
Geometry and Data science - final assignment

Many of the exercises are inspired by the open problems which appear here:
https://people.math.ethz.ch/ abandeira/TenLecturesFortyTwoProblems.pdf

1. The Johnson-Lindenstrauss lemma finds a mapping from x1, ..., xN ∈ Rd to y1, ..., yN ∈
Rk that preserves distances in `2 (the usual Euclidean metric). Suppose that for some
δ > 0, x1, ..., xN are such that ‖xi‖1 ≥ δd‖xi‖∞ for all i. In this case, formulate and prove
a result of a similar spirit to the Johnson-Lindenstrauss lemma for preserving distances in
`1 (the dimension k should also depend on δ somehow).

2. Use the Johnson-Lindenstrauss lemma to show that for every graph G = (V,E) of
maximum degree d, there exists a mapping f : V → Rk with k = 10d2 log |V | such
that for any two vertices v1, v2 ∈ V one has (v1, v2) ∈ E if and only if 〈f(v1), f(v2)〉 ≥ t
for some threshold t ∈ R. (Hint: By adding a large enough copy of the identity to the
adjacency matrix of the graph, it becomes positive definite, and is therefore the Gramm
matrix of some vectors...).

3. The Johnson-Lindenstrauss lemma finds a mapping from points x1, ..., xN ∈ Rd to y1, ..., yN ∈
Rk which approximately preserves distances. Can you find a way to map x1, ..., xN to
y1, ..., yN ∈ {−1, 1}k (hence to the discrete cube instead of Euclidean space), so that for
some constant K > 0,

|〈xi, xj〉 −K〈yi, yj〉| ≤ ε, ∀i 6= j

with k = O(log(n)/ε2)?

4. In class, we saw how to use low-rank matrix recovery for recommendation systems (the
Netflix problem) where one has n users andm items, and where the users’ rankings of the
items are only given for some sparse subset of entries of the n×m matrix. We assumed
that the entries given to us are chosen independently with the same probability. Try to
generalize this framework in the following directions:

(a) What if the entries that we get to see are still chosen independently, but the probability
that we see the i, j’th entry depends on the value of this entry? (hence, a user is more
likely to watch a movie that she will rate higher).

(b) What if we don’t actually get to see a ranking, but we only get to see which user
watched which movies (and assume that the probability of watching a some monotone
function of the ranking)?

(c) What if the entries that we get to see are not chosen independently, but are only
chosen independently within every user (hence, some users watch more movies than
others, but within each user, different movies are independent)?
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5. (Community detection). Let C > 0 be some big constant (say, 1000). Let n be a large
integer and take p = C log(n)2/n. Suppose that you’re given an n-vertex graph G =
(V,E) which was generated as follows: First partition the vertices randomly into two sets
of size n/2, V = A ∪ B (assume that n is even). Then for each pair of vertices i, j such
that either i, j ∈ A or i, j ∈ B, connect i and j with probability 1.1p. Otherwise, if i ∈ A
and j ∈ B (or the other way around), connect them with probability 0.9p. This can be
thought of as a social network on two communities where the probability to befriend a
person in the same community is slightly larger. Note that you only get to see the graph,
you don’t know which vertex belongs toA and which belongs toB. Suggest an algorithm
that, by looking at the graph, reconstructs the setsA andB. (Hint: use the mechanism that
we learnt for low-rank matrix completion. Recall that the mechanism takes a low-rank
matrix to which some ”noise” was added and reconstructs the matrix).

6. Open problems 5.1 and 5.2: Finding a deterministic matrix satisfying RIP seems hard.
However, let’s try to reduce the randomness.

(a) Can you prove an analog of Theorem 5.14 if instead of i.i.d Gaussians one takes i.i.d
±1 Bernoullis?

(b) Let a1, ..., an ∈ Rk be unit vectors. Suppose that maxi 6=j |〈ai, aj〉| ≤ µ. Prove that

the matrix [a1; ...; an] satisfies
(

1
10µ
, 1/2

)
-RIP.

(c) Use the above to show that, in polynomial time, one can generate a k×d matrix and
certify that it satisfies (s, 1/2)-RIP whenever k ≥ 10s2 log(N/s).

7. Related to Open problem 1.1 (Mallat and Zeitouni).

(a) Can we expect the conjecture to be true if we replace the Gaussians by Bernoulli
random variables? Namely if (gi)

p
i=1 are independent and gi = ±αi (with probabilities

1
2
/1
2

for some numbers (αi)
p
i=1?

(b) Try to prove the case d = 1.

(c) A natural attempt at the conjecture would be to try to prove the following: suppose
that g is a Gaussian with covariance matrix Σ in Rp. Let V = [e1, ..., ep] be the
standard basis of Rp, and let U be the 2 × 2 orthogonal rotation that diagonalizes
(Σi,j)i,j∈{1,2} (hence a rotation under which e3, .., en are invariant). Consider the
basis V ′ = [e′1, e

′
2, e3, ...] such that e′1 = Ue1, e′2 = Ue2. Hopefully, in this case

we have that E[ΓV ′ ] ≥ E[ΓV ]. (a) Can you explain why, were this true, this would
imply the conjecture? (b) Can you find a counterexample to this?

