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Lecture 10

The Algorithmic Lovasz Local Lemma and Cuckoo Hashing *

Moni Naor

1 Recap

we reviewed the non-constructive version of the local lemma and its application. We mentioned an
approach for making it constructive by Jozsef Beck (see the Alon-Spencer book). We then covered
the Moser-Tardos algorithm and its proof [6].

2 Hash Tables

Hash tables is very well studied subject in computer science and one of the more useful practices.
Knuth’s “The Art of Computer Programming” Volume 3 devotes a lot of space to the various
possibilities and the origin of the idea is attributed to a 1956 paper by Arnold Dumey [5]. A major
issue is how to resolve collisions and popular suggestions are chaining and Open addressing (or
closed hashing). For the latter we need to specify a probing scheme and one of the more popular
ones is linear probing which takes advantage of the locality properties of computer memory (in the
various levels of hierarchy).

The ‘modern’ era of investigating hashing can be seen in the work of Carter and Wegman [2] who
suggested the idea of thinking of the input as being worst case and the performance is investigated
when the hash function is chosen at random from a predefined family (rather than assuming a truly
random function).

The simplest way to obtain dictionaries with expected O(1) per operation is to use chained hashing
with a table of size O(n). Here, it is enough to choose the hash function from a d-universal family,
for 6 which is O(1/n). The expected length of a chain is now O(1) and the length of the chain is
what determines the cost of an operation. Note however that there will be long chains. Universality
on its own only suffices to guarantee that the expected length of the longest chain is O(\ﬂn)) The
upper bound follows from considering all potential collisions: there are (’2‘) of them. Each collision
occurs with probability O(1/n), so the expected number of collisions is O(n). On the other hand,
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in a chain of length ¢ there are (é) collisions. Therefore the expected length of the longest chain

cannot be larger than O(y/(n)). For the lower bound see Alon et al. [1].

What happens if the hash function is truly random? Then this is the “ball and bins” scenario which
we will talk in the next lecture and here the heaviest bin/chain is likely to contain ©(logn/loglogn)
elements.

Universal hashing on its own also just guarantees ezpected O(1) performance and not, say, high
probability (1 —1/poly(n)) amortized O(1) performance. There are several ways to obtain this sort
of result.

We explored ” Cuckoo Hashing”, suggested by Pagh and Rodler [3], a method that uses two hash
functions h; and hy and where each element x in the set resides either in location hi(z) or location
ho(x). This means that lookup requires just two accesses to the memory. Insertion may be more
involved and requires relocating elements.

Question: when is cuckoo hashing successful? IL.e. for a set .S and functions hy nad ha, when does
the insertion algorithm succeed in inserting all the elements?

A lecture be Eric Demaine on hashing is available and recommended [4].
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