Sublinear Time and Space Algorithms 2018B — Lecture 5

*

Heavy Hitters and Compressed Sensing

Robert Krauthgamer

Today we will see some applications of point queries.

1 Application 1: Heavy Hitters (Frequent Items)

Problem Definition: For parameter ¢ € (0,1) and p € [1,00), define

HHG(x) ={i € [n]: |zi| = ¢}

Observe that its cardinality is bounded by ’HHg(a:)‘ <1/¢P.

We will focus on p =1 and ¢ is “not too small”.
Approximate Heavy Hitters:
Parameters: ¢,e € (0,1).

Goal: return a set S C [n] such that

P P
HH, C SCHHY, .

Reduction from HH to point query (for p =1):

Assume we have an algorithm for ¢; point queries with parameter a = ¢/2, and amplify its success
probability to 1 — :,%n if needed.

1. compute an estimate &; for every i € [n] using this algorithm (this step takes time O(nlogn) or
even more)

2. report the set S = {i: & > (¢ —epp/2)||z|1} (it is easy to know ||z||; when = > 0, but more
difficult in general)

Storage requirement: We can employ algorithm CountMin+ for ¢; point queries, which requires
O(a~!logn) words, and has error probability 1/n?, which is small enough. Then our approximate
HH algorithm will take O(¢~'e~!log®n) bits.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

Correctness: With probability > 2/3, all the n estimates are correct within additive /2. In this
case, S contains all the ¢-HH, and is contained in the (¢(1 — ¢))-HH.

Exer: Extend the above approach to p = 2 (using CountSketch). How much storage it requires?
Use the AMS sketch to estimate the £o-norm.

2 Application 2: Compressed Sensing (or Sparse Recovery)

Problem Definition: The input is a “signal” = € R™, but instead of reading it directly we have
only via linear measurements, i.e., we can observe/access y; = (4;,x) for Ay,..., Ay, € R™ of our
choice. Informally, the goal is to design few A;’s and then to use them recover x. We shall focus
on non-adaptive A;, i.e., the entire sequence has to be determined in advance.

Let A,,xn be a matrix whose rows are the A;’s, then we know that Az = y. A trivial solution is to
choose A that is invertible, which requires m = n. In general, this is optimal, because for smaller
m there might be infinitely many solutions = to Ax = y.

Initial goal: Suppose that = is k-sparse (has at most k nonzeros, i.e., ||z|lo = k). What m = m(n, k)
is needed to recover x?

True goal: Suppose x is approximately k-sparse. For what m can we recover an approximation to
x?

Remark: In most applications, it’s preferable that A has bounded precision (i.e., the entries of A
are integers of bounded magnitude), as otherwise y must be “acquired” with very high precision.
Sometimes it’s even important that A’s entries are nonnegative.

CountMin Approach: Recall that CountMin is a (randomized) linear sketch of z € R™, hence
it can be viewed as multiplying = by some matrix A with p = O(a~!logn) rows.

Sparse 0-1 vector: Suppose first z € {0,1}" and is k-sparse. Then ||z|[; = k, and a CountMin+

sketch of accuracy a = ?%k succeeds with probability at least 1 — 1/n in estimating all z;’s within

additive +al|z||; < +%, which can distinguish whether z; is 0 or 1.

Sparse vector: If the nonzeros of x have different magnitudes, the above approach might require
1
a K -

But a deeper inspection of CountMin shows that every coordinate has a good chance to “not collide”
with any nonzero coordinate. This behavior is amplified by the repetitions + median trick’s, and
then WHP the estimator is exact, i.e., ; = x;.

Exer: Show that a sketching matrix A with m = O(k) rows (linear measurements) and whose

entries are random Gaussians (or chosen uniformly from [0, 1]) can recover with high probability

every k-sparse input x. Show it also for an e-coherent matrix for ¢ = ﬁ.

Hint: It suffices that every 2k columns are linearly independent.
Approximately sparse vector: We will now prove an even more general result.

