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1 Approximating Average Degree in a Graph

Problem definition:

Input: An n-vertex graph represented (say) as the adjacency list for each vertex (or even just the
degree of each vertex)

Goal: Compute the average degree (equiv. number of edges)

Concern: Seems to be impossible e.g. if all degrees < 1, except possibly for a few vertices whose
degree is about n.

Theorem 1 [Feige, 2004]: There is an algorithm that estimates the average degree d of a
connected graph within factor 2 + ¢ in time O((%)O(l)\/n/do), given a lower bound dy < d and
e€(0,1/2).

We will prove the case of dy =1 (i.e., suffices to know G is connected).

Main idea: Use the fact that it is a graph (and not just a list of degrees), although this will show
up only in the analysis.

Algorithm:

1. Choose s = cy/n/e?() vertices at random with replacement, denote this multiset by S and
compute the average degree dg of these vertices.

2. Repeat the above t = 8/¢ times, denoted Si,...,S; and report the smallest seen estimate
minie[t] dsi.

Analysis: We will need 2 claims.
Claim la: In each iteration, Pr[ds < (3 —£)d] < £/64.
Claim 1b: In each iteration, Prjds > (1 +¢)d] <1 —¢/2.

Proof of theorem: Follows easily from the two claims, as seen in class.
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Proof of Claim 1b: Follows from Markov’s inequality, as seen in class.

Proof of Claim la: Was seen in class, using the fact the degrees form a graph, by considering
the high-degree vertices H and the rest L =V \ H, and counting edges inside/between them. We
saw that a suitable s = O(e =2 max{|H|,n/|H|}) works.

Exer: Change the split between the two cases to improve the dependence on e. (Hint: Use the
current |H| and improve the balance in max{|H|,n/|H|}.)

Exer: Explain how to extend the result to any dy > 1.



