Sublinear Time and Space Algorithms 2018B — Lecture 6
Compressed Sensing via RIP matrices and Basis Pursuit*

Robert Krauthgamer

1 RIP matrices

Definition: A matrix A € R™*" is (k,e)-RIP (satisfies the restricted isometry property) if for
every k-sparse vector x € R”,

(1= o)zl < [[Az]3 < (1 + &)ll13.

Another interpretation: Let Ag denote the restriction of A to columns in S C [n]. Then the above
requires that for all S of cardinality k, and all z € RS, we have

(1= o)lzl} < zA§Asz < (1+¢)|l]3,

which means that AEAS ~ I in the sense that all its eigenvalues are close to 1. We can further
write it as |27 (AL As — Iz| < ¢||z||3, which in matrix notation is just a bound on the operator
norm (spectral radius):

1AL As — 1| < e

Exer: Show that that this implies Ag is invertible.
Exer: Show that every (¢/k)-coherent matrix is (k,e)-RIP.

Recall that a matrix A € R™*" is called a-coherent if its columns A’ satisfy that every ||A%[|z = 1
and every |(A%, A7)| < e (for i # j).

By the homework exercise, this implies that for every (n, k,€), there exists a (k, )-RIP matrix with
m = O(¢72k?logn) rows.

Hint: Given A that is a-coherent matrix for a = ¢/k, let B = ALAg — I, and bound ||B|| which is
the largest-magnitude eigenvalue of B.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.



2 Compressed Sensing via Basis Pursuit

Theorem 1 [Candes, Romberg and Tao [2004], and Donoho [2004]: There is a polynomial-
time algorithm that given a matrix A € R™*" which is (2k,¢)-RIP for 1 +¢ < /2, together with
y = Ax for some (unknown) x € R™, computes Z € R" satisfying

lz = &l2 < O/VE) @ 1aisii -

This condition is usually called an ¢5/¢; guarantee.

Exer: Show that the above implies the following ¢1/¢1 guarantee for z* = Ty, 1)

Iz = 2"l < OM) [z 4aiew l11-

Hint: Let T' be the top k coordinates of z, and T the top k coordinates of Z. Split the coordinates
into T', T\ T, and the rest.

Comparison with previously seen result: We saw previously an algorithm of [Cormode and
Muthukrishnan, 2006] achieving WHP ¢; /¢, guarantee

2 — 2'[1 < (1 + 3¢) |z a0 I1-

* The current ¢/¢; guarantee is stronger as it implies an ¢; /¢ guarantee, although with constant
factor and not 1 4 3e.

* The current result is deterministic and holds for all  simultaneously, while the previous one holds
WHP separately for every x.

* Previously, the number of measurements was m = O(e~'klogn). Here it depends on having an
RIP matrix; the incoherent matrix from homework has worse (quadratic) dependence on k, but
other constructions of RIP matrices are linear in k.

Basis Pursuit Algorithm: We will prove Theorem 1 using an algorithm called Basis Pursuit,
which simply solves the linear program (LP)

Z =min{||z]|; : z € R", Az = y}.
It is known that linear programs can be solved in polynomial time.
Exer: Show that  above can indeed be solved using LP.
Proof of Theorem 1 (based on [Candes’08]):

As before, let zg denote a vector z after zeroing all coordinates outside S C [n].

Let Ty C [n] be the indices of the k heaviest coordinates (largest in absolute value) in z. Thus
TTS = Ttail(k)-

We now partition the rest (7§) according to the heaviness in h =  — & (not in z). Let 71 C T be
the k heaviest coordinates in hrg largest ones (i.e., largest in Tf), and so forth.
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To bound the error of h = x — Z, we use the triangle inequality
|z = Zll2 = [[hll2 = [[hroury + heryury)ell2
< hrour 2 + 1Ry e ll2-
The proof will be completed by the following two lemmas.
QED
Lemma la: |[hgyur)ellz < OL/VE) |zl + [hryur [l2-
Lemma 1b: [hzur [l2 < O(1/VE) |2 aiw l11-
We prove these two lemmas using ... another lemma.
Lemma 1lc: ) oo|hrll2 < % Nzrellh + |hryur [l2-

Proof of Lemma 1c: Was seen in class using the so-called “shelling argument” and the fact that
Now Z = x — h is a minimizer of the LP, and x is feasible.

Proof of Lemma la: was seen in class, follows almost immediate from Lemma 1la.
To prove Lemma 1b we need another lemma.

Lemma 1d: Suppose h/,h” are supported on disjoint sets 7", 7" C [n] respectively, and A is
(IT'| +|T"|,e0)-RIP. Then

(AR, AR")| < eo|W/l2]| 2" 2.

Exer: Prove this lemma.

Hint: First assume WLOG that /', h” are unit vectors. Then apply the formula ||u+v]||3—||u—v]|3 =
4(u,v) to u = Ah' and v = AR".

Proof of Lemma 1b: Was seen in class. The idea is to analyze the norm of Ahg,ur, (instead of
that of hryur ) to show

(1- 5)HhTOUTl H% < HAhToUTl Hg < 5\/§”hTOUTI 2 ZHthH27
Jj=2

then plug in Lemma 1lc, and rearrange.



