
Randomized Algorithms 2021A – Lecture 13

Spectral Sparsification (cont’d)∗

Robert Krauthgamer

1 Matrix Chernoff

Löwner ordering: We write A < 0 to denote that A is PSD. We extend it to a partial ordering
between symmetric matrices, defining A < B if A−B < 0.

Observe that the spectral sparsification condition (2) from last time can be written as

(1− ε)LG 4 LG′ 4 (1 + ε)LG.

Matrix Chernoff bound [Tropp, 2012]: Let X1, . . . , Xk be independent random n × n sym-
metric matrices. Suppose that

∀i ∈ [k], 0 4 Xi 4 I and µ · I 4
k∑
i=1

E[Xi] 4 µ · I.

Then for all ε ∈ [0, 1],

Pr
[
λmax(

∑k
i=1Xi) ≥ (1 + ε)µ

]
≤ n · e−ε2µ/3,

Pr
[
λmin(

∑k
i=1Xi) ≤ (1− ε)µ

]
≤ n · e−ε2µ/2.

2 Spectral Sparsifiers (cont’d)

We now continue to analyze Algorithm SS seen last week.

Proof of Lemma 5: Was seen in class using the cyclic property of trace.

There is also a combinatorial explanation for this equality: we Reff(e) can be shown to be exactly
the probability that edge e appears in a random spanning tree of G, when the probability to sample

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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any specific tree is proportional to the product of its edge weights. The expected number of edges
in such a random tree is just the sum of these edge probabilities, and clearly it is also n− 1.

Connection to importance sampling: Lemma 7 below shows that wuv Reff(u, v) for an edge
uv ∈ E is precisely the maximum possible (over all x) relative contribution of this edge to xᵀLGx =∑

ij∈E wij(xi − xj)2. Thus, the sampling probability pe of an edge is proportional to its worst-
case relative contribution to xᵀLGx. (Why proportionally and not exactly? because the values
wuv Reff(u, v) could sum up to more than 1.)

We could thus apply the importance sampling theorem with λ = n − 1 for any specific x ∈ RV .
However, this would not prove Theorem 3, because the importance sampling theorem provides only
weak concentration, that is not strong enough to take a union bound over all x ∈ RV .

Lemma 7:

∀uv ∈ E, Reff(u, v) = max
x∈RV

(xu − xv)2

xᵀLGx
.

Observe that we can think of x as a vector of potentials φ ∈ RV , and restate the lemma as an
analogue of Thomson’s principle (minimizing energy, but now for potentials):

∀uv ∈ E, Reff(u, v) =
[

min
φu−φv=1

φᵀLGφ
]−1

.

Proof hint: Consider a minimizer φ. First show that every φi for i 6= u, v is the weighted average
of φj over its neighbors j ∈ N(i). Then use this minimizer φ to define an electrical flow f , and use
this flow to express each side, Reff(u, v) and φᵀLGφ.

Proof of Theorem 3: Was seen in class. The basic idea is to use the Matrix Chernoff bound,
but since it is “built” for scenarios where the expectation is µI, we need to rotate/change the basis,

achieved by multiplying by L
−1/2
G . More precisely, we define

yuv := L
−1/2
G zuv,

and now claim (as an exercise) that

Exer: Show that

(1− ε)LG 4 LG′ =
∑
e∈E

w′eZe 4 (1 + ε)LG (1)

if and only if (modulo the pseudo-inverse/kernel issue)

(1− ε)I 4 L
−1/2
G (

∑
e∈E

w′ezez
ᵀ
e )L

−1/2
G =

∑
e∈E

w′eyey
ᵀ
e 4 (1 + ε)I,

where we define

yuv := L
−1/2
G zuv.

Hint: Multiply from left and right by L
−1/2
G .
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Denote the random edge chosen at iteration i ∈ [k] by ei, and then the random matrix (from above)
that we need analyze can be written as

M ′ =
∑
e∈E

w′eyey
ᵀ
e =

k∑
i=1

n− 1

k · Reff(ei)
yeiy

ᵀ
ei . (2)

To complete the proof of Theorem 3, apply the matrix Chernoff bound to k
n−1M

′ =
∑k

i=1
1

Reff(ei)
yeiy

ᵀ
ei ,

(after checking the conditions), and conclude the required bounds on the eigenvalues of M ′.

Exer: Explain how to modify the analysis when the sampling loop in steps 3-5 of Algorithm
SS is changed to the following: for each edge e ∈ E, repeat k′ = O(ε−2 log n) times, where each
repetition increases the weight w′e (as in step 5) independently with probability pe.

Exer: Show how to modify the algorithm and its analysis to use estimates p̃e instead of pe (e.g.,
maybe these estimates can be computed very quickly), under the assumption that every p̃e ≥ pe,
and that

∑
e∈E p̃e ≤ C.

Hint: you may use the preceding exercise.
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