
Sublinear Time and Space Algorithms 2018B – Lecture 6

Compressed Sensing via RIP matrices and Basis Pursuit∗

Robert Krauthgamer

1 RIP matrices

Definition: A matrix A ∈ Rm×n is (k, ε)-RIP (satisfies the restricted isometry property) if for
every k-sparse vector x ∈ Rn,

(1− ε)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + ε)∥x∥22.

Another interpretation: Let AS denote the restriction of A to columns in S ⊂ [n]. Then the above
requires that for all S of cardinality k, and all x ∈ RS , we have

(1− ε)∥x∥22 ≤ xAT
SASx ≤ (1 + ε)∥x∥22,

which means that AT
SAS ≈ Ik in the sense that all its eigenvalues are close to 1. We can further

write it as |xT (AT
SAS − I)x| ≤ ε∥x∥22, which in matrix notation is just a bound on the operator

norm (spectral radius):

∥AT
SAS − I∥ ≤ ε.

Exer: Show that that this implies AS is invertible.

Exer: Show that every (ε/k)-coherent matrix is (k, ε)-RIP.

Recall that a matrix A ∈ Rm×n is called α-coherent if its columns Ai satisfy that every ∥Ai∥2 = 1
and every |⟨Ai, Aj⟩| ≤ ε (for i ̸= j).

By the homework exercise, this implies that for every (n, k, ε), there exists a (k, ε)-RIP matrix with
m = O(ε−2k2 log n) rows.

Hint: Given A that is α-coherent matrix for α = ε/k, let B = AT
SAS − I, and bound ∥B∥ which is

the largest-magnitude eigenvalue of B.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1



2 Compressed Sensing via Basis Pursuit

Theorem 1 [Candes, Romberg and Tao [2004], and Donoho [2004]: There is a polynomial-
time algorithm that given a matrix A ∈ Rm×n which is (2k, ε)-RIP for 1 + ε <

√
2, together with

y = Ax for some (unknown) x ∈ Rn, computes x̃ ∈ Rn satisfying

∥x− x̃∥2 ≤ O(1/
√
k)∥xtail(k)∥1.

This condition is usually called an ℓ2/ℓ1 guarantee.

Exer: Show that the above implies the following ℓ1/ℓ1 guarantee for x∗ = x̃top(k):

∥x− x∗∥1 ≤ O(1)∥xtail(k)∥1.

Hint: Let T be the top k coordinates of x, and T̃ the top k coordinates of x̃. Split the coordinates
into T̃ , T \ T̃ , and the rest.

Comparison with previously seen result: We saw previously an algorithm of [Cormode and
Muthukrishnan, 2006] achieving WHP ℓ1/ℓ1 guarantee

∥x− x′∥1 ≤ (1 + 3ε)∥xtail(k)∥1.

* The current ℓ2/ℓ1 guarantee is stronger as it implies an ℓ1/ℓ1 guarantee, although with constant
factor and not 1 + 3ε.

* The current result is deterministic and holds for all x simultaneously, while the previous one holds
WHP separately for every x.

* Previously, the number of measurements was m = O(ε−1k log n). Here it depends on having an
RIP matrix; the incoherent matrix from homework has worse (quadratic) dependence on k, but
other constructions of RIP matrices are linear in k.

Basis Pursuit Algorithm: We will prove Theorem 1 using an algorithm called Basis Pursuit,
which simply solves the linear program (LP)

x̃ = min{∥z∥1 : z ∈ Rn, Az = y}.

It is known that linear programs can be solved in polynomial time.

Exer: Show that x̃ above can indeed be solved using LP.

Proof of Theorem 1 (based on [Candes’08]):

As before, let zS denote a vector z after zeroing all coordinates outside S ⊂ [n].

Let T0 ⊂ [n] be the indices of the k heaviest coordinates (largest in absolute value) in x. Thus
xT c

0
= xtail(k).

We now partition the rest (T c
0 ) according to the heaviness in h = x− x̃ (not in x). Let T1 ⊂ T c

0 be
the k heaviest coordinates in hT c

0
largest ones (i.e., largest in T c

0 ), and so forth.
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To bound the error of h = x− x̃, we use the triangle inequality

∥x− x̃∥2 = ∥h∥2 = ∥hT0∪T1 + h(T0∪T1)c∥2
≤ ∥hT0∪T1∥2 + ∥h(T0∪T1)c∥2.

The proof will be completed by the following two lemmas.

QED

Lemma 1a: ∥h(T0∪T1)c∥2 ≤ O(1/
√
k)∥xtail(k)∥1 + ∥hT0∪T1∥2.

Lemma 1b: ∥hT0∪T1∥2 ≤ O(1/
√
k)∥xtail(k)∥1.

We prove these two lemmas using ... another lemma.

Lemma 1c:
∑

j≥2∥hTj∥2 ≤ 2√
k
· ∥xT c

0
∥1 + ∥hT0∪T1∥2.

Proof of Lemma 1c: Was seen in class using the so-called “shelling argument” and the fact that
Now x̃ = x− h is a minimizer of the LP, and x is feasible.

Proof of Lemma 1a: was seen in class, follows almost immediate from Lemma 1a.

To prove Lemma 1b we need another lemma.

Lemma 1d: Suppose h′, h′′ are supported on disjoint sets T ′, T ′′ ⊂ [n] respectively, and A is
(|T ′|+ |T ′′|, ε0)-RIP. Then

|⟨Ah′, Ah′′⟩| ≤ ε0∥h′∥2∥h′′∥2.

Exer: Prove this lemma.

Hint: First assume WLOG that h′, h′′ are unit vectors. Then apply the formula ∥u+v∥22−∥u−v∥22 =
4⟨u, v⟩ to u = Ah′ and v = Ah′′.

Proof of Lemma 1b: Was seen in class. The idea is to analyze the norm of AhT0∪T1 (instead of
that of hT0∪T1) to show

(1− ε)∥hT0∪T1∥22 ≤ ∥AhT0∪T1∥22 ≤ ε
√
2∥hT0∪T1∥2

∑
j≥2

∥hTj∥2,

then plug in Lemma 1c, and rearrange.
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