8. Open problem 1.2. The monotonicity of the singular values seems like a hard question,
but let’s try an easier one: consider the quantities mk := 1

p
Tr
(
1
n
(XXT )k

)
. In class, we

proved that limn→∞Var[mk] = 0. Can you prove that Var[mk] is a decreasing sequence?
Otherwise, can you find an explicit subsequence for which it is decreasing?

9. Open problem 1.3.

(a) What if the matrix W is replaced by a non-symmetric matrix of i.i.d Gaussians?
Would we still expect the same phenomenon to hold?

(b) What if the vector 11T is replaced by vvT for an arbitrary vector v?

(c) where in the proof is the fact that r = n used?
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10. Open problem 2.3 (The planted clique problem).

(a) Suggest a formulation of this problem as a rank-minimization problem (hence, minimize
the rank of a matrix among some convex family of matrices).

(b) The rank of a matrix is not convex. Try to find a natural convex relaxation of the
above (i.e., find a quantity which tends to be small when the rank is small and which
can be minimized by convex optimization).

(c) Can you find any (even very weak) theoretical guarantee for the success of this
relaxation? E.g., something of the sort: If the clique is very large and very disconnected
from the rest of the graph, and the rest of the graph is very sparse, etc.

11. A question related to Open problem 3.2: Suppose that there is a symmetric d×dmatrixA
which is unknown to you. However, it is known that ‖A‖OP ≤ 1 and that one of the two
following cases holds: Either (a) A is positive definite or (b) A has an eigenvalue equal
to −1. You are given n samples of the value 〈Γ, AΓ〉 where Γ ∼ N(0, Id). How large
should n be so that you’ll be able to distinguish between the two above cases, with high
probability? Try to give both an upper and lower bounds for the dependence of n on d.

12. Somewhat related to open problem 4.2: Fix α > 0 and let X1, X2, . . . be a sequence
of independent Gaussians such that Var(Xn) = 1

log(n+2)α
. Can you give an estimate of

E[supn∈NXn] in terms of α? For which values of α is it finite?

13. Open problem 4.6: What can you say if for some p > 1 it is known that E[Xp
i ] ≤ C

uniformly for all i? What about the case p = 2? What if we assume that the Xi’s are
Bernoulli random variables (hence they attain only two values)?

14. Open problem 6.1: Show that it is enough to take M = KN0.1 random rows.

15. In the max-cut algorithm of Gomans-Williamson that we leant, we rounded the vectors
given by the optimization problem according to a hyperplane cut. Denote the vectors
given by the SDP by v1, ..., vn ∈ Rk. Let Γ ∼ N(0, Ik) be a standard Gaussian random
vector in Rk and consider the variables ui = 〈Γ, vi〉. The Gomans-Williamson algorithm
partitions the vertices according to sign(ui). Prove that for any function f : R→ {−1, 1},
partitioning the vertices according to f(ui) gives a worse approximation. Bonus: what if
we instead define ui = Gvi whereG is a matrix ofm×k independent standard Gaussians?
(Hint: search for Borell’s Gaussian noise stability inequality).

16. Prove a ”cheap” version of the geometric result used in the sparsest cut algorithm of
Arora-Rao-Vazirani: Let vi, i ∈ [n] be a set of unit vectors in Rd satisfying 1

n2

∑
i,j |vi −

vj|2 ≥ 1
2
. Then there exists two subsets S, T ⊂ [n] with |S|, |T | ≥ cn such that for every

i ∈ S, j ∈ T one has |vi − vj|2 ≥ c/ log(n) (here c > 0 is a universal constant). Show
that if we replace the expression c/ log(n) by a constant, then the result is not correct.

17. Let G = (V,E) be a graph, and let f : E → Rk. Try to think of an algorithm that
finds an approximation to the c-balanced partition V = S ∪ T (balanced means that
|S|, |T | ≥ c|V |) that minimizes that quantity∣∣∣∣∣∣

∑
e∈E(S,T )

f(e)

∣∣∣∣∣∣ .
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What about maximizing the above quantity? (For maximization, assume k is constant,
hence the complexity can depend exponentially on k).

18. Open problem 8.3.

(a) Prove any lower bound on the constant KG which is strictly bigger than 1.

(b) Try to give a simple proof that for every matrix (ai,j)i,j∈[n] and every n unit vectors
v1, ..., vn ∈ Rd there exist u1, ..., un ∈ {−1, 1} such that∑

i,j

ai,j〈vi, vj〉 ≤ C log(n)
∑
i,j

ai,juiuj.

19. Find the VC-dimension of the following families of sets:

(a) Convex polygons in the plane.

(b) Triangles in the plane.

