
Sublinear Time and Space Algorithms 2018B – Lecture 5

Heavy Hitters and Compressed Sensing∗

Robert Krauthgamer

Today we will see some applications of point queries.

1 Application 1: Heavy Hitters (Frequent Items)

Problem Definition: For parameter ϕ ∈ (0, 1) and p ∈ [1,∞), define

HHp
ϕ(x) = {i ∈ [n] : |xi| ≥ ϕ∥x∥p}.

Observe that its cardinality is bounded by
∣∣∣HHp

ϕ(x)
∣∣∣ ≤ 1/ϕp.

We will focus on p = 1 and ϕ is “not too small”.

Approximate Heavy Hitters:

Parameters: ϕ, ε ∈ (0, 1).

Goal: return a set S ⊆ [n] such that

HHp
ϕ ⊆ S ⊆ HHp

ϕ(1−ε).

Reduction from HH to point query (for p = 1):

Assume we have an algorithm for ℓ1 point queries with parameter α = εϕ/2, and amplify its success
probability to 1− 1

3n if needed.

1. compute an estimate x̃i for every i ∈ [n] using this algorithm (this step takes time O(n log n) or
even more)

2. report the set S = {i : x̃i ≥ (ϕ − εϕ/2)∥x∥1} (it is easy to know ∥x∥1 when x ≥ 0, but more
difficult in general)

Storage requirement: We can employ algorithm CountMin+ for ℓ1 point queries, which requires
O(α−1 log n) words, and has error probability 1/n2, which is small enough. Then our approximate
HH algorithm will take O(ϕ−1ε−1 log2 n) bits.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Correctness: With probability ≥ 2/3, all the n estimates are correct within additive ε/2. In this
case, S contains all the ϕ-HH, and is contained in the (ϕ(1− ε))-HH.

Exer: Extend the above approach to p = 2 (using CountSketch). How much storage it requires?
Use the AMS sketch to estimate the ℓ2-norm.

2 Application 2: Compressed Sensing (or Sparse Recovery)

Problem Definition: The input is a “signal” x ∈ Rn, but instead of reading it directly we have
only via linear measurements, i.e., we can observe/access yi = ⟨Ai, x⟩ for A1, . . . , Am ∈ Rn of our
choice. Informally, the goal is to design few Ai’s and then to use them recover x. We shall focus
on non-adaptive Ai, i.e., the entire sequence has to be determined in advance.

Let Am×n be a matrix whose rows are the Ai’s, then we know that Ax = y. A trivial solution is to
choose A that is invertible, which requires m = n. In general, this is optimal, because for smaller
m there might be infinitely many solutions x to Ax = y.

Initial goal: Suppose that x is k-sparse (has at most k nonzeros, i.e., ∥x∥0 = k). What m = m(n, k)
is needed to recover x?

True goal: Suppose x is approximately k-sparse. For what m can we recover an approximation to
x?

Remark: In most applications, it’s preferable that A has bounded precision (i.e., the entries of A
are integers of bounded magnitude), as otherwise y must be “acquired” with very high precision.
Sometimes it’s even important that A’s entries are nonnegative.

CountMin Approach: Recall that CountMin is a (randomized) linear sketch of x ∈ Rn, hence
it can be viewed as multiplying x by some matrix A with p = O(α−1 logn) rows.

Sparse 0-1 vector: Suppose first x ∈ {0, 1}n and is k-sparse. Then ∥x∥1 = k, and a CountMin+
sketch of accuracy α = 1

3k succeeds with probability at least 1 − 1/n in estimating all xi’s within
additive ±α∥x∥1 ≤ ±1

3 , which can distinguish whether xi is 0 or 1.

Sparse vector: If the nonzeros of x have different magnitudes, the above approach might require
α ≪ 1

k .

But a deeper inspection of CountMin shows that every coordinate has a good chance to “not collide”
with any nonzero coordinate. This behavior is amplified by the repetitions + median trick’s, and
then WHP the estimator is exact, i.e., x̂i = xi.

Exer: Show that a sketching matrix A with m = O(k) rows (linear measurements) and whose
entries are random Gaussians (or chosen uniformly from [0, 1]) can recover with high probability
every k-sparse input x. Show it also for an ε-coherent matrix for ε = 1

10k .

Hint: It suffices that every 2k columns are linearly independent.

Approximately sparse vector: We will now prove an even more general result.

For z ∈ Rn, denote by ztop(k) the vector z after zeroing all but the k heaviest entries (largest in

2

absolute value), breaking ties arbitrarily. Notice this vector is the “best” k-sparse approximation
to z. Similarly, denote by ztail(k) ∈ Rn the vector z after zeroing the k heaviest entries. Then
ztail(k) = z − ztop(k) is the “error” of approximating z by a k-sparse vector.

