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Motivation

Why verify, if we can automatically synthesize a program which is correct by
construction?
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A Brief History of System Synthesis

In 1965 Church formulated the following Church problem: Given a circuit interface
specification (identification of input and output variables) and a behavioral
specification,

• Determine if there exists an automaton (sequential circuit) which realizes the
specification.

• If the specification is realizable, construct an implementing circuit

The specification was given in the sequence calculus which is an explicit-time
temporal logic.
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Example of a Specification: Arbiter

gn

r1 g1

Arbiter

rn

The protocol for each client:

ri gi

ri giri gi

ri gi
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The Behavioral Specification

ri gi

ri giri gi

ri gi

∧

i

∀t : (ri[t] = gi[t]→ gi[t+ 1] = gi[t]) ∧ (ri[t] 6= gi[t]→ ri[t+ 1] = ri[t]) ∧
∧

i 6=j

∀t : ¬gi[t] ∨ ¬gj[t] ∧
∧

i

∀t : ri[t] 6= gi[t]→ ∃s ≥ t : ri[s] = gi[s]

Is this specification realizable?

The essence of synthesis is the conversion

From relations to Functions.
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From Relations to Functions

Consider a computational program:

x y

• The relation x = y2 is a specification for the program computing the function
y =
√
x.

• The relation x |= y is a specification for the program that finds a satisfying
assignment to the CNF boolean formula x.

Checking is easier than computing.
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Solutions to Church ’s Problem

In 1969, M. Rabin provided a first solution to Church’s problem. Solution was
based on automata on Infinite Trees. All the concepts involving ω-automata were
invented for this work.

At the same year, Büchi and Landweber provided another solution, based on
infinite games.

These two techniques (Trees and Games) are still the main techniques for
performing synthesis.
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Synthesis of Reactive Modules from Temporal Specifications

Around 1981 Wolper and Emerson, each in his preferred brand of temporal
logic (linear and branching, respectively), considered the problem of synthesis
of reactive systems from temporal specifications.

Their (common) conclusion was that specification ϕ is realizable iff it is
satisfiable, and that an implementing program can be extracted from a satisfying
model in the tableau. A typical solution they would obtain for the arbiter problem
is:

r1 r2 g1 g2

r1 r2 g1 g2

r1 r2 g1 g2

r1 r2 g1 g2 r1 r2 g1 g2

r1 r2 g1 g2r1 r2 g1 g2

r1 r2 g1 g2

Such solutions are acceptable only in circumstances when the environment fully
cooperate with the system.
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Next Step: Realizability ⊏ Satisfiability

There are two different reasons why a specification may fail to be feasible.

Inconsistency

g ∧ ¬g

Unrealizability For a system

r g

Realizing the specification

g ←→ r

requires clairvoyance.
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A Synthesized Module Should Maintain Specification Against
Adversarial Environment

In 1998, Rosner claimed that realizability should guarantee the specification
against all possible (including adversarial) environment.

To solve the problem one must find a satisfying tree where the branching
represents all possible inputs:

r1 r2

g1 g2

g1, g2 g1 g2

r1, r2 r1 r2

g1 g2

r1 r2

g1, g2 g1 g2

r1, r2 r1 r2

g1 g2

r1 r2 r1 r2

g1 g2

Can be formulated as satisfaction of the CTL∗ formula

Aϕ ∧ A (EX(r1 ∧ r2) ∧ EX(r1 ∧ r2) ∧ EX(r1 ∧ r2) ∧ EX(r1 ∧ r2))
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Bad Complexity

Rosner and P have shown [1989] that the synthesis process has worst case
complexity which is doubly exponential. The first exponent comes from the
translation of ϕ into a non-deterministic Büchi automaton. The second exponent
is due to the determinization of the automaton.

This result doomed synthesis to be considered highly untractable.
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Simple Cases of Lower Complexity

In 1989, Ramadge and Wonham introduced the notion of controller synthesis and
showed that for a specification of the form p, the controller can be synthesized
in linear time.

In 1998, Asarin, Maler, P, and Sifakis, extended controller synthesis to timed
systems, and showed that for specifications of the form p and q, the problem
can be solved by symbolic methods in linear time.
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The Control Framework

Classical (Continuous Time) Control

Environment
Plant

Controller

Required: A design for a controller which will cause the plant to behave correctly
under all possible (appropriately constrained) environments.

