Sublinear Time and Space Algorithms 2020B — Lecture 3

*

¢5 Frequency Moment and 1 Point Queries

Robert Krauthgamer

1 Frequency Moments and the AMS algorithm

{,-norm problem: Let x € R" be the frequency vector of the input stream, and fix a parameter
p> 0.

Goal: estimate its £,-norm ||z[|, = (3,|z:[?)}/P. We focus on p = 2.

Theorem 1 [Alon, Matthias, and Szegedy, 1996]: One can estimate the ¢ norm of a fre-
quency vector z € R™ within factor 1+¢ [with high constant probability] using storage requirement
of s = O(¢72) words. In fact, the algorithm uses a linear sketch of dimension s.

Algorithm AMS (also known as Tug-of-War):

1. Init: choose ry,...,r, independently at random from {—1,+1}
2. Update: maintain Z =), ryz;

3. Output: to estimate ||z||3 report Z2

The sketch Z is linear, hence can be updated easily.

Storage requirement: O(log(nm)) bits, not including randomness; we will discuss implementation
issues a bit later.

Analysis: We saw in class that E[Z?] =}, 27 = ||z|3, and Var(Z?) < 2(E[Z?])%
Algorithm AMS+:

1. Run t = O(1/£?) independent copies of Algorithm AMS, denoting their Z values by Z1, ..., Z,
and output the mean of these copies Y = % > j ij.

Observe that the sketch (Z1,. .., Z;) is still linear.

Storage requirement: O(t) = O(1/¢%) words (for constant success probability), not including ran-
domness.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

Analysis: We saw in class that

\ Y v Var(Y Var(Z?)/t
PI‘HY *EY| > SEY] < EQ?E(Y))Z = EQa(Ié;ZQ)/Q < ts%

Choosing appropriate t = O(1/&2) makes the probability of error an arbitrarily small constant.

Notice it actually gives a (1 4 ¢)-approximation to ||z||3, which is immediately yields a (1 + ¢)-
approximation to ||z||2.

Exer: What would happen in the accuracy analysis if the r;’s were chosen as standard gaussians
N(0,1)?

2 (1 Point Query via CountMin

Problem Definition: Let € R" be the frequency vector of the input stream, and let ||z||, =
(3,]z:[P)Y/P be its £,-norm. Let a € (0,1) and p > 1 be parameters known in advance.

The goal is to estimate every coordinate with additive error, namely, given query i € [n], report Z;
such that WHP
Z; € x; £ af|zp.

Observe: ||z|[1 > ||z|l2 > ... > ||z|lco, hence higher norms (larger p) give better accuracy. We will
see an algorithm for /1, which is the easiest.

Exer: Show that the ¢; and /5 norms differ by at most a factor of y/n, and that this is tight. Do
the same for ¢5 and /.

It is not difficult to see that ¢ point query is hard. For instance, with o < 1/2 we could recover
an arbitrary binary vector x € {0,1}", which (at least intuitively) requires ©(n) bits to store.

Theorem 4 [Cormode-Muthukrishnan, 2005]: There is a streaming algorithm for ¢; point
queries that uses a (linear) sketch of O(a~!logn) memory words to achieve accuracy a with success
probability 1 — 1/n?.

We will initially assume all x; > 0.

Algorithm CountMin:

(Assume all z; > 0.)

1. Init: set w = 4/a and choose a random hash function h : [n] — [w].
2. Update: maintain vector S = [S1,...,Sy] where Sj = 3., ;)_; %:.
3. Output: to estimate x; report &; = Sp(;)

The update step can indeed be implemented in a streaming fashion because the sketch is some
linear map L : R™ — RY, (observe that S; = >, 115(;)=;32:), and thus L(x + ;) = L(x) + L(e;).

We call S a sketch to emphasize it is a succinct version of the input, and L a sketching matriz.

Analysis (correctness): We saw in class that Z; > z; and Pr[z; > z; + of|z|1] < 1/4.

Algorithm CountMin+:

1. Run t = logn independent copies of algorithm CountMin, keeping in memory the vectors
St ..., 8" (and functions h',..., ht)

2. Output: the minimum of all estimates &; = minc[y S;ll)
Analysis (correctness): As before, Z; > z; and
Prli; > z; 4 allz|1] < (1/4)" = 1/n2.
By a union bound, with probability at least 1—1/n, for all i € [n] we will have z; < &; < x;+a||z1.

Space requirement: O(a !logn) words (for success probability 1 — 1/n?), without counting
memory used to represent/store the hash functions.

Exer: Let z € R™ be the frequency vector of a stream of m items (insertions only). Show how to
use the CountMin+ sketch seen in class (for ¢; point queries) to estimate the median of x, which
means to report an index j € [n] that with high probability satisfies Y7, z; € (3 £ ¢)m.

General z (allowing negative entries):

Observe that Algorithm CountMin actually extends to general z that might be negative, and
achieves the guarantee

Pr[z; ¢ z; £ of|z|1] < 1/4.

Exer: complete the proof.

Next class we will see how to amplify the success probability, using median (instead of minimum)
of O(logn) independent repetitions.

