
Randomized Algorithms 2021A – Lecture 7 (second part)

Fast JL (cont’d) and the JL Transform∗

Robert Krauthgamer

1 Fast JL (cont’d)

Recall we wanted to prove the following.

Theorem 7: For every d ≥ 1 and 0 < δ < 1, there is a random matrix L ∈ Rk×d for k =
O(ε−2 log2(d/δ) log(1/δ)), such that

∀v ∈ Rd, Pr
[
‖Lv‖ /∈ (1± ε)‖v‖

]
≤ 1/δ,

and multiplying L with a vector v takes time O(d log d+ k).

Definition: A Hadamard matrix is a matrix H ∈ Rd×d that is orthogonal, i.e., HTH = I and all
its entries are in {±1/

√
d}.

Observe that by definition ‖Hv‖22 = (Hv)T (Hv) = vT v = ‖v‖22.

When d is a power of 2, such a matrix exists, and can be constructed by induction as follows (called
a Walsh-Hadamard matrix).

H2 =

(
1 1
1 −1

)
/
√

2,

Hd =

(
Hd/2 Hd/2

Hd/2 −Hd/2

)
/
√

2.

It is easy to verify it is indeed a Hadamard matrix, i.e., that all entries are ±1/
√
d and HT

d Hd = I.

Lemma 8: Multiplying Hd by a vector can be performed in time O(d log d).

Exer: Prove this lemma, using divide and conquer.

Randomized Hadamard matrix: Let D ∈ Rd×d be a diagonal matrix whose ith diagonal
entry is an independent random sign ri ∈ {±1}. Observe that HD is a random Hadamard matrix,
because its entries are still ±1/

√
d and (HD)T (HD) = DTHTHD = DTD = I.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Lemma 9: Let HD be a random Hadamard matrix as above, and let δ ∈ (0, 1). Then

∀0 6= v ∈ Rd, Pr
D

[
‖HDv‖∞
‖HDv‖2

≥
√

2 ln(4d/δ)

d

]
≤ δ/2.

Exer: Prove Lemma 9 (as discussed in class) using the following concentration bound.

Hoeffding’s (generalized) inequality: Let X1, . . . , Xn be independent random variables where
Xi ∈ [ai, bi]. Then X =

∑
iXi satisfies

∀t ≥ 0, Pr
[
|X − E[X]| ≥ t

]
≤ 2e−2t

2/
∑

i(bi−ai)2 .

Lemma 10: Let S ∈ Rk×d be a super-sparse sampling matrix (i.e., each row has a single nonzero
entry of value

√
d/k in a uniformly random location). Then

∀y ∈ Rd, ‖y‖2 = 1, ‖y‖∞ ≤ λ, Pr
S

[‖Sy‖22 /∈ (1± ε)] ≤ 2e−2ε
2k/(d2λ4).

Exer: Prove this lemma using Hoeffding’s inequality. Would you get the same bound using
Chebyshev’s inequality?

Proof of Theorem 7: Was discussed in class and basically follows from Lemmas 9 and 10.

2 The JL Transform

JL dimension reduction: We saw the JL lemma which reduces the dimension of n points in
Rd. Recall that it uses a random linear map that is drawn obliviously of the data and works with
high probability.

Next, we abstract its performance guarantee (ignoring the implementation), because algorithms
may have different tradeoffs, e.g., between the target dimension and the runtime. We also change
some of the letters (e.g., use Rn instead of Rd).

Here is a good way to think about the next definition. A matrix S ∈ Rs×n is just a linear map
S : Rn → Rs. It will represent a dimension reduction operation, where b unknown points in Rn are
reduced to points in dimension s = s(n, b, ε, δ), and we want this s (the number of rows in S) to
be as small as possible. But instead of a single map S, we consider a probability distribution.

Throughout, all vector norms are `2-norms.

Definition: A random matrix S ∈ Rs×n is called an (ε, δ, b)-Johnson-Lindenstrauss Transform
(JLT) if

∀B ⊂ Rn, |B| ≤ b, Pr
S

[
∀x ∈ B, ‖Sx‖ ∈ (1± ε)‖x‖

]
≥ 1− δ.

We saw in class that a matrix of independent Gaussians (scaled appropriately) attains this guar-
antee, with a suitable s = O(ε−2 log(b/δ)). More precisely, we saw it only for b = 1, but general b
follows easily by applying that result with smaller δ′ = δ/b and taking a union bound over B.

2

Notice that the target dimension s does not depend on the ambient dimension n.

We saw also another construction, with bigger target dimension s, but faster matrix-vector multi-
plication (back then we called it L = SHD).

3 Approximate Matrix Multiplication

Definition: The Frobenius norm of a real matrix A is defined as

‖A‖F := (
∑
i,j

A2
ij)

1/2.

Problem definition: In Approximate Matrix Multiplication (AMM), the input is ε > 0 and two
matrices A,B ∈ Rn×m, and the goal is to compute a matrix C ∈ Rm×m such that

‖A>B − C‖F ≤ ε‖A‖F ‖B‖F .

3

