
Randomized Algorithms 2021A – Lecture 1 (second part)

Random Walks on Graphs*

Robert Krauthgamer

1 Random Walks on Graphs

Let G = (V,E) be an undirected graph on n vertices. Throughout, we shall assume that G is
connected.

A random walk on G is the following random process that proceeds in discrete steps. Start at some
initial vertex v0 ∈ V , then at each time step, pick a random neighbor (same as random incident
edge) of the current vertex and move to that vertex.

Formally, for each vertex v ∈ V let N(v) ⊂ V be the set of its neighbors, and let deg(v) = |N(v)|
be its degree. Now define random variables X0, X1, . . . where X0 = v0, and for each t ≥ 0, set Xt+1

to each w ∈ N(Xt) with probability 1/deg(Xt).

Remark: Given Xt, we know the distribution of future steps (Xt+1, Xt+2, . . .) and it will not change
if we are also given any additional information about earlier steps (Xt−1, Xt−2, . . .). This is called
a Markovian process.

Potential usage: We will see how random walks can be used to design various algorithms. For
example, to check if u, v ∈ V are connected, we could start a random walk at u and see if it
reaches v within a reasonable amount of time. We need to analyze the probability to reach v, but
implementing the walk surely requires very little storage!

2 Hitting Time

The hitting time from vertex u to vertex v, denoted Huv, is the expected number of steps for a
random walk that starts at u until it hits v. Formally, define the random variable T = min{t ≥ 0 :
Xt = v} and let Huv = E[T ].

Notice that Huv depends on G, but it is not a random variable (despite capital letter notation).
Notice also that it is not symmetric, i.e., in some cases Huv ̸= Hvu.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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Example: Consider an n-clique, i.e., G = Kn. Then Huv = n − 1 for all u ̸= v, because T is a
geometric random variables with parameter p = 1/(n − 1). And by definition Huu = 0 (for every
G).

Lemma 1: We have the directed triangle inequality

∀u, v, w ∈ V, Huw ≤ Huv +Hvw.

Proof: Was seen in class, using one random walk that starts at u.

Exer 1: Let G = Kn1,n2 be a complete bipartite graph with n1 and n2 vertices. Analyze Huv for
all possible u, v ∈ V .

Exer 2: Let G be a path on n vertices. Give an explicit formula for Huv for all possible u, v ∈ V ,
and show in particular that Huv = O(n2).

Hint: Denote the vertices 1, 2, . . . , n, and write linear equations Huv = 1+ 1
2Hu−1,v +

1
2Hu+1,v and

solve these
(
n
2

)
equations over

(
n
2

)
variables. A simpler version is to consider huv only for u < v

(the other case follows by symmetry), express each Huv = Hu,u+1 +Hu+1,u+2 + · · · +Hv−1,v, and
now the earlier equations give us n− 1 equations using n− 1 variables.

We will soon see that the hitting time is always (for every connected G) bounded by a polynomial
in n. The next exercise shows this is not true for directed graphs.

Exer 3: Show that for every graph G and every start vertex u ∈ V ,

max
v∈V

Huv ≥ 1
2n.

Can you improve the leading constant 1
2? Or alternatively prove that this bound is tight, by

showing graphs G and v ∈ V (for every n) for which maxv∈V Huv ≤ 1
2n? We saw that for a clique

this bound is n− 1.

Exer 4: Consider the analogous definitions of random walks and hitting time for directed graphs,
and show (that for every n) there exists a directed graph on n vertices and two vertices u, v such
that Huv = 2Ω(n).

3 Commute Time

The commute time between vertices u and v is defined as Cuv = Huv+Hvu = Cvu. It can be viewed
as the expected time for a random walk that starts at u, to return to u after at least one visit to
v. It is sometimes viewed as a symmetric version of the hitting time.

Lemma 2: We have the triangle inequality

∀u, v, w ∈ V, Cuw ≤ Cuv + Cvw.

The proof follows immediately from Lemma 1.

Theorem 3: For all (u, v) ∈ E, we have Cuv ≤ 2|E|.
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We will prove it in the next class, for now let’s see some consequences.

Corollary 4: For all u, v ∈ V , we have Cuv ≤ 2(n− 1)|E| < n3 (recall G is connected).

Proof: Follows from Lemma 2 (the triangle inequality) along a shortest path between u and v,
and then applying Theorem 3.

4 Undirected Connectivity

Undirected st-connectivity (USTCON): In this problem, the input is a undirected graph G
and two vertices s, t and the goal is to determine if s, t are the in the same connected component
(equivalently, there is a path between them).

Theorem 5 [Aleliunas, Karp, Lipton, Lovasz, and Rackoff, 1979]: USTCON ∈ RL, i.e.,
USTCON can be solved by a randomized algorithm (Turing machine) that uses O(log n) bits of
space and has one-sided error.

We did not see the proof, only briefly discussed it.

Remark: It was a big open problem to solve USTCON in deterministic logarithmic space, and
Reingold proved it in 2005.

Exer 5: Show similarly how to decide whether all of G is connected (i.e., G has only one connected
component) in randomized log-space.
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