
Randomized Algorithms 2021A – Lecture 4 (second part)

Effective Resistance*

Robert Krauthgamer

1 Reminder: Graphs as Electrical Networks

Recall that in an electrical network, we view a graph as a collection of (undirected) resistors. When
we impose a potential difference ϕuv between vertices u, v, it induces an electrical flow (current),
which is (i) a feasible flow in the sense of flow preservation (KCL), and (ii) creates potentials
(voltages) on all other vertices (KVL), and (iii) the flow along each edge is inverse proportional to
the potential difference, and directed accordingly (Ohm’s Law).

Recall our notation ϕuv = ϕu − ϕv and f is defined on “directed” edges with fuv = −fvu, even
though all the edges uv ∈ E are undirected.

Observation: The amount of flow shipped from u to v scales linearly with ϕuv.

Observation: In fact, we can also add two potential-difference functions, and the flows will add
up (and vice versa).

2 Effective Resistance

Effective Resistance: The effective resistance between vertices u, v in an electrical network,
denoted Reff(u, v), is the potential difference ϕuv we need to create between u and v to induce
exactly one unit of current flowing from u to v.

The name comes from the viewpoint that the entire network can be “simulated” by a single resistor
between u, v, with resistance ruv = Reff(u, v), then the current between u, v would be the same.
Indeed, if we impose the same potential difference ϕuv = Reff(u, v) on this single resistor, thus the
amount of flow will be fuv = ϕuv/ruv = 1, exactly as in G.

Notice that Reff(u, v) is symmetric (by the linearity observations).

We can now show that the effective resistance is essentially the same as the commute time.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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Theorem 2 [Chandra, Raghavan, Ruzzo, Smolensky and Tiwari, 1989]: Let G = (V,E)
be an undirected graph. Then

∀u, v ∈ V, Cuv = 2|E|Reff(u, v).

Proof idea: These quantities satisfy the same set of linear equations. For the actual proof it is more
convenient to deal with the hitting time.

Lemma 3: Let Nz be the electrical network corresponding to G, when we inject deg(u) units of
flow at every vertex u ∈ V , and extract

∑
u∈V deg(u) = 2|E| units of flow at z. Then the potential

differences ϕNz satisfy

∀u ∈ V, ϕNz
uz = Huz.

Proofs of Lemma 3 and Theorem 2: Was seen in class.

Theorem 4 (Thomson’s Principle revisited): Let f be a flow that ships one unit from u to
v with minimum energy. Then

Reff(u, v) = E(f).

It provides an alternative definition for effective resistance.

Proof: We already saw the minimizer f is just a unit of electrical flow from u to v. By convention,
let fxy = 0 whenever {x, y} /∈ E, then

E(f) =
∑
xy∈E

f2
xyrxy

= 1
2

∑
x

∑
y∈N(x)

f2
xyrxy

= 1
2

∑
x

∑
y

fxy(ϕx − ϕy)

=
∑
x

∑
y

ϕxfxy (f is anti-symmetric)

=
∑
x

ϕx

∑
y

fxy

and observe that
∑

y fxy = 0 is zero for all x /∈ {u, v}, hence the above is just ϕu(+1)fuy+ϕv(−1) =
ϕu − ϕv.

QED

Theorem 5 (Rayleigh’s Monotonicity Law): If {r(e)} and {r′(e)} are sets of resistances on
the edges of the same graph G, such that r(e) ≤ r′(e) for all e ∈ E,

∀u, v ∈ V, R
(r)
eff (u, v) ≤ R

(r′)
eff (u, v).
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The proof follows directly from Thomson’s Principle above, as the LHS minimizes the energy over
all unit flows, including the flow that attains the RHS.

Corollary 6: For every edge (u, v) ∈ E, we have Reff(u, v) ≤ 1 and thus Cuv ≤ 2|E|.

Exer: Prove this.

Hint: Argue that a non-edge is equivalent to having infinite resistance, thus adding an edge is
equivalent to decreasing its resistance.

This proves Theorem 3 from the first class (claimed earlier without a proof).

Lemma 7 (Bridge Edge): Suppose edge uv ∈ E is a bridge in G (which means that removing
this edge disconnects the graph). Then Reff(u,w) = 1, and thus Cuv = 2|E|.

Exer: Prove this.

Example A: The path: C1n = H1n +Hn1 = 2H1n by symmetry. Similarly to Lemma 7 about
bridges, Reff(1, n) = n − 1, and thus C1n = 2(n − 1)Reff(1, n) = 2(n − 1)2. We conclude that
H1n = (n− 1)2.

Notice this is also the cover time of that path.

Example B: The lollipop: The “lollipop” graph is a path of n/2 edges from u to v, and this
last vertex v is part of a clique with n/2− 1 new vertices. It can be easily seen Huv = (n/2)2 while
Hvu = Θ(n3) and also cov(G) = Θ(n3).

Exer: Prove these bounds (it’s actually easy to get precise formulas).

Hint: Use the effective resistance formula and our earlier theorem about a spanning tree.

Series Composition: Consider two graphs, G1 and G2 on disjoint sets of vertices, and fix in
each graph Gi, i = 1, 2, a pair of vertices si, ti. Let Ḡ be their series composition, defined as the
graph obtained by taking their union and identifying t1 with s2. Then

RḠ
eff(s1, t2) = RG1

eff (s1, t1) +RG2
eff (s2, t2).

Exer: Prove this.

Parallel Composition: Let G1 and G2 be as above. Let Ḡ be now their parallel composition,
defined as the graph obtained by taking their union and identifying s1 with s2 (denote it s̄), and
identifying t1 with t2 (denote it t̄). Then

1

RḠ
eff(s̄, t̄)

=
1

RG1
eff (s1, t1)

+
1

RG2
eff (s2, t2)

.

Exer: Prove this (using Ohm’s Law, or the minimum energy principle).
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