1 Frequency Moments and the AMS algorithm

\(\ell_p\)-norm problem: Let \(x \in \mathbb{R}^n\) be the frequency vector of the input stream, and fix a parameter \(p > 0\).

Goal: estimate its \(\ell_p\)-norm \(\|x\|_p = (\sum_i |x_i|^p)^{1/p}\). We focus on \(p = 2\).

Theorem 1 [Alon, Matthias, and Szegedy, 1996]: One can estimate the \(\ell_2\) norm of a frequency vector \(x \in \mathbb{R}^n\) within factor \(1 + \varepsilon\) [with high constant probability] using storage requirement of \(s = O(\varepsilon^{-2})\) words. In fact, the algorithm uses a linear sketch of dimension \(s\).

Algorithm AMS (also known as Tug-of-War):

1. Init: choose \(r_1, \ldots, r_n\) independently at random from \((-1, +1)\)
2. Update: maintain \(Z = \sum_i r_i x_i\)
3. Output: to estimate \(\|x\|_2^2\) report \(Z^2\)

The sketch \(Z\) is linear, hence can be updated easily.

Storage requirement: \(O(\log(nm))\) bits, not including randomness; we will discuss implementation issues a bit later.

Analysis: We saw in class that \(\mathbb{E}[Z^2] = \sum_i x_i^2 = \|x\|_2^2\), and \(\text{Var}(Z^2) \leq 2(\mathbb{E}[Z^2])^2\).

Algorithm AMS+:

1. Run \(t = O(1/\varepsilon^2)\) independent copies of Algorithm AMS, denoting their \(Z\) values by \(Z_1, \ldots, Z_t\), and output the mean of these copies \(\bar{Y} = \frac{1}{t} \sum_j Z_j^2\).

Observe that the sketch \((Z_1, \ldots, Z_t)\) is still linear.

Storage requirement: \(O(t) = O(1/\varepsilon^2)\) words (for constant success probability), not including randomness.

These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.
Analysis: We saw in class that
\[\Pr[|\tilde{Y} - \mathbb{E}\tilde{Y}| \geq \varepsilon \mathbb{E}\tilde{Y}] \leq \frac{\text{Var}(\tilde{Y})}{\varepsilon^2(\mathbb{E}\tilde{Y})^2} = \frac{\text{Var}(Z^2)/t}{\varepsilon^2(\mathbb{E}Z^2)^2} \leq \frac{2}{t\varepsilon^2}. \]

Choosing appropriate \(t = O(1/\varepsilon^2) \) makes the probability of error an arbitrarily small constant.

Notice it actually gives a \((1 \pm \varepsilon)\)-approximation to \(\|x\|_2^2 \), which is immediately yields a \((1 \pm \varepsilon)\)-approximation to \(\|x\|_2 \).

Exer: What would happen in the accuracy analysis if the \(r_i \)'s were chosen as standard gaussians \(N(0, 1) \)?

2 \(\ell_1 \) Point Query via CountMin

Problem Definition: Let \(x \in \mathbb{R}^n \) be the frequency vector of the input stream, and let \(\|x\|_p = (\sum |x_i|^p)^{1/p} \) be its \(\ell_p \)-norm. Let \(\alpha \in (0, 1) \) and \(p \geq 1 \) be parameters known in advance.

The goal is to estimate every coordinate with additive error, namely, given query \(i \in [n] \), report \(\tilde{x}_i \) such that WHP
\[\tilde{x}_i \in x_i \pm \alpha \|x\|_p. \]

Observe: \(\|x\|_1 \geq \|x\|_2 \geq \ldots \geq \|x\|_\infty \), hence higher norms (larger \(p \)) give better accuracy. We will see an algorithm for \(\ell_1 \), which is the easiest.

Exer: Show that the \(\ell_1 \) and \(\ell_2 \) norms differ by at most a factor of \(\sqrt{n} \), and that this is tight. Do the same for \(\ell_2 \) and \(\ell_\infty \).

It is not difficult to see that \(\ell_\infty \) point query is hard. For instance, with \(\alpha < 1/2 \) we could recover an arbitrary binary vector \(x \in \{0, 1\}^n \), which (at least intuitively) requires \(\Omega(n) \) bits to store.

Theorem 4 [Cormode-Muthukrishnan, 2005]: There is a streaming algorithm for \(\ell_1 \) point queries that uses a (linear) sketch of \(O(\alpha^{-1} \log n) \) memory words to achieve accuracy \(\alpha \) with success probability \(1 - 1/n^2 \).

We will initially assume all \(x_i \geq 0 \).

Algorithm CountMin:

(Assume all \(x_i \geq 0 \).)

1. Init: set \(w = 4/\alpha \) and choose a random hash function \(h : [n] \to [w] \).
2. Update: maintain vector \(S = [S_1, \ldots, S_w] \) where \(S_j = \sum_{i: h(i) = j} x_i \).
3. Output: to estimate \(x_i \) report \(\tilde{x}_i = S_{h(i)} \)

The update step can indeed be implemented in a streaming fashion because the sketch is some linear map \(L : \mathbb{R}^n \to \mathbb{R}^w \), (observe that \(S_j = \sum_i 1_{\{h(i) = j\}} x_i \)), and thus \(L(x + e_i) = L(x) + L(e_i) \).

We call \(S \) a sketch to emphasize it is a succinct version of the input, and \(L \) a sketching matrix.

Analysis (correctness): We saw in class that \(\tilde{x}_i \geq x_i \) and \(\Pr[\tilde{x}_i \geq x_i + \alpha \|x\|_1] \leq 1/4. \)
Algorithm CountMin⁺:

1. Run \(t = \log n \) independent copies of algorithm CountMin, keeping in memory the vectors \(S^1, \ldots, S^t \) (and functions \(h^1, \ldots, h^t \))

2. Output: the minimum of all estimates \(\hat{x}_i = \min_{l \in [t]} S^l_{h^l(i)} \)

Analysis (correctness): As before, \(\hat{x}_i \geq x_i \) and

\[
\Pr[\hat{x}_i > x_i + \alpha \|x\|_1] \leq (1/4)^t = 1/n^2.
\]

By a union bound, with probability at least \(1 - 1/n \), for all \(i \in [n] \) we will have \(x_i \leq \hat{x}_i \leq x_i + \alpha \|x\|_1 \).

Space requirement: \(O(\alpha^{-1} \log n) \) words (for success probability \(1 - 1/n^2 \)), without counting memory used to represent/store the hash functions.

Exer: Let \(x \in \mathbb{R}^n \) be the frequency vector of a stream of \(m \) items (insertions only). Show how to use the CountMin⁺ sketch seen in class (for \(\ell_1 \) point queries) to estimate the median of \(x \), which means to report an index \(j \in [n] \) that with high probability satisfies \(\sum_{i=1}^{j} x_i \in (\frac{1}{2} \pm \epsilon)m \).

General \(x \) (allowing negative entries):

Observe that Algorithm CountMin actually extends to general \(x \) that might be negative, and achieves the guarantee

\[
\Pr[\hat{x}_i \notin x_i \pm \alpha \|x\|_1] \leq 1/4.
\]

Exer: complete the proof.

Next class we will see how to amplify the success probability, using median (instead of minimum) of \(O(\log n) \) independent repetitions.