Sublinear Time and Space Algorithms 2020B — Lecture 6
Compressed Sensing, RIP matrices and Basis Pursuit*

Robert Krauthgamer

1 Application 2: Compressed Sensing (cont’d)

Approximately sparse vector: We will now prove an even more general result.

For z € R", denote by 2,.,() the vector z after zeroing all but the k heaviest entries (largest in
absolute value), breaking ties arbitrarily. Notice this vector is the “best” k-sparse approximation
to z. Similarly, denote by zyx) € R" the vector z after zeroing the k heaviest entries. Then
Ztail(k) = # — Ztop(k) 18 the “error” of approximating z by a k-sparse vector.

Theorem 1 [Cormode and Muthukrishnan, 2006]: CountMin++ with parameter o = ¢/k
can be used to recover a vector z’ € R™ that with high probability satisfies

lz = 2'lly < (1 + 3¢)llztairmll1-
In fact, 2’ = Tyop(k) and is thus k-sparse. (Recall € R™ is the estimate of algorithm CountMin.)
The above condition is usually called an ¢ /¢; guarantee.

Remark 1: Observe that if x is k-sparse, then this guarantees exact recovery. In general, it guar-
antees the output’s “accuracy” (distance from true z) is comparable to the best k-sparse vector.

Remark 2: While in point queries we bounded the error in each coordinate separately, the above
guarantee bounds the total error (over all coordinates).

Remark 3: Different constructions achieve/optimize for other guarantees like different norms, deter-
ministic recovery, small explicit description of A, or fast recovery time. Often, the optimal number
of measurements is O(klog(n/k)) (ignoring dependence on ¢).

Lemma la: CountMin++ with parameter o computes, with high probability, estimates z; €
z; = | Thai 1 Le.,

[ = #lloo < |z taise l1-

Exer: Prove this lemma.
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Hint: Show that with high probability, both (a) coordinate ¢ will not collide with the k (other)
heaviest coordinates and (b) the contribution from the rest (tail) is comparable to the expectation.

Lemma 1b: If |z — &[[oc < al[gaam 1 then |z — Ziopa It < (1 + 3ka) | Tiair ll1-
Proof of lemma: Let zg denote the vector z after zeroing all coordinates outside S C [n].
Let T C [n] be the indices of the k heaviest coordinates in Z, then by definition &4 = Ziop(k) = x'.

Let T' C [n] be the indices of the k heaviest coordinates in x, hence o7 = x;qp(1)-

Denote the upper bound we have for every coordinate by B := oz l1-

xT—x|| = ||Ts» — Ta| + ||Tre — separate coordinates o [
|z — 2|l = llzg — &2 + llz4. — O] p di £
= lzg — 23l + (2] = [lzg
<|T|- B+ ||lz|| — &gl +|T|- B by z~ 4 on T
=21 B+ ||z] - |7
<2T|- B+ ||z — ||&7| T is heaviest in &
<2/T|- B+ |z| — ezl +|T|-B by z~zonT

< QT a+ 1+ |T] - @)llz g -

QED.

Exer: Can you extend the above sparse recovery to ¢5/¢s guarantee by using CountSketch (instead
of CountMin)? How many measurements would it require?

2 RIP matrices

Definition: A matrix A € R™*" is (k,e)-RIP (satisfies the restricted isometry property) if for
every k-sparse vector x € R",

(1= o)zl < [|[Az]3 < (1 +&)ll]13.

Another interpretation: Let Ag denote the restriction of A to columns in S C [n]. Then the above
requires that for all S of cardinality &, and all z € RS, we have

(1= o)llz)} < zAgAsz < (1+¢)llz]3,

which means that AEAS ~ I} in the sense that all its eigenvalues are close to 1. We can further
write it as |27 (AL Ags — I)z| < e||z||3, which in matrix notation is just a bound on the operator
norm (spectral radius):

|ALAs —I|| <e.

Exer: Show that that this implies that the columns of Ag are linearly independent.



Exer: Show that every (¢/k)-coherent matrix is (k,e)-RIP.

Recall that a matrix A € R™*" is called a-coherent if its columns A® satisfy that every ||A?||z = 1
and every |[(A%, A7)| < e (for i # j).

By the homework exercise, this implies that for every (n, k,€), there exists a (k, )-RIP matrix with
m = O(e~2k?logn) rows.

Hint: Given A that is a-coherent matrix for o = €/k, let B = ALAg — I, and bound || B|| which is
the largest-magnitude eigenvalue of B.

3 Compressed Sensing via Basis Pursuit

Theorem 2 [Candes, Romberg and Tao [2004], and Donoho [2004]: There is a polynomial-
time algorithm that given a matrix A € R™*" which is (2k,¢)-RIP for 1 +¢ < /2, together with
y = Ax for some (unknown) xz € R", computes Z € R" satisfying

lz = &2 < O/VE) [ 1aiaii -

This condition is usually called an ¢5/¢; guarantee.

Exer: Show that the above implies the following ¢1//1 guarantee for z* = Fy,1):

Iz = 2"l < OM) [z saicw l11-

Hint: Let T' be the top k coordinates of z, and T the top k coordinates of Z. Split the coordinates
into T', T\ T, and the rest.

Comparison with previously seen result: We saw previously an algorithm of [Cormode and
Muthukrishnan, 2006] achieving WHP ¢, /¢, guarantee

lz = 2lly < (1 + 3¢)|zsair l11-
* The current ¢/¢ guarantee is stronger as it implies an ¢; /¢ guarantee, although with constant
factor and not 1 4 3e.

* The current result is deterministic and holds for all  simultaneously, while the previous one holds
WHP separately for every x.

* Previously, the number of measurements was m = O(¢~'klogn). Here it depends on having an
RIP matrix; the incoherent matrix from homework has worse (quadratic) dependence on k, but
other constructions of RIP matrices are linear in k.

Basis Pursuit Algorithm: We will prove Theorem 1 using an algorithm called Basis Pursuit,
which simply solves the linear program (LP)

Z = min{||z]]1 : z € R", Az = y}.

It is known that linear programs can be solved in polynomial time.



Exer: Show that  above can indeed be solved using LP.
Proof of Theorem 1 (based on [Candes’08]):
As before, let zg denote a vector z after zeroing all coordinates outside S C [n].

Let Ty C [n] be the indices of the k heaviest coordinates (largest in absolute value) in z. Thus
TS = Tiail(k)-

We now partition the rest (7§) according to the heaviness in h =  — & (not in z): Let 71 C T be
the k heaviest coordinates in hrg, and similarly for 75,75, . ... Overall, Ty, T1, T3, ... is a partition
of [n] into groups size k each (except maybe the last one).

To bound the error of h = x — Z, we use the triangle inequality
|z = Zll2 = [[Rll2 = [hmyury + heryumyell2
< |lhryun ll2 + [hezury)ell2-
The proof will be completed by the following two lemmas.
QED
Lemma 2a: | hqur |2 < O(l/\/E)|]a:T5||1.
Lemma 2b: [|heyurellz < O(1/VE)|lzrg |l + [|hrur |l2-
We start by proving (next week) a strengthening of Lemma 2b.

Lemma 2b-+: ZjZQHth||2 < % . HxT(ng + || hryury |2



