1 Connectivity in Dynamic Graphs

Dynamic graph model: The input stream contains insertions and deletions of edges to G. Recall that we assume $V = [n]$.

The tool of choice is linear sketching, where decrements are supported by definition.

Motivations:

a) updates to the graph like removing hyperlinks or un-friending

b) the graph is distributed (each site contains a subset of the edges), and their linear sketches can be easily combined

Theorem [Ahn, Guha and McGregor, 2012]: There is a streaming algorithm with storage $\tilde{O}(n)$ that determines whp whether the graph is connected (In fact, it computes a spanning forest and can determine which pairs of vertices are connected.)

Idea: To grow (increase) connected components, we need to find an outgoing edge from each current component. Using ℓ_0-sampling and especially its linear-sketch form, we can pick an outgoing edge from an arbitrary set.

Notation: Let $N = \binom{n}{2}$, and for each vertex v define a vector $x^v \in \mathbb{R}^N$ that is 0 except at coordinates

$$x^v_{\{v,j\}} = \begin{cases} +1 & \text{if } (v,j) \in E \text{ and } v < j \\ -1 & \text{if } (v,j) \in E \text{ and } v > j \end{cases}$$

Algorithm AGM:

Update (on a stream/dynamic graph G):

For each vertex v, create a virtual stream for $x^v \in \mathbb{R}^N$ and maintain an ℓ_0-sampler for this x^v (using the same coins, as these are linear sketches that can be added).

These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.
Repeat the above log \(n \) times independently (i.e., log \(n \) “levels” of samplers for each \(v \in V \)).

Output (to determine connectivity):

Initialize a partition \(\Pi = \{\{1\}, \ldots, \{n\}\} \) where each vertex is in a separate connected component.

Now repeat for \(l = 1, \ldots, \log n \):

1. For each connected component \(Q \in \Pi \), sum the samplers (more precisely, their sketches) for all \(v \in Q \) from level \(l \), to obtain a sampler for \(\sum_{v \in Q} x^v \). Then activate the sampler to pick a coordinate from \([N]\) (which we will see is a random outgoing from \(Q \)).

2. Use the \(|Q|\) sampled edges to merge connected components and update \(\Pi \)

Output “connected” if all the vertices are merged into one connected component.

Analysis: To simplify the analysis, we assume henceforth that \(G \) is connected (see below), and that the samplers are perfect (i.e. ignore their polynomially-small error probability).

Exer: Extend the analysis to the case that \(G \) is not connected, to determine whether \(s, t \in V \) given at query time, are connected.

Claim 1: If the number of connected components at the beginning of an iteration is \(k > 1 \) (and the samplers succeed in producing outgoing edges), then their number at the end of the iteration is at most \(k/2 \).

Exer: prove this claim.

Claim 2: Fix a set \(Q \subset V \). Then \(\sum_{v \in Q} x^v \) is nonzero only in coordinates \(\{i, j\} \) corresponding to an edge outgoing from \(Q \), i.e., \(|Q \cap \{i, j\}| = 1\).

Proof: Was seen in class.

Storage: The main storage is for \(\ell_0 \)-samplers for every vertex. Each one requires \(O(\log^3 n) \) bits, and we need fresh randomness in each of the \(O(\log n) \) iterations (levels), to avoid potential dependencies. Thus the total storage is \(O(n \log^4 n) \) bits.

2 Triangle Counting

Goal: Report the number of triangles, denoted by \(T \), in a graph \(G \) given as a stream of \(m \) edges on vertex set \(V = [n] \).

Motivation: The relative frequency of how often 2 friends of a person know each other is defined as

\[
F = \frac{3T}{\sum_{v \in V} \binom{\deg(v)}{2}}.
\]

We can compute \(\sum_{v \in V} \binom{\deg(v)}{2} \) exactly in \(O(n) \) space, by maintaining the degree of every vertex, and we can also approximate it using polylog\((n) \) space using algorithms that estimate \(\ell_2 \)-norm.

Distinguishing \(T = 0 \) from \(T = 1 \) is known to require \(\Omega(m) \) space [Braverman, Ostrovsky, and Vilenchik, 2013].
We will henceforth assume a known lower bound $0 < t \leq T$.

First Approach [Bar-Yossef, Kumar and Sivakumar, 2002]:

Idea: use frequency moments.

Define vector $x \in \mathbb{R}^{\binom{n}{3}}$, where every coordinate x_S counts the number of edges internal to a subset $S \subset V$ of 3 vertices.

Then $T = \# \{ S \subset V, |S| = 3 : x_S = 3 \}$.

Lemma: Let $F_p = \|x\|_p^p$ be the frequency moments for $p = 0, 1, 2$. Then

$$T = F_0 - 1.5F_1 + 0.5F_2.$$

Proof: As seen in class it suffices to verify that each coordinate x_S contributes the same amount to both sides.

Why such formula exists?: We are looking for a polynomial $f(x_S) : \mathbb{R} \to \mathbb{R}$ with specific values $f(3) = 1$ and $f(2) = f(1) = f(0) = 0$. We can do polynomial interpolation. It would generally require degree 3, but $F_0 = 1_{\{x_S > 0\}}$ gives an extra degree of freedom.

Algorithm 1:

Update: Maintain the frequency moments $p = 0, 1, 2$ of vector $x \in \mathbb{R}^{\binom{n}{3}}$. Initially $x = 0$, and when an edge (u, v) arrives, increment x_S for every S of the form $\{u, v, w\}$.

Output: Compute moment estimates \hat{F}_p and report $\hat{T} = \hat{F}_0 - 1.5\hat{F}_1 + 0.5\hat{F}_2$.

Correctness: As was seen in class, suppose we compute frequency estimates $\hat{F}_p \in (1 \pm \gamma)F_p$. Then if we set suitable $\gamma = O\left(\frac{\epsilon t}{mn}\right)$, we would get additive error $\epsilon t \leq \epsilon T$.

Storage: The storage requirement is $O(\gamma^{-2} \log n) = O(\epsilon^{-2}(\frac{mn}{t}) \log n)$ words.