ̸= j, {i ∈ [n] : x(i) = x(j) = 1} = ∅; or
• there is k ∈ [n] such that for all i ̸= j, {i ∈ [n] : xi ∧ yi = 1} = {k}.

(It may be easier to think of it as set intersection
∣∣x(i) ∧ x(j)

∣∣.)
We usually consider the model where all messages are written on a blackboard that is seen by all
players (equivalently, it is broadcasted to all players without counting it n times).

Theorem 7 [Gronemeier, 2009], following [Bar-Yossef, Jayram, Kumar and Sivaku-
mar, 2002] and [Chakrabarti, Khot and Sun, 2003]: The communication complexity (with
unbounded number of rounds) of t-party Set Disjointness in {0, 1}n is Ω(n/t), even with shared
randomness.

Stated without proof.

Remarks:
(a) It follows that at least one player has to send Ω(n/t2) bits.
(b) The bound holds even in the one-way model, where the messages go first from Player 1 to 2,
then from Player 2 to 3, and so forth.
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Corollary 8: Every streaming algorithm that 2-approximates the ℓp-norm, for p > 2, in Rn,
requires Ω(n1−2/p) bits of storage.

Remark: Holds even for insertions-only streams.

Proof: Was sketched in class.

5 Current Research Directions

We concluded with a brief mention of research topics related to the course.

Streaming matrices: Different update models, different problems

Streaming (and sampling) edit distance: Different models of the input

Massively parallel architectures (e.g., Map-Reduce): Often use techniques from streaming
algorithm

Distributed functional monitoring: Continuously maintain an approximation to data residing
in k sites with little communication

Fast algorithms: in classic sense, like near-linear time
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