
Randomized Algorithms 2021A – Lecture 10 (second part)

Regression via OSE, Importance Sampling∗

Robert Krauthgamer

1 Least Squares Regression

Problem definition: In Least Squares Regression, the input is a matrix A ∈ Rn×d and a vector
b ∈ Rn, and the goal is to find argmin{‖Ax∗ − b‖ : x∗ ∈ Rd}.

Informally, when solving a system Ax∗ = b that is over-constrained (n � d), we do not expect to
find an exact solution, and we want to minimize the sum of squared errors

∑
i(Aix

∗ − bi)2.

We shall consider (1 + ε)-approximation, i.e., finding x′ ∈ Rd such that

‖Ax′ − b‖ ≤ (1 + ε) min
x∗∈Rd

‖Ax∗ − b‖. (1)

Theorem: Let S ∈ Rs×n be an (ε, δ, d + 1)-OSE matrix. Then for every regression instance
A ∈ Rn×d and b ∈ Rn, with high probability, an optimal solution x′ (or even (1+ε)-approximation)
to the regression instance 〈SA, Sb〉 is a (1 + O(ε))-approximation to the instance 〈A, b〉, i.e., such
x′ satisfies (1).

This theorem essentially reduces a regression problem with n constraints to regression with s
constraints, but we should take into account also the time to compute SA.

Proof: As explained in class, it follows from applying the OSE guarantee to the linear subspace
spanned by the columns of A and by b (total of d+ 1 vectors), and then

(1− ε)‖Ax′ − b‖ ≤ ‖SAx′ − Sb‖ = min
x∈Rd
‖SAx− Sb‖ ≤ (1 + ε) min

x∗∈Rd
‖Ax∗ − b‖.

2 Importance sampling

It’s a tool to reduce variance when sampling. The idea is to sample, instead of uniformly, in a
“focused” manner that roughly imitates the contributions, and then “factor out” the bias in this
sample.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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Setup: We want to estimate z =
∑

i∈[s] zi without reading all the zi values. The main concern
is that the zi are unbounded, and thus most of the contribution might come from a few unknown
elements, but we have a “good” lower bound on each element, intuitively pi ≈ zi

z .

Theorem 1 [Importance Sampling]: Let z =
∑

i∈[s] zi, and λ ≥ 1. Let Ẑ be an estimator

obtained by sampling a single index î ∈ [s] according to distribution (p1, . . . , pn) where
∑

i∈[s] pi = 1

and each pi ≥ zi
λz , and setting Ẑ = zî/pî. Then

E[Ẑ] = z and σ(Ẑ) ≤
√
λE[Ẑ].

Proof: was seen in class.

Exer: Show that averaging O(λ/ε2) independent repetitions of the above approximates z within
factor 1± ε with success probability at least 3/4.

Hint: use Chebyshev’s inequality.

Exer: Prove a variant of Theorem 1, where each zi is read independently with probability
qi ≥ min{1, t ziz }, in which case it contributes zi

qi
(and otherwise contributes 0). Show that with

high probability, the number of values read is O(
∑

i qi) and the estimate is (1±O(1/
√
t))z.

Hint: The difference is here we read each zi independently, while in Theorem 1 we see in each step
exactly one value (the value of zi with probability pi).

Exer: Let z =
∑

i∈[s] zi and suppose that for each zi we already have an estimate within factor
b ≥ 1, i.e., some zi ≤ yi ≤ bzi. How many zi values we need to sample/read into order to estimate
z within factor 1± ε (with success probability at least 3/4)?

Learn the next section for next class

3 Counting DNF solutions via Importance Sampling

Problem definition: The input is a DNF formula f with m clauses C1, . . . , Cm over n variables
x1, . . . , xn, i.e., f = ∨mi=1Ci where each Ci is the conjunction of literals like x2 ∧ x̄5 ∧ xn.

The goal is the estimate the number of Boolean assignments that satisfy f .

Theorem 2 [Karp and Luby, 1983]: Let S ⊂ {0, 1}n be the set of satisfying assignments
for f . There is an algorithm that estimates |S| within factor 1 + ε in time that is polynomial in
m+ n+ 1/ε.

3.1 A first attempt

Random assignments: Sample t random assignments, and let Z count how many of them are
satisfying. We can estimate |S| by Z/t · 2n.
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Formally, we can write Z =
∑t

i=1 Zi where each Zi is an indicator for the event that the i-th sample
satisfies f . Then Z = 1

t

∑
i(Zi · 2n). We can see it is an unbiased estimator:

E[Z · 2n/t] =

t∑
i=1

E[Zi] · 2n/t = |S|.

Observe that Var(Z) = 1
t2
∑

i Var(Zi · 2n) = 1
t Var(Z1 · 2n). But even though we can use Chernoff-

Hoeffding bounds since Zi are independent, it’s not very effective because the variance could be
exponentially large.

Exer: Show that the standard deviation of Z (for t = 1) could be exponentially large relative to
the expectation.

3.2 A second attempt

Idea: We can bias the probability towards the assignments that are satisfying, but then we will
need to “correct” the bias.

Let Si ∈ {0, 1}n be all the assignments that satisfy the i-th clause, hence |Si| = 2n−len(Ci).

Remark: The naive approach does not use the DNF structure at all. We can use this structure by
writing S = ∪iSi, which can be expanded using the inclusion-exclusion formula, but it would be
too complicated to estimate efficiently.

Algorithm E:

1. Choose a clause Ci with probability proportional to |Si| (namely, |Si|/M where M =
∑

i |Si|).

2. Choose at random an assignment a ∈ Si.

3. Compute the number ya of clauses satisfied by a.

4. Output Z = M
ya

.

Exer: Prove the following two claims.

Claim 2a: E[Z] = |S|.

Claim 2b: σ(Z) ≤ m · E[Z].

Exer: Show that |S| can be approximated within factor 1 ± ε with success probability at least
3/4, by averaging O(m2/ε2) independent repetitions of the above.

Exer: Show how to improve the success probability to 1−δ by increasing the number of repetitions
by an O(log 1

δ ) factor.

Exer: Explain this DNF counting algorithm using the importance sampling theorem.

Hint: Assignments a that satisfy no clause are chosen with zero probability.
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