Discrete Event Systems Controller : [Ramadge and Wonham 89]. Given a
Plant which describes the possible events and actions. Some of the actions are
controllable while the others are not.

Required: Find a strategy for the controllable actions which will maintain a correct
behavior against all possible adversary moves. The strategy is obtained by
pruning some controllable transitions.

Synthesis of Designs from Temporal Specifications, Haifa, November 2005 12



Design Synthesis A. Pnueli

Application to Reactive Module Synthesis : [PR88], [ALW89] — The Plant
represents all possible actions. Module actions are controllable. Environment
actions are uncontrollable.

Required: Find a strategy for the controllable actions which will maintain a
temporal specification against all possible adversary moves. Derive a program
from this strategy. View as a two-persons game.
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The Runner Blocker System

GoalR B

Runner R tries to reach the goal. Blocker B tries to intercept and stop R.
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State Transitions Diagram

Lose

Win Win Win

Lose
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Is the Goal Reachable?

All of our algorithms will be computing sets of states out of the state-transition
diagram. Let ‖win‖ denote the set of states labeled by the win proposition.
Let ρ be the transition relation, such that ρ(s1, s2) holds whenever s2 is a direct
successor of the state s1 in the state-transition diagram.

For a state-set S, we introduce the predecessor operator Pre
∃

which computes
the set of all one-step predecessors of the states in S. That is,

Pre
∃
(S) = {s | s has a ρ-successor in S}

Recursively, we define a state s to be goal reaching if either s ∈ ‖win‖ or s has a
goal reaching successor. That is,

R = ‖win‖ ∪ Pre
∃
(R)

We may expect that the solution to this fix-point equation, will give us the set of all
states from which ‖win‖ is reachable.
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Among the Possible Solutions, Pick the Minimal

We should take the minimal solution of the fix-point equationR = ‖win‖ ∪ Pre
∃
(R)

which we denote by

µR. (‖win‖ ∪ Pre
∃
R)

This minimal solution can be effectively computed by the iteration sequence:

R0 = ∅
R1 = ‖win‖
R2 = R0 ∪ Pre

∃
R0

R3 = R1 ∪ Pre
∃
R1

. . .

Consequently, the goal is reachable from an initial state s0 iff

s0 ∈ µR. (‖win‖ ∪ Pre
∃
R)
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Computing µR. ‖win‖ ∪ Pre
∃
(R)

Win Win

R1

R4

R3

R2

Win R0

Lose Lose
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Controller Synthesis

For a set of states C, we define the operator Pre
∀

which is dual to Pre
∃

and can
be defined by

Pre
∀
(C) = {s | All the ρ-successors of s are in C}

The two operators can be combined, and the expression Pre
∃∀

(C) =
Pre

∃
(Pre

∀
(C)) denotes the set of states s which have at least one successor

s1 all of whose successors belong to C. If we think about the moves as taken in
turn by two players, then Pre

∃∀
(C) denotes the states from which the first player

can force the game after a complete round (each player making one move) into a
C-state.

The expression control(win) = µC. ‖win‖ ∪ Pre
∃∀

(C) characterizes all the
states from which a win can be enforced in a finite number of moves.
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Computing µC. ‖win‖ ∪ Pre
∃∀

(C)

Win WinWin

C2

C1

C0

Lose Lose
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Local Conclusions

The runner and the blocker can cooperate to reach a winning state for R.

However, R cannot force a win.
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A Modified Runner Blocker System

GoalR B

Additional transitions have been added to the runner.
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Game Tree for the Modified System

Lose

Win Win Win

Lose
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R2

Win Win

R1

R4

R3

Win

Computing µR. ‖win‖ ∪ Pre
∃
(R)

R0

Lose Lose
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Win

C3

C2

Win

Computing µC. ‖win‖ ∪ Pre
∃∀

(C)

C0Win

C1

LoseLose
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A Good Strategy

Lose

WinWinWin

Lose
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Apply to Program Synthesis

The general approach considers a game G = 〈G, ϕ〉 consisting of a state-
transition diagram G, whose transitions are partitioned into controllable and
uncontrollable transitions, and a temporal formula ϕ, which the system should
maintain.

