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Due within 72 hours

General instructions. The exam has 2 parts.
Policy: You may consult textbooks and the class material (lecture notes and homework), but

no other sources (like web search). You should work on these problems and write up the solutions
by yourself with no help from others.

You may use without proof theorems stated in class, provided you state the appropriate theorem
that you are using. As usual, assume n (or |V |) is large enough.

Part I (25 points)

Answer 2 of the following 3 questions. Give short answers, that sketch the proof or provide a
convincing justification in 2-5 sentences, even for true/false questions.

A. A triangle in a graph is just a 3-cycle subgraph. Notice that two triangles can be edge-disjoint
even if they share a vertex.

Is it true that Kn, the complete graph on n vertices, contains p = Ω(n2) triangles that are
pairwise edge-disjoint (i.e., every edge of Kn belongs to at most one triangle)?

Hint: Can you add a triangle at random?

B. Fix a vertex set V = {1, . . . , n} for large enough n. For a parameter 1 < k < n, let G(k) be
the graph on V that is formed by placing a k-clique on vertices {1, . . . , k}, an (n− k)-clique
on vertices {k + 1, . . . , n}, and an edge (k, k + 1) that connects the two cliques.

Let C
(k)
1n be the commute time in G(k) between vertices 1 and n. Is it true that C

(2)
1n < C

(n/2)
1n ?

C. Consider the following randomized algorithm for 2-coloring a bipartite graph: Start with an
arbitrary 2-coloring, and while it is not proper, pick any violating edge (its endpoints have
the same color) and flip the color of a random endpoint of this edge. Provide an upper bound
on the expected time (number of flips) it takes to properly color the graph.

Part II (75 points)

Answer 3 of the following 5 questions.

1. Consider a network of n processors arranged in a line (with one node at the end of the line
considered ‘start’ and the other considered ‘end’). Each node receives an id between 1 and
n, and the goal is to check that the id’s constitute a permutation on 1, . . . , n. The protocol
works by the ‘start’ node sending a message to its neighbor, which in turn sends a message to
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its other neighbor and so on, until a message is reached at the ’end’ node, which determines
the outcome.

Suggest a protocol that works with messages of length O(log n) bits and reports the correct
outcome with probability at least 1−1/n. For full credit, your protocol should require private
(rather than shared) randomness.

2. Consider a clique on n vertices, where initially only one vertex is “informed” (knows some
bit b). At each round, every informed vertex contacs a random neighbor (among all n − 1
neighbors) and informs that neighbor; non-informed vertices do nothing. Show that after
O(log n) rounds, with high probability all vertices are informed.

Hint: Split the analysis into phases. Initially, track the informed vertices. Later, track the
non-informed vertices.

3. Recall that in edge-sparsification of hypergraphs, seen in class, H = (V,E,w) is a hypergraph
with edge weights w : E 7→ R+, and every (nontrivial) S ⊂ V defines a cut δH(S) ⊂ E. Now
define the product-cost of this cut to be

costH(S) :=
∑

e∈δH(S)

w(e) · |e ∩ S| · |e ∩ S̄|.

Note the difference from the weight of a cut wH(S) =
∑

e∈δH(S)w(e) that we used in class.

Show that for every hypergraph H = (V,E,w) and every ε ∈ (0, 1/2), there is a hypergraph
H ′ = (V,E′, w′) on the same vertex set, that has at most (|V |/ε)O(1) edges and is a product-
cost sparsifier in the sense that

∀S ⊂ V, costH′(S) ∈ (1± ε) costH(S).

Hint: Bound the total sensitivity for product-cost by using the total sensitivity seen in class
for weight of a cut.

4. Design a randomized algorithm that, given as input w1, . . . , wn ≥ 0 and an accuracy parameter
ε ∈ (0, 1), the algorithm stores only O(1/ε2) memory words, and then estimates the sum of
every subset S ⊂ [n] by producing for it an estimator ZS that satisfies

∀S ⊂ [n], Pr
[
ZS ∈

∑
i∈S

wi ± εW
]
≥ 3/4,

where W =
∑

i∈[n]wi is the sum of all input numbers. Note that the algorithm decides what
to store before knowing S.

Hint: First show that storing W and a coordinate i∗ ∈ [n] chosen at random according to
probabilities (w1

W , . . . , w1
W ), can produce estimates ŵ1, . . . , ŵn ∈ {0,W} where each E[ŵi] = wi.

5. Recall that we used the method of compression to analyze Cuckoo Hashing. Use the method
to show that with high probability, a random graph Gn,1/2 does not contain a clique or
independent set of size larger than O(log n).

Good Luck.
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