
Lectures 6 and 7 – March 20 and 27, 2008

1 The Ellipsoid Algorithm

The Ellipsoid algorithm was developed by (formerly) Soviet mathematicians (Shor (1970),
Yudin and Nemirovskii (1975)). Khachian (1979) proved that it provides a polynomial
time algorithm for linear programming. The average behavior of the Ellipsoid algorithm is
too slow, making it not competitive with the simplex algorithm. However, the theoretical
implications of the algorithm are very important, in particular, providing the first proof
that linear programming (and a host of other problems) are in P.

1.1 Some preprocessing

Recall that we have seen that if there is a polynomial time algorithm for finding a feasible
solution to linear programs, then there is a polynomial time algorithm for finding optimal
solutions. Hence we shall only be concerned with finding a feasible solution to an LP.

Recall also that we saw that feasible LPs in standard form always have a basic feasible
solution. Moreover, if the input (entries of A, b) consists of integers bounded by p, then every
bfs can be expressed as rational numbers whose numerators and denominators are bounded
in absolute value by m!pm. (If the inputs are rational numbers, then we can multiply each
entry by the least common multiple of all denominators (or just by their product) to get
an integer input.)

Now modify the LP by adding some slackness to each inequality. That is, for some
small ε, change every inequality

∑
aixi ≤ bj to

∑
aixi ≤ bj + ε. Include in this process all

nonnegativity constraints, and all equalities (by treating them as a pair of inequalities). It
can be showed that when ε is small enough (e.g., ε < (m!pm)−2), then the following holds:

1. If the original LP is infeasible, then the new LP is infeasible.

2. If the original LP is feasible, then the feasible region of the new LP contains a full
dimensional ball or radius ε. (Moreover, it can be shown that given any point at
distance at most ε from a vertex of the original LP, one can “jump” in polynomial
time to the vertex. The method to do this uses continued fraction approximation of
real numbers by rational numbers with small denominators.)

Scaling the new LP by a factor of 1/ε we are left with the following problem. There
is an LP defining a polyhedron that is either empty, or contains a full dimensional ball of
radius 1. Moreover, there is a bounding ball of radius r (taking r = m!pm/ε suffices) and
centered at the origin that contains this unit ball. We want to design a polynomial time
algorithm that on every such input either finds a feasible solution to the LP, or (correctly)

1

reports that the LP is infeasible. By the discussion above, this will give a polynomial time
algorithm for linear programming.

Observe that log r is polynomial in the original parameters of the problem (in n,m
and log p). Hence the running time of our algorithm is allowed to be polynomial in
n, m, log p, log r.

1.2 A geometric search problem

In Section 1.1 we reduced the problem of solving linear programs to the following geometric
problem. A polyhedron P in Rn is given as a system of linear inequalities. It is known that
the intersection of P with a ball S(0, r) contains a a unit ball. Find a point in P

⋂
S(0, r).

(A note on notation. Often S(x, r) denotes a sphere of radius r centered at x (a ball without
its interior), whereas B(x, r) denotes a ball. However, we reserve the letter B for future
use, and hence denote balls by S.)

The following algorithm can be used to solve this problem. Pick a point y ∈ S(0, r).
If y ∈ P (this can be determined by checking whether y satisfies the system of linear
inequalities) then we are done. If not, then some linear inequality is violated. This means
that we are given a hyperplane such that P lies entirely within one side of the hyperplane.
Equivalently, we are given a half space H that contains P . Moreover, S(0, r)

⋂
H

⋂
P

contains a unit ball. Now we can limit the search for a point in P to only S(0, r)
⋂

H,
which is smaller than S(0, r). Picking a new point y in this smaller region we recurse.

In analyzing the search procedure given above, we assume that we choose y in an
oblivious way, without inspecting the system of inequalities. One reason to do so is that in
general, it is not known how to make good use of the information provided by the system
of inequalities in order to come up with a better choice of y. Another reason is that this
oblivious choice makes the eventual algorithm applicable in a wider range of instances, as
will be discussed in Section 1.5.