In the previous examples, the formula was of the form win, requiring that a
winning state is eventually reached. For such formulas, the set of winning states
can be computed by the expression µy.win ∨Pre

∃∀
(y), and we can always obtain

a memory-less strategy by removing some of the transitions.

Claim 1. For every game G = 〈G, ϕ〉 such that G is finite-state and ϕ is a
propositional LTL formula, it is possible to compute the set of winning states by an
appropriate fix-point expression.

Furthermore, for the case that ϕ has one of the forms p, q, or
∨n

i=1
( pi ∧ qi) for state formulas p, q, pi and qi, then the game is

winnable by red iff red has a winning memory-less strategy.
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Different Solutions to Different Winning Conditions

When applied to controller synthesis, we denote the controlled predecessor by
p with the meaning that s |= p iff for every environment (uncontrolled) step

leading from s to s′, there exists a system (controlled) successor of s′ satisfying p.

Equivalently, s is an ∀∃-predecessor of p.

With this notation, we can present the following fixpoint expressions for computing
the winning states corresponding to various winning conditions:

Winning Condition Fixpoint Expression
W µy.W ∨ y

W νy.W ∧ y

W νzµy.W ∧ z ∨ y

The last cases is based on the maximal fix-point soluion of the equation

z = µy. (W ∧ z) ∨ y

searching for a visit to a W -state with an enforcable z-successor.
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Illustrate on MUX-SEM

r1 :2, r2 :2

r1 :1, r2 :0 r1 :1, r2 :1

r1 :2, r2 :0 r1 :2, r2 :1

r1 :0, r2 :0 r1 :0, r2 :1 r1 :0, r2 :2

r1 :1, r2 :2

We wish to synthesize a program that guarantees

¬(r1 = 2 ∧ r2 = 2) ∧ ( (r1 6= 1) ∧ (r2 6= 1))
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Step 1: Assuring ¬(r1 = 2 ∧ r2 = 2)

Applying the synthesis algorithm for this formula, we obtain

r1 :1, r2 :2r1 :1, r2 :0 r1 :1, r2 :1

r1 :2, r2 :0 r1 :2, r2 :1

r1 :0, r2 :0 r1 :0, r2 :1 r1 :0, r2 :2

Have still to satisfy

( (r1 6= 1) ∧ (r2 6= 1))

which is not of the form guaranteeing a memory-less strategy.
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From Multi-Recurrence to Simple Recurrence

We can construct a (deterministic) automaton (equivalently an FDS) which
monitors for alternating occurrences of r1 6= 1 and r2 6= 1.

r1 6= 1

x x

r1 = 1 ∧ r2 6= 1

This automaton can be defined as an FDS A with the transition relation:

x′ = r1 6= 1 ∨ x ∧ r2 = 1

It can be shown that (x ∧ r2 6= 1) iff (r1 6= 1)∧ (r2 6= 1).
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Form the Parallel Composition and Solve

We can now form the parallel composition of the system and the FDS A, and solve
for the winning condition (x ∧ r2 6= 1).

x : 0, 1 x : 0, 2

x : 1, 0 x : 1, 1

x : 2, 1

x : 1, 2

x : 1, 0 x : 1, 1

x : 2, 0 x : 2, 1

x : 1, 2

x : 0, 0
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Solving: Step 0

Mark all immediately winning States as members of .
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x : 0, 1 x : 0, 2

x : 1, 0 x : 1, 1

x : 2, 1

x : 1, 2

x : 1, 0 x : 1, 1

x : 2, 0 x : 2, 1

x : 1, 2

x : 0, 0

Synthesis of Designs from Temporal Specifications, Haifa, November 2005 33



Design Synthesis A. Pnueli

Solving: Step 1
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x : 0, 1 x : 0, 2

x : 1, 0 x : 1, 1

x : 2, 1

x : 1, 2

x : 1, 0 x : 1, 1

x : 2, 0 x : 2, 1

x : 1, 2

x : 0, 0

Add state (x : 1, 1) since it has a winning successor.
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Solving: Step 2
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x : 0, 1 x : 0, 2

x : 1, 0 x : 1, 1

x : 2, 1

x : 1, 2

x : 1, 0 x : 1, 1

x : 2, 0 x : 2, 1

x : 1, 2

x : 0, 0

Add state (x : 0, 1) since it has a winning successor.
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Solving: Step 3
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x : 0, 1 x : 0, 2

