
Sublinear Time and Space Algorithms 2020B – Lecture 9

Connectivity in dynamic graphs and triangle counting*

Robert Krauthgamer

1 Connectivity in Dynamic Graphs

Dynamic graph model: The input stream contains insertions and deletions of edges to G.
Recall that we assume V = [n].

The tool of choice is linear sketching, where decrements are supported by definition.

Motivations:

a) updates to the graph like removing hyperlinks or un-friending

b) the graph is distributed (each site contains a subset of the edges), and their linear sketches can
be easily combined

Theorem [Ahn, Guha and McGregor, 2012]: There is a streaming algorithm with storage
Õ(n) that determines whp whether the graph is connected (In fact, it computes a spanning forest
and can determine which pairs of vertices are connected.)

Idea: To grow (increase) connected components, we need to find an outgoing edge from each current
component. Using ℓ0-sampling and especially its linear-sketch form, we can pick an outgoing edge
from an arbitrary set.

Notation: Let N =
(
n
2

)
, and for each vertex v define a vector xv ∈ RN that is 0 except at coordinates

xv{v,j} =

{
+1 if (v, j) ∈ E and v < j

−1 if (v, j) ∈ E and v > j

Algorithm AGM:

Update (on a stream/dynamic graph G):

For each vertex v, create a virtual stream for xv ∈ RN and maintain an ℓ0-sampler for this xv

(using the same coins, as these are linear sketches that can be added).

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Repeat the above log n times independently (i.e., log n “levels” of samplers for each v ∈ V).

Output (to determine connectivity):

Initialize a partition Π = {{1}, . . . , {n}} where each vertex is in a separate connected component.

Now repeat for l = 1, . . . , log n:

1. For each connected component Q ∈ Π, sum the samplers (more precisely, their sketches) for all
v ∈ Q from level l, to obtain a sampler for

∑
v∈Q xv. Then activate the sampler to pick a coordinate

from [N] (which we will see is a random outgoing from Q).

2. Use the |Q| sampled edges to merge connected components and update Π

Output “connected” if all the vertices are merged into one connected component.

Analysis: To simplify the analysis, we assume henceforth that G is connected (see below), and
that the samplers are perfect (i.e. ignore their polynomially-small error probability).

Exer: Extend the analysis to the case that G is not connected, to determine whether s, t ∈ V
given at query time, are connected.

Claim 1: If the number of connected components at the beginning of an iteration is k > 1 (and
the samplers succeed in producing outgoing edges), then their number at the end of the iteration
is at most k/2.

Exer: prove this claim.

Claim 2: Fix a set Q ⊂ V . Then
∑

v∈Q xv is nonzero only in coordinates {i, j} corresponding to
an edge outgoing from Q, i.e., |Q ∩ {i, j}| = 1.

Proof: Was seen in class.

Storage: The main storage is for ℓ0-samplers for every vertex. Each one requires O(log3 n)
bits, and we need fresh randomness in each of the O(log n) iterations (levels), to avoid potential
dependencies. Thus the total storage is O(n log4 n) bits.

2 Triangle Counting

Goal: Report the number of triangles, denoted by T , in a graph G given as a stream of m edges
on vertex set V = [n].

Motivation: The relative frequency of how often 2 friends of a person know each other is defined as

F =
3T∑

v∈V
(
deg(v)

2

) .
We can compute

∑
v∈V

(
deg(v)

2

)
exactly in O(n) space, by maintaining the degree of every vertex,

and we can also approximate it using polylog(n) space using algorithms that estimate ℓ2-norm.

Distinguishing T = 0 from T = 1 is known to require Ω(m) space [Braverman, Ostrovsky, and
Vilenchik, 2013].

2

We will henceforth assume a known lower bound 0 < t ≤ T .

First Approach [Bar-Yossef, Kumar and Sivakumar, 2002]:

Idea: use frequency moments.

Define vector x ∈ R(n3), where every coordinate xS counts the number of edges internal to a subset
S ⊂ V of 3 vertices.

Then T = #{S ⊂ V, |S| = 3 : xS = 3}.

Lemma: Let Fp = ∥x∥pp be the frequency moments for p = 0, 1, 2. Then

T = F0 − 1.5F1 + 0.5F2.

Proof: As seen in class it suffices to verify that each coordinate xS contributes the same amount
to both sides.

Why such formula exists?: We are looking for a polynomial f(xS) : R → R with specific values
f(3) = 1 and f(2) = f(1) = f(0) = 0. We can do polynomial interpolation. It would generally
require degree 3, but F0 = 1{xS>0} gives an extra degree of freedom.

Algorithm 1:

Update: Maintain the frequency moments p = 0, 1, 2 of vector x ∈ R(
n
3). Initially x = 0, and when

an edge (u, v) arrives, increment xS for every S of the form {u, v, w}.

Output: Compute moment estimates F̂p and report T̂ = F̂0 − 1.5F̂1 + 0.5F̂2.

Correctness: As was seen in class, suppose we compute frequency estimates F̂P ∈ (1 ± γ)Fp.
Then if we set suitable γ = O(εt

mn), we would get additive error εt ≤ εT .

Storage: The storage requirement is O(γ−2 log n) = O(ε−2(mn
t)2 log n) words.

3

