1 RIP matrices

Definition: A matrix $A \in \mathbb{R}^{m \times n}$ is (k, ε)-RIP (satisfies the restricted isometry property) if for every k-sparse vector $x \in \mathbb{R}^n$,

$$(1 - \varepsilon)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \varepsilon)\|x\|_2^2.$$

Another interpretation: Let A_S denote the restriction of A to columns in $S \subset [n]$. Then the above requires that for all S of cardinality k, and all $x \in \mathbb{R}^S$, we have

$$(1 - \varepsilon)\|x\|_2^2 \leq \|x A_S^T A_S x\|_2 \leq (1 + \varepsilon)\|x\|_2^2,$$

which means that $A_S^T A_S \approx I_k$ in the sense that all its eigenvalues are close to 1. We can further write it as $|x^T (A_S^T A_S - I)x| \leq \varepsilon \|x\|_2^2$, which in matrix notation is just a bound on the operator norm (spectral radius):

$$\|A_S^T A_S - I\| \leq \varepsilon.$$

Exer: Show that that this implies A_S is invertible.

Exer: Show that every (ε/k)-coherent matrix is (k, ε)-RIP.

Recall that a matrix $A \in \mathbb{R}^{m \times n}$ is called α-coherent if its columns A^i satisfy that every $\|A^i\|_2 = 1$ and every $|\langle A^i, A^j \rangle| \leq \varepsilon$ (for $i \neq j$).

By the homework exercise, this implies that for every (n, k, ε), there exists a (k, ε)-RIP matrix with $m = O(\varepsilon^{-2} k^2 \log n)$ rows.

Hint: Given A that is α-coherent matrix for $\alpha = \varepsilon/k$, let $B = A_S^T A_S - I$, and bound $\|B\|$ which is the largest-magnitude eigenvalue of B.

These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.
2 Compressed Sensing via Basis Pursuit

Theorem 1 [Candes, Romberg and Tao [2004], and Donoho [2004]: There is a polynomial-time algorithm that given a matrix $A \in \mathbb{R}^{m \times n}$ which is $(2k, \epsilon)$-RIP for $1 + \epsilon < \sqrt{2}$, together with $y = Ax$ for some (unknown) $x \in \mathbb{R}^n$, computes $\tilde{x} \in \mathbb{R}^n$ satisfying

$$\|x - \tilde{x}\|_2 \leq O(1/\sqrt{k})\|x_{\text{tail}(k)}\|_1.$$

This condition is usually called an ℓ_2/ℓ_1 guarantee.

Exer: Show that the above implies the following ℓ_1/ℓ_1 guarantee for $x^* = \tilde{x}_{\text{top}(k)}$:

$$\|x - x^*\|_1 \leq O(1)\|x_{\text{tail}(k)}\|_1.$$

Hint: Let T be the top k coordinates of x, and \hat{T} the top k coordinates of \tilde{x}. Split the coordinates into \hat{T}, $T \setminus \hat{T}$, and the rest.

Comparison with previously seen result: We saw previously an algorithm of [Cormode and Muthukrishnan, 2006] achieving WHP ℓ_1/ℓ_1 guarantee

$$\|x - x'\|_1 \leq (1 + 3\epsilon)\|x_{\text{tail}(k)}\|_1.$$

* The current ℓ_2/ℓ_1 guarantee is stronger as it implies an ℓ_1/ℓ_1 guarantee, although with constant factor and not $1 + 3\epsilon$.

* The current result is deterministic and holds for all x simultaneously, while the previous one holds WHP separately for every x.

* Previously, the number of measurements was $m = O(\epsilon^{-1}k \log n)$. Here it depends on having an RIP matrix; the incoherent matrix from homework has worse (quadratic) dependence on k, but other constructions of RIP matrices are linear in k.

Basis Pursuit Algorithm: We will prove Theorem 1 using an algorithm called Basis Pursuit, which simply solves the linear program (LP)

$$\tilde{x} = \min\{\|z\|_1 : z \in \mathbb{R}^n, Az = y\}.$$

It is known that linear programs can be solved in polynomial time.

Exer: Show that \tilde{x} above can indeed be solved using LP.

Proof of Theorem 1 (based on [Candes’08]):

As before, let z_S denote a vector z after zeroing all coordinates outside $S \subset [n]$.

Let $T_0 \subset [n]$ be the indices of the k heaviest coordinates (largest in absolute value) in x. Thus $x_{T_0} = x_{\text{tail}(k)}$.

We now partition the rest (T_0^c) according to the heaviness in $h = x - \tilde{x}$ (not in x). Let $T_1 \subset T_0^c$ be the k heaviest coordinates in $h_{T_0^c}$ largest ones (i.e., largest in T_0^c), and so forth.
To bound the error of $h = x - \tilde{x}$, we use the triangle inequality
\[
\|x - \tilde{x}\|_2 = \|h\|_2 = \|h_{T_0 \cup T_1} + h_{(T_0 \cup T_1)^c}\|_2 \\
\leq \|h_{T_0 \cup T_1}\|_2 + \|h_{(T_0 \cup T_1)^c}\|_2.
\]

The proof will be completed by the following two lemmas.

QED

Lemma 1a: \[\|h_{(T_0 \cup T_1)^c}\|_2 \leq O(1/\sqrt{k})\|x_{\text{tail}(k)}\|_1 + \|h_{T_0 \cup T_1}\|_2.\]

Lemma 1b: \[\|h_{T_0 \cup T_1}\|_2 \leq O(1/\sqrt{k})\|x_{\text{tail}(k)}\|_1.\]

We prove these two lemmas using another lemma.

Lemma 1c: \[\sum_{j \geq 2} \|h_{T_j}\|_2 \leq \frac{2}{\sqrt{k}} \cdot \|x_{T_0^c}\|_1 + \|h_{T_0 \cup T_1}\|_2.\]

Proof of Lemma 1c: Was seen in class using the so-called “shelling argument” and the fact that now $\tilde{x} = x - h$ is a minimizer of the LP, and x is feasible.

Proof of Lemma 1a: was seen in class, follows almost immediate from Lemma 1a.

To prove Lemma 1b we need another lemma.

Lemma 1d: Suppose h', h'' are supported on disjoint sets $T', T'' \subset [n]$ respectively, and A is $(|T'| + |T''|, \varepsilon_0)$-RIP. Then
\[|\langle Ah', Ah'' \rangle| \leq \varepsilon_0 \|h'\|_2 \|h''\|_2.\]

Exer: Prove this lemma.

Hint: First assume WLOG that h', h'' are unit vectors. Then apply the formula \[\|u + v\|_2^2 - \|u - v\|_2^2 = 4\langle u, v \rangle\] to $u = Ah'$ and $v = Ah''$.

Proof of Lemma 1b: Was seen in class. The idea is to analyze the norm of $Ah_{T_0 \cup T_1}$ (instead of that of $h_{T_0 \cup T_1}$) to show
\[2(1 - \varepsilon)\|h_{T_0 \cup T_1}\|_2^2 \leq \|Ah_{T_0 \cup T_1}\|_2^2 \leq \varepsilon \sqrt{2} \|h_{T_0 \cup T_1}\|_2 \sum_{j \geq 2} \|h_{T_j}\|_2,\]

then plug in Lemma 1c, and rearrange.