Sublinear Time and Space Algorithms 2020B — Lecture 7
Basis Pursuit (cont’d) and Iterative Hard Thresholding®

Robert Krauthgamer

1 Compressed Sensing via Basis Pursuit (cont’d)

Last time we started proving the theorem below, but it remained to prove the two main lemmas
below.

Theorem 2 [Candes, Romberg and Tao [2004], and Donoho [2004]: There is a polynomial-
time algorithm that given a matrix A € R™*™ which is (2k,¢)-RIP for 1 + ¢ < /2, together with
y = Ax for some (unknown) x € R™, computes Z € R" satisfying

lz = &]l2 < O/VE) @ 1aiaii 1

Lemma 2a: ||hgun |2 < 0(1/\/%)”3@5”1-
Lemma 2b+: [|hrur)ellz < Xjsallbry 2 < - - llezgll + [Ihryur -

Proof of Lemma 2b+: The first inequality follows from h(zur)e = > j>2 hr; and the triangle
inequality.

The second inequality was seen in class using the so-called “shelling argument”, and then using
that £ = x — h is a minimizer of the LP to expand ||z|1 > ||Z|1.

To prove Lemma 2a we need another lemma.

Lemma 2d: Suppose h/,h” are supported on disjoint sets 7", 7" C [n] respectively, and A is
(IT'| +|T"|,e0)-RIP. Then

(AR, AR")[ < eol|W/[|2[|2"]|2-

Exer: Prove this lemma.

Hint: First assume WLOG that b/, h” are unit vectors. Then apply the formula |Ju+v]||3—||lu—v||3 =
4{u,v) to u = Ah' and v = ARL".

“These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.



Proof of Lemma 2a: Was seen in class. The idea is to analyze the norm of Ahg,ur, (instead of
that of hryur ), using Lemma 2d, to show

(1= )hzoun |3 < | Ahzyun |5 < eV2lhaunll2 >l ll2,
i>2

then plug in Lemma 2b+, and rearrange.

2 Iterative Hard Thresholding (IHT)

We will now see a different model of Compressed Sensing, where the error/noise is introduced after
the measurement.

Theorem 3: Let A € R™*" be (3k,e)-RIP for ¢ < 0.1. Then given y = Ax + e for an (unknown)
k-sparse vector z € R" and some noise vector e € R", one can recover in polynomial time an
estimate Z such that ||z — z||2 < O(1)|le||2.

Henceforth, all norms are /5 norms.
Basic intuition: The algorithm initially computes z = ATy, and takes Ztop(k)-

Why is this effective? We expect that z = AT Az + ATe ~ z, because AT Az ~ x and A”e should
be small noise. We will give a formal bound in Lemma 3a below.

The error is then reduced via iterations on the “residual error” in z.

Algorithm THT:

soel 0 T 0 (0)
1. init: 20« A y, then let 20 top(k)

Q.Ertzlp.”l:Cng%%y

3. compute 2 « 2= 4+ AT(y — Az(=1) then let 2®) + Zg)(k)'
4. output & = z®

Lemma 3a (initialization):

|12 — || < Flall + 2]e].

Lemma 3b (iterative improvement): For every ¢ > 1,

|2 — 2|l < Fll2 — || + 5e.
Proof of Theorem 3: As discussed in class, it follows easily from Lemmas 3a and 3b.
Lemma 3c: Let S D supp(x), |S| = 3k. Then

1z = 2)s]| < ellz]| +2]lell-



Proof: Since Ax = Agxg and since A is (3k, )-RIP,

I(z = 2)sll = [ AG(Az + €) — as]|

< |[(ALAg — Dagl| + || ALe] (triangle inequality)
<45 A4 — T)s] + I|AZ | el (operator norm)
< ellz]| + 2lle]l, (RIP)

where we bounded || AL|| = || As|| = sup{||Asv| : [Jv]| = 1} < (1 +&)1/2 < 2.

Lemma 3d: Let z € R" and let T' C [n] be its k heaviest coordinates. Then
HZT - xHZ < 5H(Z - x)TUsupp(m)H2'

Remark: It actually holds for every z € R™, not only for 2(0) = ATy,

Proof: Denote H = supp(z).
Coordinates i € T'N H contribute (z; — x;)? to the LHS, and 5 times that to RHS.
Coordinates i ¢ T'U H contribute 0 to LHS, and nonnegatively to RHS.

Now pair each i € H \ T with j € T'\ H ordered by magnitude, then |z;| < |z;|. By considering
what each pair contributes to each side, it suffices to show 22 + zjz < 5[(z; — xi)? + zﬂ

If |2;| > |z4]/2, then 22 < 422 < 4232» and we're done.
Otherwise |2;| < |z;]/2, then 5(z; — 2;)? > 5(x;/2)? and we're done.
QED

Proof of Lemma 3a: Recall 2(°) = ATy, and let T C [n] be its k heaviest coordinates. Then

127 — 2l < V5 11z ~ 2)70supp | (Lemma 3d)
< V5 [ellzl| + 2le]] (Lemma 3c)
< Ylal| + 5]le].

QED
Proof of Lemma 3b: We did not have time in class, but here it is.

For sake of analysis, consider a “hypothetical” input where we subtract the previous iteration:

¢ =z —2%Y = supp(z’) C supp(z) Usupp(z?~Y) (has size < 2k)
y=Ar'+e = ¢y =Ax—z""Y)+e=y—A2*D (line 3 uses this y')

Using this notation, we can rewrite line 3 as 2 « z(=Y 4+ 2/, and

2O g =gtV 4 = o



Analogously to the proof of Lemma 3a:

Hx(t) — || = Hzg()t) — (denote T® = supp(x(t)) )
< V5 [|(=1 - )70 Usupp(a) | (Lemma 3d for 2 )
<5 (" — xl)T(wugupp(x)Usupp(xufl)) I (rewrite as above)
< V5 [el|l2’] + 2lle]l] (Lemma 3¢ for 2/, 2")

< gllz =2zl + 5llell.

QED

Theorem 4 [Li-minimization Algorithm]: A guarantee similar to Theorem 3 (using RIP
matrix) can be obtained by setting b > ||e|| and solving the convex program

& = min{||z]]1 : [|Az]|2 < b}.

We will not see the proof.



