
Sublinear Time and Space Algorithms 2020B – Lecture 5

Hash functions, Heavy Hitters and Compressed Sensing*

Robert Krauthgamer

1 Hash Functions (cont’d)

Construction of pairwise independent hashing:

Assume M ≥ n and that M is a prime number (if not, we can pick a larger M that is a prime).
Pick random p, q ∈ {0, 1, 2, . . . ,M − 1} = [M] and set accordingly hp,q(i) = pi+ q (mod M).

The family H = {hp,q : p, q} is pairwise independent because for all i ̸= j and all x, y,

Pr
h∈H

[h(i) ≡ x, h(j) ≡ y] = Pr
p,q

[(
i 1
j 1

)
(pq) ≡ (xy)

]
= Pr

p,q

[
(pq) ≡

(
i 1
j 1

)−1
(xy)

]
= 1

M2 ,

where we relied on the above matrix being invertible.

Storing a function hp,q from this family can be done by storing p, q, which requires log |H| =
O(logM) bits. In general, log |H| bits suffice to store an index of h ∈ H.

One can reduce the size of the range [M] (from large M ≥ n to M = 2 or say 4/α), with a small
overhead/loss.

Another construction for M = 2:

Let A be a 0-1 matrix of size (2t − 1)× t with all possible (distinct) nonzero rows Ai ∈ {0, 1}t. For
a random p ∈ {0, 1}t, define hp : [2t] → {0, 1} by hp(i) := (Ap)i = ⟨Ai, p⟩, where all operations are
performed in GF [2] (i.e., modulo 2).

Storing the hash function requires log |H| = O(t) bits.

Exer: Prove that the family H = {hp : p} is pairwise independent.

Exer: Show that this construction generates k-wise independent bits whenever the matrix A satisfies
that every k rows are linearly independent.

Exer: Show that the correctness of algorithm CountMin (for ℓ1 point query) extends to using a
universal hash function, and analyze how much additional storage the hash function requires.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Exer: Show that the correctness of algorithm CountSketch (for ℓ2 point query) can be imple-
mented with limited (pairwise) independence and analyze how much additional storage the hash
function requires.

Hint: use separate randomness for the hash functions and for the signs.

Exer: Show that algorithm AMS (for estimating ℓ2 norm) works even if the random signs {ri}
are only 4-wise independent.

We will now see some applications of point queries.

2 Application 1: Heavy Hitters (Frequent Items)

Problem Definition: For parameter ϕ ∈ (0, 1) and p ∈ [1,∞), define

HHp
ϕ(x) = {i ∈ [n] : |xi| ≥ ϕ∥x∥p}.

Observe that its cardinality is bounded by
∣∣∣HHp

ϕ(x)
∣∣∣ ≤ 1/ϕp.

We will focus on p = 1 and ϕ is “not too small”.

Approximate Heavy Hitters:

Parameters: ϕ, ε ∈ (0, 1).

Goal: return a set S ⊆ [n] such that

HHp
ϕ ⊆ S ⊆ HHp

ϕ(1−ε).

Reduction from HH to point query (for p = 1):

Assume we have an algorithm for ℓ1 point queries with parameter α = εϕ/2, and amplify its success
probability to 1− 1

3n if needed.

1. compute an estimate x̃i for every i ∈ [n] using this algorithm (this step takes time O(n log n) or
even more)

2. report the set S = {i : x̃i ≥ (ϕ − εϕ/2)∥x∥1} (it is easy to know ∥x∥1 when x ≥ 0, but more
difficult in general)

Storage requirement: We can employ algorithm CountMin+ for ℓ1 point queries, which requires
O(α−1 log n) words, and has error probability 1/n2, which is small enough. Then our approximate
HH algorithm will take O(ϕ−1ε−1 log2 n) bits.

Correctness: With probability ≥ 2/3, all the n estimates are correct within additive ε/2. In this
case, S contains all the ϕ-HH, and is contained in the (ϕ(1− ε))-HH.

Exer: Extend the above approach to p = 2 (using CountSketch). How much storage it requires?
Use the AMS sketch to estimate the ℓ2-norm.

2

3 Application 2: Compressed Sensing (or Sparse Recovery)

Problem Definition: The input is a “signal” x ∈ Rn, but instead of reading it directly we have
only via linear measurements, i.e., we can observe/access yi = ⟨Ai, x⟩ for A1, . . . , Am ∈ Rn of our
choice. Informally, the goal is to design few Ai’s and then to use them recover x. We shall focus
on non-adaptive Ai, i.e., the entire sequence has to be determined in advance.

Let Am×n be a matrix whose rows are the Ai’s, then we know that Ax = y. A trivial solution is to
choose A that is invertible, which requires m = n. In general, this is optimal, because for smaller
m there might be infinitely many solutions x to Ax = y.

Initial goal: Suppose that x is k-sparse (has at most k nonzeros, i.e., ∥x∥0 = k). What m = m(n, k)
is needed to recover x?

True goal: Suppose x is approximately k-sparse. For what m can we recover an approximation to
x?

Remark: In most applications, it’s preferable that A has bounded precision (i.e., the entries of A
are integers of bounded magnitude), as otherwise y must be “acquired” with very high precision.
Sometimes it’s even important that A’s entries are nonnegative.

CountMin Approach: Recall that CountMin is a (randomized) linear sketch of x ∈ Rn, hence
it can be viewed as multiplying x by some matrix A with p = O(α−1 log n) rows.

Sparse 0-1 vector: Suppose first x ∈ {0, 1}n and is k-sparse. Then ∥x∥1 = k, and a CountMin+
sketch of accuracy α = 1

3k succeeds with probability at least 1 − 1/n in estimating all xi’s within
additive ±α∥x∥1 ≤ ±1

3 , which can distinguish whether xi is 0 or 1.

Sparse vector: If the nonzeros of x have different magnitudes, the above approach might require
α ≪ 1

k .

But a deeper inspection of CountMin shows that every coordinate has a good chance to “not collide”
with any nonzero coordinate. This behavior is amplified by the repetitions + median trick’s, and
then WHP the estimator is exact, i.e., x̂i = xi.

Exer: Show that a sketching matrix A with m = O(k) rows (linear measurements) and whose
entries are random Gaussians (or chosen uniformly from [0, 1]) can recover with high probability
every k-sparse input x. Show it also for an ε-coherent matrix for ε = 1

10k .

Hint: It suffices that every 2k columns are linearly independent.

3