For z € R", denote by 2,,) the vector z after zeroing all but the k heaviest entries (largest in

absolute value), breaking ties arbitrarily. Notice this vector is the “best” k-sparse approximation
to z. Similarly, denote by zyx) € R™ the vector z after zeroing the k heaviest entries. Then
Ztail(k) = # — Ztop(k) 18 the “error” of approximating z by a k-sparse vector.

Theorem 1 [Cormode and MuthuKrishnan, 2006]: CountMin+ with parameter o = ¢/k
can recover, with high probability, a vector 2’ € R™ that satisfies

lz = 2'lly < (1 + 3¢)|zsair 11
In fact, 2’ = Tyop(k) and is thus k-sparse. (Recall z € R™ is the estimate of algorithm CountMin.)
The above condition is usually called an ¢;/¢; guarantee.

Remark 1: Observe that if x is k-sparse, then this guarantees exact recovery. In general, it guar-
antees the output’s “quality” (distance from true z) is comparable to the best k-sparse vector.

Remark 2: While in point queries we bounded the error in each coordinate separately, the above
guarantee bounds the total error (over all coordinates).

Remark 3: Different constructions achieve/optimize for other guarantees like different norms, deter-
ministic recovery, small explicit description of A, or fast recovery time. Often, the optimal number
of measurements is O(klog(n/k)) (ignoring dependence on ¢).

Lemma la: CountMin+ with parameter o = £/k computes, with high probability, an estimate
& € x; & a|lziaay s Le

[= #lloo < |z tais l1-

Exer: Prove this lemma.

Hint: Show that with high probability, both (a) coordinate ¢ will not collide with the k& (other)
heaviest coordinates and (b) the contribution from the rest (tail) is comparable to the expectation.

Lemma 1b: If ||z — Z|loc < allziaimllr then ||z — Ziopp)lli < (14 3ka)|[ztaiuw)ll1-

Proof of lemma: Let zg denote the vector z after zeroing all coordinates outside S C [n].

Let T C [n] be the indices of the k heaviest coordinates in Z, then by definition 2’ = Ziop(k) = T
Let T C [n] be the indices of the k heaviest coordinates in x, hence x1 = Ty (1)

We can now bound (all norms are ¢1-norms) using the triangle inequality ||a|| € ||b]| £ |ja—b|| (think
of it as saying ||b]| =~ ||a||)

|z — || = |leg — &4 + [l2_p — O] separate coordinates of 7'
= [lzg = 2zl + [l2]l = llzz
< lzg — 24l + 1zl — 2@l + [z — 24 by z ~ & on T
= 2l|lzp — &gl + [l = |27
<2|lzg — 2| + (|2]| = (|27 T is heaviest in &

<2\|lxp — || + 2] = gl + |27 — 27| by 2~z onT

< (2]T’a +1+ ‘T‘Q)meil(k)u'

QED.

Exer: Can you extend the above sparse recovery to f3 /{2 guarantee by using CountSketch (instead
of CountMin)? How many measurements would it require?

3 Application 3: Range Queries

Problem Definition: Let x € R" be the frequency vector of an input stream, and let € € (0,1)
be a parameter known in advance.

Given a range query [i, j] (where i, j € [n]), report an estimate for Zj:i x; that with high (constant)
probability is within additive error e||z||;.

Observe there are O(n?) possible queries (compared with n point queries). We thus need to avoid
accumulation of errors from the different coordinates.

Exer: Design a streaming algorithm for range queries with storage requirement of O(¢~! polylog n)
words.

Hint: Consider first a special case where, the range queries are restricted to the natural partition
of [1,n] into 2F intervals of size n/2* each, for some k € {0,...,logn} known in advance. For
the general case, observe that every range [i, j] can be partition it into O(logn) intervals as above
(called dyadic intervals).

Exer: Design a heavy-hitters algorithm for insertion-only streams, that reports the heavy hitters
faster, in time that is logarithmic (instead of linear) in n.

Hint: assume first there is only one heavy hitter, and do something like “binary search” using the
dyadic intervals.

