Sublinear Time and Space Algorithms 2018B – Lecture 6 Compressed Sensing via RIP matrices and Basis Pursuit^{*}

Robert Krauthgamer

1 RIP matrices

Definition: A matrix $A \in \mathbb{R}^{m \times n}$ is (k, ε) -RIP (satisfies the restricted isometry property) if for every k-sparse vector $x \in \mathbb{R}^n$,

 $(1-\varepsilon)\|x\|_2^2 \le \|Ax\|_2^2 \le (1+\varepsilon)\|x\|_2^2.$

Another interpretation: Let A_S denote the restriction of A to columns in $S \subset [n]$. Then the above requires that for all S of cardinality k, and all $x \in \mathbb{R}^S$, we have

 $(1-\varepsilon) \|x\|_{2}^{2} \le x A_{S}^{T} A_{S} x \le (1+\varepsilon) \|x\|_{2}^{2},$

which means that $A_S^T A_S \approx I_k$ in the sense that all its eigenvalues are close to 1. We can further write it as $|x^T (A_S^T A_S - I)x| \leq \varepsilon ||x||_2^2$, which in matrix notation is just a bound on the operator norm (spectral radius):

$$\|A_S^T A_S - I\| \le \varepsilon.$$

Exer: Show that that this implies A_S is invertible.

Exer: Show that every (ε/k) -coherent matrix is (k, ε) -RIP.

Recall that a matrix $A \in \mathbb{R}^{m \times n}$ is called α -coherent if its columns A^i satisfy that every $||A^i||_2 = 1$ and every $|\langle A^i, A^j \rangle| \leq \varepsilon$ (for $i \neq j$).

By the homework exercise, this implies that for every (n, k, ε) , there exists a (k, ε) -RIP matrix with $m = O(\varepsilon^{-2}k^2 \log n)$ rows.

Hint: Given A that is α -coherent matrix for $\alpha = \varepsilon/k$, let $B = A_S^T A_S - I$, and bound ||B|| which is the largest-magnitude eigenvalue of B.

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

2 Compressed Sensing via Basis Pursuit

Theorem 1 [Candes, Romberg and Tao [2004], and Donoho [2004]: There is a polynomialtime algorithm that given a matrix $A \in \mathbb{R}^{m \times n}$ which is $(2k, \varepsilon)$ -RIP for $1 + \varepsilon < \sqrt{2}$, together with y = Ax for some (unknown) $x \in \mathbb{R}^n$, computes $\tilde{x} \in \mathbb{R}^n$ satisfying

 $||x - \tilde{x}||_2 \le O(1/\sqrt{k}) ||x_{tail(k)}||_1.$

This condition is usually called an ℓ_2/ℓ_1 guarantee.

Exer: Show that the above implies the following ℓ_1/ℓ_1 guarantee for $x^* = \tilde{x}_{top(k)}$:

$$||x - x^*||_1 \le O(1) ||x_{tail(k)}||_1.$$

Hint: Let T be the top k coordinates of x, and \tilde{T} the top k coordinates of \tilde{x} . Split the coordinates into $\tilde{T}, T \setminus \tilde{T}$, and the rest.

Comparison with previously seen result: We saw previously an algorithm of [Cormode and Muthukrishnan, 2006] achieving WHP ℓ_1/ℓ_1 guarantee

$$||x - x'||_1 \le (1 + 3\varepsilon) ||x_{tail(k)}||_1.$$

* The current ℓ_2/ℓ_1 guarantee is stronger as it implies an ℓ_1/ℓ_1 guarantee, although with constant factor and not $1 + 3\varepsilon$.

* The current result is deterministic and holds for all x simultaneously, while the previous one holds WHP separately for every x.

* Previously, the number of measurements was $m = O(\varepsilon^{-1}k \log n)$. Here it depends on having an RIP matrix; the incoherent matrix from homework has worse (quadratic) dependence on k, but other constructions of RIP matrices are linear in k.

Basis Pursuit Algorithm: We will prove Theorem 1 using an algorithm called Basis Pursuit, which simply solves the linear program (LP)

$$\tilde{x} = \min\{\|z\|_1 : z \in \mathbb{R}^n, Az = y\}.$$

It is known that linear programs can be solved in polynomial time.

Exer: Show that \tilde{x} above can indeed be solved using LP.

Proof of Theorem 1 (based on [Candes'08]):

As before, let z_S denote a vector z after zeroing all coordinates outside $S \subset [n]$.

Let $T_0 \subset [n]$ be the indices of the k heaviest coordinates (largest in absolute value) in x. Thus $x_{T_0^c} = x_{tail(k)}$.

We now partition the rest (T_0^c) according to the heaviness in $h = x - \tilde{x}$ (not in x). Let $T_1 \subset T_0^c$ be the k heaviest coordinates in $h_{T_0^c}$ largest ones (i.e., largest in T_0^c), and so forth. To bound the error of $h = x - \tilde{x}$, we use the triangle inequality

$$||x - \tilde{x}||_2 = ||h||_2 = ||h_{T_0 \cup T_1} + h_{(T_0 \cup T_1)^c}||_2$$

$$\leq ||h_{T_0 \cup T_1}||_2 + ||h_{(T_0 \cup T_1)^c}||_2$$

The proof will be completed by the following two lemmas.

QED

Lemma 1a: $\|h_{(T_0 \cup T_1)^c}\|_2 \le O(1/\sqrt{k}) \|x_{tail(k)}\|_1 + \|h_{T_0 \cup T_1}\|_2.$

Lemma 1b: $||h_{T_0 \cup T_1}||_2 \le O(1/\sqrt{k}) ||x_{tail(k)}||_1.$

We prove these two lemmas using ... another lemma.

Lemma 1c: $\sum_{j\geq 2} \|h_{T_j}\|_2 \leq \frac{2}{\sqrt{k}} \cdot \|x_{T_0^c}\|_1 + \|h_{T_0 \cup T_1}\|_2.$

Proof of Lemma 1c: Was seen in class using the so-called "shelling argument" and the fact that Now $\tilde{x} = x - h$ is a minimizer of the LP, and x is feasible.

Proof of Lemma 1a: was seen in class, follows almost immediate from Lemma 1a.

To prove Lemma 1b we need another lemma.

Lemma 1d: Suppose h', h'' are supported on disjoint sets $T', T'' \subset [n]$ respectively, and A is $(|T'| + |T''|, \varepsilon_0)$ -RIP. Then

$$|\langle Ah', Ah''\rangle| \le \varepsilon_0 ||h'||_2 ||h''||_2.$$

Exer: Prove this lemma.

Hint: First assume WLOG that h', h'' are unit vectors. Then apply the formula $||u+v||_2^2 - ||u-v||_2^2 = 4\langle u, v \rangle$ to u = Ah' and v = Ah''.

Proof of Lemma 1b: Was seen in class. The idea is to analyze the norm of $Ah_{T_0 \cup T_1}$ (instead of that of $h_{T_0 \cup T_1}$) to show

$$(1-\varepsilon)\|h_{T_0\cup T_1}\|_2^2 \le \|Ah_{T_0\cup T_1}\|_2^2 \le \varepsilon\sqrt{2}\|h_{T_0\cup T_1}\|_2 \sum_{j\ge 2} \|h_{T_j}\|_2,$$

then plug in Lemma 1c, and rearrange.