Randomized Algorithms 2021A — Lecture 10 (second part)
Regression via OSE, Importance Sampling*

Robert Krauthgamer

1 Least Squares Regression

Problem definition: In Least Squares Regression, the input is a matrix A € R™*¢ and a vector
b € R”, and the goal is to find argmin{||Az* — b|| : z* € R9}.

Informally, when solving a system Az* = b that is over-constrained (n > d), we do not expect to
find an exact solution, and we want to minimize the sum of squared errors), (A;z* — b)2.

We shall consider (1 + ¢)-approximation, i.e., finding 2/ € R? such that

|42’ = b)) < (1+¢) min || 42" = b]. (1)

Theorem: Let S € R**" be an (g,0,d + 1)-OSE matrix. Then for every regression instance
A € R4 and b € R™, with high probability, an optimal solution 2’ (or even (1 + ¢)-approximation)
to the regression instance (SA, Sb) is a (1 4+ O(e))-approximation to the instance (A,b), i.e., such
o' satisfies ().

This theorem essentially reduces a regression problem with n constraints to regression with s
constraints, but we should take into account also the time to compute SA.

Proof: As explained in class, it follows from applying the OSE guarantee to the linear subspace
spanned by the columns of A and by b (total of d + 1 vectors), and then

(1 —¢)||Az" —b|| < ||SAz’ — Sb|| = min | SAzx — Sb|| < (1 +¢€) min ||Az* — b|.
zeRY x*€Rd

2 Importance sampling

It’s a tool to reduce variance when sampling. The idea is to sample, instead of uniformly, in a
“focused” manner that roughly imitates the contributions, and then “factor out” the bias in this
sample.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

Setup: We want to estimate z = Zie[s} z; without reading all the z; values. The main concern
is that the z; are unbounded, and thus most of the contribution might come from a few unknown
elements, but we have a “good” lower bound on each element, intuitively p; ~ 2.

Theorem 1 [Importance Sampling|: Let z = Zie[s} zi, and A > 1. Let Z be an estimator
obtained by sampling a single index ¢ € [s] according to distribution (p1, ..., p,) where Zie[gpi=1
and each p; > {, and setting Z = z;/p;. Then

E[Z]=z and o(Z)<VAE[Z].
Proof: was seen in class.

Exer: Show that averaging O(\/e?) independent repetitions of the above approximates z within
factor 1+ ¢ with success probability at least 3/4.

Hint: use Chebyshev’s inequality.

Exer: Prove a variant of Theorem 1, where each z; is read independently with probability
¢i = min{1,#%}, in which case it contributes > (and otherwise contributes 0). Show that with

high probability, the number of values read is O(3_; ¢;) and the estimate is (1 £ O(1/v/1))z.

Hint: The difference is here we read each z; independently, while in Theorem 1 we see in each step
exactly one value (the value of z; with probability p;).

Exer: Let z = Zz‘e[s} z; and suppose that for each z; we already have an estimate within factor
b>1,ie., some z <y; <bz;. How many z; values we need to sample/read into order to estimate
z within factor 1 £ ¢ (with success probability at least 3/4)?

Learn the next section for next class
3 Counting DNF solutions via Importance Sampling

Problem definition: The input is a DNF formula f with m clauses C, ..., C,, over n variables
T1,...,Tp, 1., f = VI C; where each C; is the conjunction of literals like o A Z5 A .

The goal is the estimate the number of Boolean assignments that satisfy f.

Theorem 2 [Karp and Luby, 1983]: Let S C {0,1}" be the set of satisfying assignments
for f. There is an algorithm that estimates |S| within factor 1 + ¢ in time that is polynomial in
m+n+1/e.

3.1 A first attempt

Random assignments: Sample ¢t random assignments, and let Z count how many of them are
satisfying. We can estimate |S| by Z/t - 2".

Formally, we can write Z = 25:1 Z; where each Z; is an indicator for the event that the ¢-th sample
satisfies f. Then Z = 1 3°,(Z; - 2"). We can see it is an unbiased estimator:

E[Z - 2" /1] = iE[ZZ-] 2"t = |8,

i=1

Observe that Var(Z) = t% >, Var(Z; - 2™) = L Var(Z; - 2). But even though we can use Chernoff-

—t
Hoeffding bounds since Z; are independent, it’s not very effective because the variance could be
exponentially large.

Exer: Show that the standard deviation of Z (for ¢ = 1) could be exponentially large relative to
the expectation.

3.2 A second attempt

Idea: We can bias the probability towards the assignments that are satisfying, but then we will
need to “correct” the bias.

Let S; € {0,1}" be all the assignments that satisfy the i-th clause, hence |S;| = 2n~1en(Ci),

Remark: The naive approach does not use the DNF structure at all. We can use this structure by
writing S = U;5;, which can be expanded using the inclusion-exclusion formula, but it would be
too complicated to estimate efficiently.

Algorithm E:

1. Choose a clause C; with probability proportional to |S;| (namely, |S;|/M where M =" |S;|).
2. Choose at random an assignment a € S;.

3. Compute the number y, of clauses satisfied by a.

4. Output Z = yMa

Exer: Prove the following two claims.

Claim 2a: E[Z] =|S|.

Claim 2b: o(Z) <m-E[Z].

Exer: Show that |S| can be approximated within factor 1 + e with success probability at least
3/4, by averaging O(m?/e?) independent repetitions of the above.

Exer: Show how to improve the success probability to 1—4 by increasing the number of repetitions
by an O(log %) factor.

Exer: Explain this DNF counting algorithm using the importance sampling theorem.

Hint: Assignments a that satisfy no clause are chosen with zero probability.

	Least Squares Regression
	Importance sampling
	Counting DNF solutions via Importance Sampling
	A first attempt
	A second attempt

