
Sublinear Time and Space Algorithms 2020B – Lecture 6

Compressed Sensing, RIP matrices and Basis Pursuit*

Robert Krauthgamer

1 Application 2: Compressed Sensing (cont’d)

Approximately sparse vector: We will now prove an even more general result.

For z ∈ Rn, denote by ztop(k) the vector z after zeroing all but the k heaviest entries (largest in
absolute value), breaking ties arbitrarily. Notice this vector is the “best” k-sparse approximation
to z. Similarly, denote by ztail(k) ∈ Rn the vector z after zeroing the k heaviest entries. Then
ztail(k) = z − ztop(k) is the “error” of approximating z by a k-sparse vector.

Theorem 1 [Cormode and Muthukrishnan, 2006]: CountMin++ with parameter α = ε/k
can be used to recover a vector x′ ∈ Rn that with high probability satisfies

∥x− x′∥1 ≤ (1 + 3ε)∥xtail(k)∥1.

In fact, x′ = x̂top(k) and is thus k-sparse. (Recall x̂ ∈ Rn is the estimate of algorithm CountMin.)

The above condition is usually called an ℓ1/ℓ1 guarantee.

Remark 1: Observe that if x is k-sparse, then this guarantees exact recovery. In general, it guar-
antees the output’s “accuracy” (distance from true x) is comparable to the best k-sparse vector.

Remark 2: While in point queries we bounded the error in each coordinate separately, the above
guarantee bounds the total error (over all coordinates).

Remark 3: Different constructions achieve/optimize for other guarantees like different norms, deter-
ministic recovery, small explicit description of A, or fast recovery time. Often, the optimal number
of measurements is O(k log(n/k)) (ignoring dependence on ε).

Lemma 1a: CountMin++ with parameter α computes, with high probability, estimates x̂i ∈
xi ± α∥xtail(k)∥1, i.e.,

∥x− x̂∥∞ ≤ α∥xtail(k)∥1.

Exer: Prove this lemma.
*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and

possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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Hint: Show that with high probability, both (a) coordinate i will not collide with the k (other)
heaviest coordinates and (b) the contribution from the rest (tail) is comparable to the expectation.

Lemma 1b: If ∥x− x̂∥∞ ≤ α∥xtail(k)∥1 then ∥x− x̂top(k)∥1 ≤ (1 + 3kα)∥xtail(k)∥1.

Proof of lemma: Let zS denote the vector z after zeroing all coordinates outside S ⊂ [n].

Let T̂ ⊂ [n] be the indices of the k heaviest coordinates in x̂, then by definition x̂T̂ = x̂top(k) = x′.

Let T ⊂ [n] be the indices of the k heaviest coordinates in x, hence xT = xtop(k).

Denote the upper bound we have for every coordinate by B := α∥xtail(k)∥1.

∥x− x′∥ = ∥xT̂ − x̂T̂ ∥+ ∥xT̂ c − 0∥ separate coordinates of T̂

= ∥xT̂ − x̂T̂ ∥+ ∥x∥ − ∥xT̂ ∥

≤ |T̂ | ·B + ∥x∥ − ∥x̂T̂ ∥ + |T̂ | ·B by x ≈ x̂ on T̂

= 2|T̂ | ·B + ∥x∥ − ∥x̂T̂ ∥
≤ 2|T̂ | ·B + ∥x∥ − ∥x̂T ∥ T̂ is heaviest in x̂

≤ 2|T̂ | ·B + ∥x∥ − ∥xT ∥ + |T | ·B by x̂ ≈ x on T

≤ (2|T̂ | · α+ 1 + |T | · α)∥xtail(k)∥.

QED.

Exer: Can you extend the above sparse recovery to ℓ2/ℓ2 guarantee by using CountSketch (instead
of CountMin)? How many measurements would it require?

2 RIP matrices

Definition: A matrix A ∈ Rm×n is (k, ε)-RIP (satisfies the restricted isometry property) if for
every k-sparse vector x ∈ Rn,

(1− ε)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + ε)∥x∥22.

Another interpretation: Let AS denote the restriction of A to columns in S ⊂ [n]. Then the above
requires that for all S of cardinality k, and all x ∈ RS , we have

(1− ε)∥x∥22 ≤ xAT
SASx ≤ (1 + ε)∥x∥22,

which means that AT
SAS ≈ Ik in the sense that all its eigenvalues are close to 1. We can further

write it as |xT (AT
SAS − I)x| ≤ ε∥x∥22, which in matrix notation is just a bound on the operator

norm (spectral radius):

∥AT
SAS − I∥ ≤ ε.