Abstracting the search problem further, we are in the following situation. Unit ball U
is hidden within a ball of radius r. We wish to find a point within U . In each step of the
algorithm we can choose a point y and get one of the two following answers: either y ∈ U
(and then we are done), or we get an open halfspace H not containing y such that U ⊂ H.
We wish to design a strategy for finding a point in U as quickly as possible.

This search problem somewhat resembles binary search. Indeed, we can choose the origin
(the center of S(0, r)) as our first query point, and then regardless of the halfspace returned,
the search space is decreased by a factor of 2. However, starting from the second iteration
(at which point the search region is no longer a ball, and hence looses its symmetry), we
encounter some difficulties.

1. Is there any point y for which regardless of the halfspace returned, the size of the
search space decreases by a factor of 2?

2. If not, then by how much can we decrease the search space by a clever choice of a
point y?

3. Is there an efficient algorithm for finding such a point y?

The answer to the first question is unfortunately no. For example, it can be shown
that no matter what point we choose in a triangle, there is always an open halfspace not

2

containing this point whose intersection with the triangle contains a 5/9-fraction of the area
of the triangle. (This is left as homework. As a hint, see the proof of Proposition 2.)

To the second question we have two answers.

Proposition 1 For any (measurable) set S in Rd, there is always a point y (not necessarily
in S) such that for any halfspace H not containing y, the volume of H

⋂
S is at most d/(d+1)

times the volume of S.

Proof: Recall that in a previous homework we proved that for every collection of
halfspaces in Rd, if every d + 1 of them intersect, then they all intersect at some point.
Now consider all halfspaces that contain more than a d/(d + 1) fraction of the volume of S.
Every d + 1 of them intersect at some point in S, hence they all intersect. Let y be a point
in their intersection. Hence no halfspace not containing y contains more than a d/(d + 1)
fraction of the volume of S. 2

The above proposition is best possible (by considering the d + 1 vertices of a simplex as
the set S). However, in can be strengthened when S is convex.

Proposition 2 For any convex set S in Rd, there is always a point y (within S) such that
for any halfspace H not containing y, the volume of H

⋂
S is at most 1 − 1/e times the

volume of S.

Proof: We only sketch the proof. Choose y as the center of gravity of S (which is the
same as the average location of a random point in S). Consider an arbitrary hyperplane H
through y. Let z be the normal to this hyperplane. Then y is also the center of gravity of
the projection of S on z. Using the fact that S is convex, a shifting argument shows that
the worst case distribution of weights of the projection on z behaves like zd−1, for z in the
range 0 to t. The total volume in this case is V =

∫ t
0 zd−1dz = td/d. The center of gravity

in this case is 1
V

∫ t
0 z · zd−1dz = d

d+1 t. The volume of the smaller side of the hyperplane is

V =
∫ dt/(d+1)
0 zd−1dz = (1− 1

d+1)dV > V/e. 2

In our search problem all regions are convex. It follows that by taking y as the center of
gravity, in each iteration we cut the search space by a constant factor. In O(d log r) steps,
the volume of the search space becomes smaller than that of a unit ball, implying that by
this time we are done.

We now reach the third question mentioned above. It appears that finding the center
of gravity of a general convex region is a costly operation. In principle, starting from a
point within the convex region, a good enough approximation for the center of gravity can
be found by a randomized algorithm. (See for example the STOC2002 paper of Bertsimas
and Vempala). However, this was not known at the time that the Ellipsoid algorithm was
developed.

The Ellipsoid algorithm uses a less efficient search procedure (in terms of number of
iterations), with the advantage that each individual iteration is easier to implement.

1.3 Using ellipsoids

For any set in Rd that is symmetric in the sense that if it contains point x then it also
contains the point −x, the origin is the center of gravity, and moreover, every hyperplane

3

through the origin divides it into equal size parts. We call a set symmetric if it is symmetric
in the above sense when its center of gravity is translated to the origin. The ellipsoid algo-
rithm keeps the search region (for the geometric search problem of Section 1.2) symmetric.
After cutting the search region in two, it expands it in a careful way to regain symmetry,
while still maintaining some decrease in volume.

Let Q be an n by n nonsingular real matrix and t ∈ Rn. The mapping T (x) = Qx + t
is called an affine transformation.

