Sublinear Time and Space Algorithms 2018B — Lecture 3
¢y Frequency Moment and Point Queries*

Robert Krauthgamer

1 ¢, Point Query via CountMin (continued from last time)

Algorithm CountMin+:

1. Run t = logn independent copies of algorithm CountMin, keeping in memory the vectors
St ..., St (and functions h',..., ht)

2. Output: the minimum of all estimates &; = minc[y S;zl (@)
Analysis (correctness): As before, z; > z; and

Prli; > z; + allz|1] < (1/4)" = 1/n2.
By a union bound, with probability at least 1 —1/n, for all i € [n] we will have z; < &; < x;+a||z|1.

Space requirement: O(a~!logn) words (for success probability 1 — 1/n?), without counting
memory used to represent/store the hash functions.

Space requirement: O(a !logn) words (for success probability 1 — 1/n?), without counting
memory used to represent/store the hash functions.

General z (allowing negative entries):

We saw in class that Algorithm CountMin actually extends to general z that might be negative,
and achieves the guarantee

Pr[z; € z; £ of|z]1] < 1/4.

Next class we will see how to amplify the success probability, using median (instead of minimum)
of O(logn) independent repetitions.

Exer: Let z € R™ be the frequency vector of a stream of m items (insertions only). Show how to
use the CountMin+ sketch seen in class (for /1 point queries) to estimate the median of z, which
means to report an index j € [n] that with high probability satisfies Y 7_; x; € (% +e)m.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

2 Frequency Moments and the AMS algorithm

/p-norm problem: Let x € R" be the frequency vector of the input stream, and fix a parameter
p > 0.

Goal: estimate its £,-norm ||z|, = (3,|z:[?)}/P. We focus on p = 2.

Theorem 1 [Alon, Matthias, and Szegedy, 1996]: One can estimate the ¢ norm within
factor 1 + & [with high constant probability] using a linear sketch of size (dimension) s = O(e72).
It implies, in particular, a streaming algorithm.

Algorithm AMS (also known as Tug-of-War):

1. Init: choose ry,...,r, independently at random from {—1,+1}
2. Update: maintain Z =), r;z;

3. Output: to estimate ||x||3 report Z?2

The sketch Z is linear, hence can be updated easily.

Storage requirement: O(log(nm)) bits, not including randomness; we will discuss implementation
issues a bit later.

Analysis: We saw in class that E[Z%] = 3", 22 = ||z|3, and Var(Z?) < 2(E[Z?%])%.
Algorithm AMS+:

1. Run t = O(1/£?) independent copies of Algorithm AMS, denoting their Z values by V1,...,Y,
and output their mean Y = 1 3° j Yj?.

Observe that the sketch (Y7,...,Y}) is still linear.

Storage requirement: O(t) = O(1/¢?) words (for constant success probability), not including ran-
domness.

Analysis: We saw in class that

o o 1 Var(¥
Pr|Y —EY|>cEY] < 623;(?32 < 2.

Choosing appropriate t = O(1/e2) makes the probability of error an arbitrarily small constant.

Notice it is actually a (14-¢)-approximation to ||x||3, but it immediately yields a (14-¢)-approximation
to ||z]|2-

Exer: What would happen in the accuracy analysis if the r;’s were chosen as standard gaussians
N(0,1)?

3 /5 Point Query via CountSketch

The idea is to hash coordinates to buckets (similar to algorithm CountMin), but furthermore use
tug-of-war inside each bucket (as in algorithm AMS). The analysis will show it is a good estimate

for each 2? (instead of z;).

Theorem 2 [Charikar, Chen and Farach-Colton, 2003]: One can estimate {2 point queries
within error a with constant high probability, using a linear sketch of dimension O(a~?). It implies,
in particular, a streaming algorithm.

It achieves better accuracy than CountMin (¢ instead of /1), but requires more storage (1/a?
instead of 1/a).

Algorithm CountSketch:

1. Init: Set w = 4/a? and choose a pairwise independent hash function h : [n] — [w]
2. Choose pairwise independent signs r1,...,7r, € {—1,+1}

3. Update: Maintain vector S = [S1,...,Sy,] where §; = Zi:h(i):j TiX;.

4. Output: To estimate z; return z; = r; - Sh(i).

Storage requirement: O(w) words, i.e., O(a~2?log(nm)) bits. The hash functions can be stored
using O(logn) bits.
Correctness: We saw in class that Pr[|#; — ;] > o?||z||3] < 1/4, i.e., with high (constant)

probability, Z; € z; £ af|z||2.

Next class we will see how to amplify the success probability to 1 — 1/n? using the median of
O(logn) independent copies.