Exer: Show that that this implies that the columns of AS are linearly independent.
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Exer: Show that every (ε/k)-coherent matrix is (k, ε)-RIP.

Recall that a matrix A ∈ Rm×n is called α-coherent if its columns Ai satisfy that every ∥Ai∥2 = 1
and every |⟨Ai, Aj⟩| ≤ ε (for i ̸= j).

By the homework exercise, this implies that for every (n, k, ε), there exists a (k, ε)-RIP matrix with
m = O(ε−2k2 log n) rows.

Hint: Given A that is α-coherent matrix for α = ε/k, let B = AT
SAS − I, and bound ∥B∥ which is

the largest-magnitude eigenvalue of B.

3 Compressed Sensing via Basis Pursuit

Theorem 2 [Candes, Romberg and Tao [2004], and Donoho [2004]: There is a polynomial-
time algorithm that given a matrix A ∈ Rm×n which is (2k, ε)-RIP for 1 + ε <

√
2, together with

y = Ax for some (unknown) x ∈ Rn, computes x̃ ∈ Rn satisfying

∥x− x̃∥2 ≤ O(1/
√
k)∥xtail(k)∥1.

This condition is usually called an ℓ2/ℓ1 guarantee.

Exer: Show that the above implies the following ℓ1/ℓ1 guarantee for x∗ = x̃top(k):

∥x− x∗∥1 ≤ O(1)∥xtail(k)∥1.

Hint: Let T be the top k coordinates of x, and T̃ the top k coordinates of x̃. Split the coordinates
into T̃ , T \ T̃ , and the rest.

Comparison with previously seen result: We saw previously an algorithm of [Cormode and
Muthukrishnan, 2006] achieving WHP ℓ1/ℓ1 guarantee

∥x− x′∥1 ≤ (1 + 3ε)∥xtail(k)∥1.

* The current ℓ2/ℓ1 guarantee is stronger as it implies an ℓ1/ℓ1 guarantee, although with constant
factor and not 1 + 3ε.

* The current result is deterministic and holds for all x simultaneously, while the previous one holds
WHP separately for every x.

* Previously, the number of measurements was m = O(ε−1k log n). Here it depends on having an
RIP matrix; the incoherent matrix from homework has worse (quadratic) dependence on k, but
other constructions of RIP matrices are linear in k.

Basis Pursuit Algorithm: We will prove Theorem 1 using an algorithm called Basis Pursuit,
which simply solves the linear program (LP)

x̃ = min{∥z∥1 : z ∈ Rn, Az = y}.

It is known that linear programs can be solved in polynomial time.
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Exer: Show that x̃ above can indeed be solved using LP.

Proof of Theorem 1 (based on [Candes’08]):

As before, let zS denote a vector z after zeroing all coordinates outside S ⊂ [n].

Let T0 ⊂ [n] be the indices of the k heaviest coordinates (largest in absolute value) in x. Thus
xT c

0
= xtail(k).

We now partition the rest (T c
0 ) according to the heaviness in h = x− x̃ (not in x): Let T1 ⊂ T c

0 be
the k heaviest coordinates in hT c

0
, and similarly for T2, T3, . . .. Overall, T0, T1, T2, . . . is a partition

of [n] into groups size k each (except maybe the last one).

To bound the error of h = x− x̃, we use the triangle inequality

∥x− x̃∥2 = ∥h∥2 = ∥hT0∪T1 + h(T0∪T1)c∥2
≤ ∥hT0∪T1∥2 + ∥h(T0∪T1)c∥2.

The proof will be completed by the following two lemmas.

QED

Lemma 2a: ∥hT0∪T1∥2 ≤ O(1/
√
k)∥xT c

0
∥1.

Lemma 2b: ∥h(T0∪T1)c∥2 ≤ O(1/
√
k)∥xT c

0
∥1 + ∥hT0∪T1∥2.

We start by proving (next week) a strengthening of Lemma 2b.

Lemma 2b+:
∑

j≥2∥hTj∥2 ≤ 2√
k
· ∥xT c

0
∥1 + ∥hT0∪T1∥2.
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