(c) The family of axis-parallel boxes in Rd.

(d) The family of Euclidean balls (with arbitrary center and radius) in Rd.

(e) Bonus: Simplices in Rd.

20. Estimate the Gaussian width of the following sets (find the correct order up to constants).

(a) The set of s-sparse unit vectors.

(b) The unit ball of the `p norm in Rd, p ∈ [1,∞].

(c) The set of points x = (x1, ..., xd) such that ‖x‖2 ≤ 1 and x1 ≤ x2 ≤ ... ≤ xd.

(d) The set of positive-definite matrices whose operator norm is at most 1.

(e) The set of positive-definite matrices whose trace is at most 1.

21. In class, we defined the VC-dimension of functions classes for functions whose image
is {0, 1}. Generalize the definition to functions that take values in {1, 2, ..., k} for some
integer k ∈ N, and prove an analogue of the Sauer-Shelah lemma.

22. For a set K ⊂ Rd, denote by N(K, r) the minimum number N such that K is contained
in a union of N Euclidean balls of radius r.

(a) Prove that if K is contained in the unit ball, then

GaussianWidth(K) ≤ C inf
r≥0

(√
logN(K, r) + r

√
d+ 1

)
.

(b) Find an example where the above is not tight up to constants.

23. (a) Let K the `1 ball in Rd (hence the convex hull of ±ei where ei are the standard
basis vectors). This set has diameter 2. Prove, however, that if L is the span of d/2
independent standard Gaussian random vectors (in other words L is a uniformly
chosen subspace of dimension d/2), then K ∩ L typically has a much smaller
diameter, namely

E

[
diam(K ∩ L) ≤ C

√
log d

d

]
.
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(b) Try to prove a tail estimate for the above, namely that

P

[
diam(K ∩ L) ≥ Ct

√
log d

d

]
≤ exp(−ct),∀t > 1.

24. Let X be an n× n matrix of rank r and entries in [−1, 1]. Suppose we’re given a matrix
Y such that Yij = δijXij with δij being independent 0− 1 Bernoulli’s with expectation p.
Suppose that additionally, you are given the image of the matrix X .

(a) Prove that for every ε > 0, it suffices to take p = C(ε,r)
n

in order to build a matrix Z
such that

E
1

n2

[∑
i,j

|Zij −Xij|

]
≤ ε.

Here C(ε, r) is any expression that depends only on ε, r. Note that the theorem in
class needed an extra log n factor, but this statement may have a worse dependence
on r and moreover the image of the matrix needs to be known.

(b) How many entries does one need in order to learn the image of a small rank matrix?

25. (a) Prove the following extension of Dudley’s bound (for the supremum of Sub-Gaussian
processes, which we did in class) that we did in class: Suppose that (Z(x))x∈I is a
sub-Gaussian process with respect to a metric d, namely

P (|Z(x)− Z(y)| > td(x, y)) ≤ Ce−t
2

, ∀x, y ∈ I

and additionally one has that, almost surely |Z(x)− Z(y)| ≤ Kd(x, y) for all x, y,
for some constant K > 0. Then one has

E sup
x∈I
|Z(x)| ≤ C

∫ diam(I)

s

√
logN (I, ε, d)dε+ sK.

(b) In class, we discussed a way to use Dudley’s bound for sub-Gaussian processes in
order to find a set of points x1, ..., xn ∈ [0, 1] such that for every 1-Lipschitz function
f on [0, 1] one has that ∣∣∣∣∣

∫
fdν − 1

n

∑
i

f(xi)

∣∣∣∣∣ ≤ c√
n
.

Can you use the first part of the question to derive a statement of similar nature in
higher dimensions? What is the best dependence on n that you can get in dimension
d?

26. (Sparsity of RIP-matrices) Let A be a m × n matrix with entries in {0, 1} satisfying
(s, 1/2)−RIP. Suppose that the average column sparsity of A is d, i.e. A has nd nonzero
entries. Show that either d & s or m & n. What if each non-zero Ai,j is drawn from
N(0, 1)?

27. Let x1, . . . , xn be n points in Rd and let X = [x1, . . . , xn]. Suppose we only have
estimates for the Euclidean distances between the points: dij ≈ ‖xi − xj‖22. Let ∆
be the matrix with entries dij .
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(a) Show that given dij = ‖xi − xj‖22, there is a choice of the xi (note that there is no
unique choice since any translation, rotation, or reflection of the coordinate system
leaves the distances invariant) such that

XTX = −1

2
H∆H,

where H = I − 1
n
11T .

(b) Describe an algorithm to determine the matrix X .

28. (Low Rank Approximation of the Identity) Let In denote the n × n identity matrix. For
0 < ε < 1, show that there exists a positive semidefinite n × n matrix Ĩn such that
|(In − Ĩn)ij| ≤ ε for all i, j, and rank(Ĩn) = O(log n/ε2). (Hint: Apply the Johnson-
Lindenstrauss lemma).
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