Theorem 1 [Cormode and MuthuKrishnan, 2006]: CountMin+ with parameter α = ε/k
can recover, with high probability, a vector x′ ∈ Rn that satisfies

∥x− x′∥1 ≤ (1 + 3ε)∥xtail(k)∥1.

In fact, x′ = x̂top(k) and is thus k-sparse. (Recall x̂ ∈ Rn is the estimate of algorithm CountMin.)

The above condition is usually called an ℓ1/ℓ1 guarantee.

Remark 1: Observe that if x is k-sparse, then this guarantees exact recovery. In general, it guar-
antees the output’s “quality” (distance from true x) is comparable to the best k-sparse vector.

Remark 2: While in point queries we bounded the error in each coordinate separately, the above
guarantee bounds the total error (over all coordinates).

Remark 3: Different constructions achieve/optimize for other guarantees like different norms, deter-
ministic recovery, small explicit description of A, or fast recovery time. Often, the optimal number
of measurements is O(k log(n/k)) (ignoring dependence on ε).

Lemma 1a: CountMin+ with parameter α = ε/k computes, with high probability, an estimate
x̂i ∈ xi ± α∥xtail(k)∥1, i.e.,

∥x− x̂∥∞ ≤ α∥xtail(k)∥1.

Exer: Prove this lemma.

Hint: Show that with high probability, both (a) coordinate i will not collide with the k (other)
heaviest coordinates and (b) the contribution from the rest (tail) is comparable to the expectation.

Lemma 1b: If ∥x− x̂∥∞ ≤ α∥xtail(k)∥1 then ∥x− x̂top(k)∥1 ≤ (1 + 3kα)∥xtail(k)∥1.

Proof of lemma: Let zS denote the vector z after zeroing all coordinates outside S ⊂ [n].

Let T̂ ⊂ [n] be the indices of the k heaviest coordinates in x̂, then by definition x′ = x̂top(k) = x̂T̂ .

Let T ⊂ [n] be the indices of the k heaviest coordinates in x, hence xT = xtop(k).

We can now bound (all norms are ℓ1-norms) using the triangle inequality ∥a∥ ∈ ∥b∥±∥a−b∥ (think
of it as saying ∥b∥ ≈ ∥a∥)

∥x− x′∥ = ∥xT̂ − x̂T̂ ∥+ ∥x¬T̂ − 0∥ separate coordinates of T̂

= ∥xT̂ − x̂T̂ ∥+ ∥x∥ − ∥xT̂ ∥

≤ ∥xT̂ − x̂T̂ ∥+ ∥x∥ − ∥x̂T̂ ∥ + ∥xT̂ − x̂T̂ ∥ by x ≈ x̂ on T̂

= 2∥xT̂ − x̂T̂ ∥+ ∥x∥ − ∥x̂T̂ ∥
≤ 2∥xT̂ − x̂T̂ ∥+ ∥x∥ − ∥x̂T ∥ T̂ is heaviest in x̂

≤ 2∥xT̂ − x̂T̂ ∥+ ∥x∥ − ∥xT ∥ + ∥x̂T − xT ∥ by x̂ ≈ x on T

≤ (2
∣∣T̂ ∣∣α+ 1 +

∣∣T̂ ∣∣α)∥xtail(k)∥.
3

QED.

Exer: Can you extend the above sparse recovery to ℓ2/ℓ2 guarantee by using CountSketch (instead
of CountMin)? How many measurements would it require?

3 Application 3: Range Queries

Problem Definition: Let x ∈ Rn be the frequency vector of an input stream, and let ε ∈ (0, 1)
be a parameter known in advance.

Given a range query [i, j] (where i, j ∈ [n]), report an estimate for
∑j

l=i xl that with high (constant)
probability is within additive error ε∥x∥1.

Observe there are O(n2) possible queries (compared with n point queries). We thus need to avoid
accumulation of errors from the different coordinates.

Exer: Design a streaming algorithm for range queries with storage requirement of O(ε−1 polylog n)
words.

Hint: Consider first a special case where, the range queries are restricted to the natural partition
of [1, n] into 2k intervals of size n/2k each, for some k ∈ {0, . . . , log n} known in advance. For
the general case, observe that every range [i, j] can be partition it into O(log n) intervals as above
(called dyadic intervals).

Exer: Design a heavy-hitters algorithm for insertion-only streams, that reports the heavy hitters
faster, in time that is logarithmic (instead of linear) in n.

Hint: assume first there is only one heavy hitter, and do something like “binary search” using the
dyadic intervals.

4

