Sublinear Time and Space Algorithms 2020B – Problem Set 1

Robert Krauthgamer

Due: May 11, 2020

General instructions: Please keep your answers short and easy to read. You can use results, calculations or notation seen in class without repeating them, unless asked explicitly to redo them.

1. Design a streaming algorithm that at any point \(m \) (not known in advance) receives a query \(S \subset [n] \) and outputs an estimate what fraction of items in the stream belong to \(S \) within additive error \(\epsilon \). Note that \(S \) is given only at query time (not in advance).

 Hint: Maintain \(O(1/\epsilon^2) \) random samples and use them to estimate the fraction in \(S \).

2. Suppose we are guaranteed that some item in the stream \(\sigma_1, \ldots, \sigma_m \) appears more than half the time, i.e., there exists (unknown) \(i \in [n] \) with frequency \(x_i > m/2 \). Design a streaming algorithm with space complexity \(O(\log n) \) bits that finds this item \(i \). Next, extend your algorithm to output also a \((1 + \epsilon) \)-approximation to its frequency \(x_i \). Make sure to clearly state the space complexity of your algorithms.

 Hint (for the basic version): Store only two items.