x : 1, 0 x : 1, 1

x : 2, 1

x : 1, 2

x : 1, 0 x : 1, 1

x : 2, 0 x : 2, 1

x : 1, 2

x : 0, 0

Add states (x : 2, 1) and (x : 2, 1) since they each have only winning successors.
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Solving: Step 4
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x : 0, 1 x : 0, 2

x : 1, 0 x : 1, 1

x : 2, 1

x : 1, 2

x : 1, 0 x : 1, 1

x : 2, 0 x : 2, 1

x : 1, 2

x : 0, 0

Add state (x : 2, 0) which has only winning successors. Also and (x : 1, 1) since
it has one winning successor. Choose (x : 2, 1) to be the strategic successor of
(x : 1, 1).
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Solving: Step 5
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x : 0, 1 x : 0, 2

x : 1, 0 x : 1, 1

x : 2, 1

x : 1, 2

x : 1, 0 x : 1, 1

x : 2, 0 x : 2, 1

x : 1, 2

x : 0, 0

Add state (x : 1, 0) all of whose successors are winning. Then add (x : 1, 2). This
concludes the first iteration and also the full computation.

Note the ultimately periodic sequence:

(x : 0, 0), [(x : 0, 1), (x : 1, 1), (x : 1, 2), (x : 1, 0), (x : 1, 1), (x : 2, 1)]∗
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Program Synthesis from LTL Specification

It is not always necessary to start with a given “plant”. We can synthesize direcly
from LTL specifications.
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Property -Based System Design

While the rest of the world seems to be moving in the direction of model-based
design (see UML), we persisted with the vision of property-based approach.

Specification is stated declaratively as a set of properties, from which a design
can be extracted.

This is currently studied in the hardware-oriented European project PROSYD.
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Example Specification

Consider a specification for an arbiter.

gn

r1 g1

Arbiter

rn

The protocol for each client:

ri gi

ri giri gi

ri gi

Synthesis of Designs from Temporal Specifications, Haifa, November 2005 41



Design Synthesis A. Pnueli

The Specification

ri gi

ri giri gi

ri gi

Assumptions (Constraints on the Environment)

A :
∧

i

(

ri ∧ (ri 6= gi)⇒ ( ri = ri) ∧ ri ∧ gi ⇒ ri
)

Guarantees (Expectations from System)

G :
∧

i 6=j

¬(gi ∧ gj) ∧
∧

i



gi ∧

















ri = gi ⇒ gi = gi ∧
ri ∧ gi ⇒ gi ∧
ri ∧ gi ⇒ gi





















Total Specification

ϕ : A→ G
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Checking that a Specification is Feasible

There are two different reasons why a specification may fail to be feasible.

Inconsistency

g ∧ ¬g

Unrealizability For a system

r g

Realizing the specification

g ←→ r

requires clairvoyance.
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Program Synthesis Via Game Playing

A game is given by G : 〈V = X ∪ Y,Θ, ρ1, ρ2, ϕ〉, where

• V = X ∪ Y are the state variables, with X being the environment’s (player 1)
variables, and Y being the system’s (player 2) variables. A state of the game
is an interpretation of V . Let Σ denote the set of all states.

• Θ — the initial condition. An assertion characterizing the initial states.

• ρ1(X,Y,X
′) — Transition relation for player 1.

• ρ2(X,Y,X
′, Y ′) — Transition relation for player 2.

• ϕ — The winning condition. An LTL formula characterizing the plays which are
winning for player 2.

A state s2 is said to be a G-successor of state s1, if both ρ1(s1[V ], s2[X ]) and
ρ2(s1[V ], s2[V ]) are true.

We denote by DX and DY the domains of variables X and Y , respectively.
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Plays and Strategies
Let G : 〈V,Θ, ρ1, ρ2, ϕ〉 be a game. A play of G is an infinite sequence of states

π : s0, s1, s2, . . . ,

satisfying:

• Initiality: s0 |= Θ.

• Consecution: For each j ≥ 0, the state sj+1 is a G-successor of the state sj.

A play π is said to be winning for player 2 if π |= ϕ. Otherwise, it is said to be
winning for player 1.

A strategy for player 1 is a function σ1 : