1 Reservoir Sampling

Problem definition: Pick a uniformly random item from the stream.

Reservoir Sampling [Vitter, 1985]:

1. Init: \(s = \text{null} \)

2. Update: When the next item \(\sigma_j \) is read, toss a biased coin and with probability \(1/j \) let \(s = \sigma_j \) in the stream (note we need to maintain \(j \))

3. Output: \(s \)

Lemma: Assuming every \(\sigma_j \in [n] \), this algorithm uses storage \(O(\log(n + m)) \) and its output is a uniform item from the stream, i.e., each item \(\sigma_j \) (each position) ends up being output with the same probability \(1/m \).

Note that items appearing many times are output with high probability.

Exer: Prove this lemma.

Exer: Design a streaming algorithm that at any point \(m \) (not known in advance) receives a query \(S \subset [n] \) and outputs and estimate what fraction of items in the stream belong to \(S \) within additive error \(\epsilon \). Note that \(S \) is given only at query time (not in advance).

Hint: Maintain \(O(1/\epsilon^2) \) random samples and use them to estimate the fraction in \(S \).

Exer: Design an algorithm that samples \(s \) items without replacement from an input stream \(\sigma = (\sigma_1, \ldots, \sigma_m) \). The algorithm’s memory requirement should be \(O(s) \) words (\(s \) is a parameter known in advance). Prove that the algorithm’s output has the correct distribution.

Hint: The goal is essentially to sample \(s \) distinct indices \((i_1 < \cdots < i_s) \) uniformly at random. In contrast, executing the Reservoir Sampling algorithm \(s \) times in parallel gives \(k \) samples with
replacement, i.e., the same \(i \in [m] \) could be reported more than once.

2 Frequency-vector model

A famous and common setting for data-stream problems lets the input be a stream of \(m \) items from a universe \([n] = \{1, \ldots, n\}\); the stream \(\sigma = (\sigma_1, \ldots, \sigma_m) \) implicitly defines a frequency vector \(x \in \mathbb{R}^n \), where coordinate \(x_i \) counts the frequency of item \(i \in [n] \) in the stream.

Example: The sequence of IP addresses observed by a router. Here, \(n = 2^{32} \) is huge but the vector \(x \) is sparse (many zeros).

Remark: In this setting, it is common to assume \(m = \text{poly}(n) \), hence one machine word can store value in the ranges \([n]\) and \([m]\). The usual goal is to achieve storage requirement \(\text{polylog}(n) \).

Example Problems: Two classical computational problems ask for the most frequent item and for the number of distinct items, which can be expressed in terms of the frequency vector \(x \) as \(\|x\|_{\infty} \) and \(\|x\|_0 \), respectively.

Suppose we are guaranteed that one item appears more than half the time, i.e., there exists (unknown) \(i \in [n] \) such that \(x_i > m/2 \). Design a streaming algorithm with \(O(\log n) \) storage that finds this item. Hint: Store only two items.

Can you provide a \((1 + \epsilon)\)-approximation to its frequency? Can you extend it to every \(k \) (i.e., frequency \(> m/k \)?)

Variations and further questions (we will discuss only some of these):

- \(\|x\|_0 \) (distinct elements)
- heavy hitters (\(\|x\|_{\infty} \) when it is guarantee to be “large”)
- \(\|x\|_2 \) (reflects the probability that two random items from the stream are equal)
- more generally \(\|x\|_p \)
- \(\ell_p \)-sampling
- item deletions (turnstile updates to \(x \)), now even \(\|x\|_1 \) is interesting
- sliding window (always refer to the \(w \) most recent items, for a parameter \(w \) known in advance)
- multiple passes over the input

3 Distinct Elements

Problem Definition: Let \(x \in \mathbb{R}^n \) be the frequency vector of the input stream, and let \(\|x\|_0 = |\{i \in [n] : x_i > 0\}| \) be the number of distinct elements in the stream. It’s also called the \(F_0 \)-moment of \(\sigma \).

Naive algorithms: Storage \(O(n) \) (a bit for each possible item) or \(O(m \log n) \) (list of seen items) bits.
Algorithm FM [Flajolet and Martin, 1985]:

It employs a “hash” function \(h : [n] \rightarrow [0, 1] \) where each \(h(i) \) has an independent uniform distribution on \([0, 1]\). (This is an “idealized” description, because even though we can generate \(n \) truly random bits, we cannot store and re-use them.)

Idea: We will have exactly \(d^* = \|x\|_0 \) distinct hashes, and since they are random, by symmetry their minimum should be around \(1/(d^* + 1) \).

1. Init: \(z = 1 \) and a hash function \(h \)
2. Update: When item \(i \in [n] \) is seen, update \(z = \min\{z, h(i)\} \)
3. Output: \(1/z - 1 \)

Storage requirement: \(O(1) \) words (not including randomness); we will discuss implementation issues later.

Denote by \(d^* := \|x\|_0 \) the true value, and let \(Z \) denote the final value of \(z \) (to emphasize it is a random variable).

Lemma 1: \(\mathbb{E}[Z] = 1/(d^* + 1) \).

Note: This is the expectation of \(Z \) and not of its inverse \(1/Z \) (as used in the output).

Proof: We will use a trick to avoid the integral calculation (which is actually straightforward). Choose an additional random value \(X \) uniformly from \([0, 1]\) (for sake of analysis only), then by the law of total expectation

\[
\mathbb{E}[Z] = \mathbb{E} \left[\mathbb{E}[X \mid Z] \right] = \mathbb{E} \left[\mathbb{E}[I_{\{X < Z\}} \mid Z] \right] = \mathbb{E}[I_{\{X < Z\}}] = 1/(d^* + 1).
\]

Lemma 2: \(\mathbb{E}[Z^2] = \frac{2}{(d^* + 1)(d^* + 2)} \) and thus \(\text{Var}[Z] \leq (\mathbb{E}[Z])^2 \).

Exer: Prove this lemma using the above trick with two new random values (and/or prove both by calculating the integral).

Algorithm FM+:

1. Run \(k = O(1/\varepsilon^2) \) independent copies of algorithm FM, keeping in memory \(Z_1, \ldots, Z_k \) (and functions \(h^1, \ldots, h^k \))
2. Output: \(1/\bar{Z} - 1 \) where \(\bar{Z} = \frac{1}{k} \sum_{i=1}^{k} Z_i \)

As before, averaging reduces the standard deviation by factor \(\sqrt{k} \), and then applying Chebyshev’s inequality to \(\bar{Z} \), WHP

\[
\bar{Z} \in (1 \pm 3/\sqrt{k}) \mathbb{E}[Z] = (1 \pm 3/\sqrt{k}) \cdot 1/(d^* + 1)
\]

in which case its inverse is \(1/\bar{Z} \in (1 \pm \varepsilon)(d^* + 1) \).

Storage requirement: \(O(k) \) words (not including randomness); we will discuss implementation issues later.

Remark: The storage can be improved similarly to the probabilistic counting. It suffices to store a \((1 + \varepsilon)\)-approximation of \(z \), which can reduce the number of bits from \(O(\log n) \) (in a “typical”
implementation of the real-valued hashes) to $O(\log \log n)$. A particularly efficient 2-approximation is to store the number of zeros in the beginning of z’s binary representation.

Remark: Notice this algorithm does not work under deletions.

4 Frequency Moments and the AMS algorithm

ℓ_p-norm problem: Let $x \in \mathbb{R}^n$ be the frequency vector of the input stream, and fix a parameter $p > 0$.

Goal: estimate its ℓ_p-norm $\|x\|_p = (\sum_i |x_i|^p)^{1/p}$. We focus on $p = 2$.

Theorem 1 [Alon, Matthias, and Szegedy, 1996]: One can estimate the ℓ_2 norm of a frequency vector $x \in \mathbb{R}^n$ within factor $1 + \varepsilon$ [with high constant probability] using storage requirement of $s = O(\varepsilon^{-2})$ words. In fact, the algorithm uses a linear sketch of dimension s.

Algorithm AMS (also known as Tug-of-War):

1. Init: choose r_1, \ldots, r_n independently at random from $\{-1, +1\}$
2. Update: maintain $Z = \sum_i r_i x_i$
3. Output: to estimate $\|x\|_2^2$ report Z^2

The sketch Z is linear, hence can be updated easily.

Storage requirement: $O(\log(nm))$ bits, not including randomness; we will discuss implementation issues a bit later.

Will be continued next class.