A unit ball S(0, 1) in Rn is the set {x|xT x ≤ 1}.
An ellipsoid is the image of a unit ball under an affine transformation.
Observe that y = Qx + t implies x = Q−1(y − t). Hence an ellipsoid is

T (S(0, 1)) = {y|(Q−1(y − t))T Q−1(y − t) ≤ 1} = {y|((y − t)T B−1(y − t) ≤ 1}

where B = QQT .
The matrix B is positive definite meaning that it is real and symmetric, and satisfies

the conditions in the following lemma.

Lemma 3 Given a real symmetric matrix B, the following conditions (defining the matrix
to be positive definite) are equivalent.

1. xT Bx > 0 for all nonzero x ∈ Rn.

2. all its eigenvalues are real and positive.

3. all upper left submatrices have positive determinants.

4. there exists a real matrix Q with linearly independent rows such that B = QQT .

Proof: First let us note that the eigenvalues of B are necessarily real. Consider an
arbitrary (possibly complex) eigenvector v for B of norm 1, let v∗ denote is conjugate
transpose, and let λ denote its (supposedly complex) eigenvalue. Let us compute v∗Bv =
v∗λv = λ. Using the symmetry of B we also have v∗Bv = (BT v)∗v = (λv)∗v = v∗λ∗v = λ∗.
Hence λ is real. Likewise, there is no point in taking the corresponding eigenvector v as
complex, because the matrix B is real, and then the real and imaginary parts of v never
mix. As λ is real, we get that the complex eigenvector is just a combination of a real vector
and an imaginary vector, each with the same eigenvalue.

Condition 1 implies condition 2. Otherwise, take x to be an eigenvector with nonpositive
eigenvalue.

Condition 2 implies condition 4. Observe that the eigenvectors of B can be taken as
orthonormal. For eigenvectors sharing the same eigenvalue, there is always such a choice.
(Remark: for nonsymmetric matrices this is not always possible. Consider for example an
order 2 matrix whose first row is (1, 1) and second row is (0, 2). Its eigenvectors (1, 0) and
(1, 1) are not orthogonal.) For eigenvectors vi and vj with different eigenvalues λi and λj ,
observe that by symmetry of B we have that λjv

T
i vj = vT

i Bvj = λiv
T
i vj , implying that

vT
i vj = 0. One possible choice for Q is to have column i equal to

√
λivi, where vi is the ith

eigenvector of B, and λi is its eigenvalue. This can be verified to be correct by comparing
the effect of multiplying by the eigenvectors.

4

Condition 4 implies condition 1. Because xT Bx = xT QQT x = (QT x)T (QT x) which is
a nonzero square (because Q has full rank).

We shall not prove here the equivalence of condition 3 to the other conditions, and we
do not plan to use condition 3. 2

The eigenvectors of B are the principle axes of the ellipsoid, the square roots of the
eigenvalues are their lengths, and the square root of the determinant gives the volume
(scaled by the volume of the unit ball).

In the ellipsoid algorithm we construct a sequence of ellipsoids Ek = (Bk, tk). If tk
violates the constraint aT

i x ≤ bi then we take Ek+1 to be an ellipsoid that contains 1
2Ek =

{y ∈ Ek : aT
i y ≤ aT

i tk}. There is slackness here as aT
i tk is larger than bi, and the purpose

of this slackness is only so as to make the formulas simpler. For Ek+1 as above there are
the following formulas:

tk+1 = tk − 1
n + 1

Bkai√
aT

i Bkai

Bk+1 =
n2

n2 − 1
(Bk − 2

n + 1
Bkaia

T
i Bk

aT
i Bkai

)

It can be shown that vol(Ek+1) < e−1/2(n+1)vol(Ek). The proof of this last statement,
as well as the derivation of the formula above for Ek+1, can be based on the following
principles. First, everything is proved assuming that Ek is the simplest ellipsoid, namely,
the unit ball. Thereafter, the formula for Ek+1 for general Ek is obtained by using linear
transformations. The ratio of volumes remains unchanged by these transformations.

1.4 Numerical precision

In general, one cannot represent the Ellipsoids exactly by rational numbers. The term√
aT

i Bkai in the expression for tk+1 will in general be irrational. (Do not be confused by the
fact that Bk is Positive Definite. It does imply that that aT

i Bkai can be represented as a sum
of squares, but not as a single square. Hence its square root might be irrational.) Hence the
ellipsoid algorithm cannot be run as described. Instead, to be able to use rational number
of bounded numerators, one can take a slightly larger Ek+1 than the minimum needed,
provided it still has (significantly) smaller volume than Ek. This last condition implies that
the numerical precision required in order to run the ellipsoid algorithm is pretty high, which
contributes to the algorithm not being considered practical.

1.5 Separation oracles

Observe that the number of iterations used by the ellipsoid algorithm depends on the
ratio of the bounding ball and the bounded ball. We expressed this ratio as a function
of m, the total number of constraints, but in fact it depends not on the total number
of constraints, but rather on the number of constraints that are tight in a basic feasible
solution. This number never needs to exceed n, the number of variables. Hence beyond
some point, adding more constraints to the linear program (even infinitely many constraints,
in principle) does not effect the bound on the number of iterations. It may only effect the

5

complexity of implementing a single iteration of the algorithm, namely that of finding a
violated constraint. The task of finding a violated constrain given a non-feasible point is
often referred to as a separation oracle (since the violated constraint is a hyperplane that
separates the non-feasible point from the set of feasible solutions).

As a consequence, the ellipsoid algorithm can serve to find optimal or near optimal
solutions not just to linear programs, but also to a wider class of optimization problems.
We present such as example in the following section.

1.6 Low distortion embeddings

Consider the following problem. The input is an n by n nonnegative symmetric matrix
D = {dij}, with dii = 0 along the diagonal. One seeks to find a set of n points in Rn whose
Euclidean distance matrix is exactly D. Namely, the distance between point i and point
j needs to be dij . This is sometimes referred to as an isometric embedding of the finite
metric D in Rn (with `2 norm). In general, even if the given D is a valid distance matrix
(satisfying the triangle inequality), it may not correspond to a set of Euclidean distances.
One such example is d12 = d13 = d14 = 1 and d23 = d34 = d24 = 2.

There is a natural algorithm for checking if the finite metric space embeds in Euclidean
space. Place the first point at the origin. Thereafter, place any new point j at an arbitrary
point of intersection of the spheres centered at the locations of previous points i < j and
of respective radii dij , if such a point exists. By symmetry arguments, it does not matter
which point of intersection is chosen. This process will successfully embed all points if and
only if they are embedable in `2 (assuming computations with arbitrary precision).

We now consider a more general problem in which distances are not given exactly, but
instead upper bounds d+

ij and lower bounds d−ij are given on distances, and the goal is
to find a Euclidean embedding satisfying these constraints. This may be the appropriate
question when computations are done with finite precision (as exact irrational distances
may be too difficult to perform arithmetic on), or when distance measures are given only
approximately, or when the finite metric space does not embed in `2 and one wishes to
minimize the distortion, and in a host of other applications.

We now show how questions of the above type can be solved in polynomial time up to
a small error term.

For every i, let xi be vector variable representing the embedding of point i in Rn. Let xij

serve as short hand notation for the inner product 〈xi, xj〉. One can replace the constraints
on |xi−xj | by equivalent constraints on (xi−xj)2 = xii−2xij +xjj . Namely, the constraints
are:

(d−ij)
2 ≤ xii − 2xij + xjj ≤ (d+

ij)
2 (1)

Rather than viewing the xi as variables, view the xij as variables. Then the con-
straints (1) are linear in these variables, and hence we see that the set of inner products
need to satisfy linear constraints. Finding a set of values xij satisfying these constraints can
in principle be done using linear programming. The problem that remains is that the values
xij found by the solution of the linear program need not correspond to inner products of
vectors. To overcome this issue, we consider the matrix X = {xij}. Recall that by item
(4) in Lemma 3, if a matrix is positive definite, there are vectors (the rows of Q) such that

6

the entries of the matrix are the inner products of the corresponding vectors. Moreover,
these vectors are linearly independent. In our case, we do not need the vectors representing
the embeddings of points to be linearly independent, and hence it will suffice to consider
positive semidefinite matrices.

Lemma 4 Given a real symmetric matrix B, the following conditions (defining the matrix
to be positive semidefinite, psd) are equivalent.

1. xT Bx ≥ 0 for all x ∈ Rn.

2. all its eigenvalues are real and nonnegative.

3. there exists a real matrix Q such that B = QQT .

We omit the proof of Lemma 4 due to its similarity to the proof of Lemma 3.
We now represent the embedding question as a feasibility question for a positive semi-

definite program (SDP) on n(n + 1)/2 variables:
Find an n by n symmetric matrix X = {xij} such that:

1. X is positive semidefinite.

2. All constraints (1) are satisfied.

This is not a linear program, due to the constraint that X is psd. This is a convex
constraint, or equivalently, a collection of infinitely many linear constraints, but is not a
linear constraint by itself. The feasible region is some convex body, but not necessarily a
polytope. Nevertheless, the Ellipsoid algorithm can be used to solve semidefinite programs.
Unlike the case for linear programming, the algorithm does not return an exact solution,
but rather an arbitrarily good approximation to the solution. (The reason for this difference
is that it is not necessarily true that a feasible or optimal solution to an SDP is rational
with small denominator, or even rational at all.)

To run the ellipsoid algorithm we need certain conditions to hold.

1. Have a bounding ball that contains all feasible solutions (if any exist). In our case,
assuming without loss of generality that one of the embedded points is at the origin,
no xij needs to be larger than max[(dij)2], and this provides the bounding ball.

2. If the SDP is feasible, we need the feasible region to contain a ball of some small radius
ε. Here this is done by relaxing the linear constraints to (d−ij)

2−2ε ≤ xii−2xij +xjj ≤
(d+

ij)
2 +2ε. We do not add slackness to the symmetry of X, in the sense that we keep

xij = xji as the same variable. To relax the constraint that X is psd, we may require
that all its eigenvalues are at least −ε rather than nonnegative.

3. Be able to test if a point (a matrix X) is feasible for the relaxed SDP. Testing the
linear constraints and symmetry of X is easy. To test the relaxation for X being psd,
compute the eigenvalues of X and test that they are at least −ε.

7

4. Find a separating hyperplane of X in not feasible. For a violated linear constraint,
this follows as in linear programming. If the psd constraint is violated, let v be an
eigenvector that corresponds to a negative eigenvalue that witnesses it. Then the
constraint vtXv ≥ −ε is linear in {xij}, violated by the current solution, and holds in
every feasible solution (of the relaxed SDP).

Hence the ellipsoid algorithm is applicable to our SDP (and to semidefinite programming
in general). It is stopped when the size of ellipsoids become sufficiently small so that they do
not contain a ball of radius ε (when one of the eigenvalues of the matrix B that represents
the ellipsoid drops below ε2). At this point we either have a solution for the relaxed SDP,
or the relaxed SDP is not feasible (in which case we abort).

Given a solution to the relaxed SDP, we need to decompose the matrix X to QQt and
then the rows of Q serve as the desired embedding. This can be done if X is positive
semidefinite. However, a minor problem that might arise is that due to the fact that in
the relaxed SDP the matrix X is not psd but only very close to being so. It might have
some eigenvalues that are negative but very close to 0. To overcome this problem, add
2ε to all entries along the diagonal of X, raising all eigenvalues by 2ε. Now the matrix
becomes positive definite, with very little affect on the constraints. Namely, (d−ij)

2 − 2ε ≤
xii − 2xij + xjj ≤ (d+

ij)
2 + 2ε changes to (d−ij)

2 ≤ xii − 2xij + xjj ≤ (d+
ij)

2 + 4ε.
Hence if an embedding that satisfies all constraints exist, the ellipsoid algorithm can be

used in order to find an embedding that satisfies all constraints up to some small additive
error of O(ε). The running time is polynomial in the input and in log 1

ε .
We remark that the whole discussion in this section assumed that the dimension of

the host space for the embedding is allowed to be arbitrarily large. If one restricts the
dimension, the problems studied in this section become NP-hard (even to approximate).

8

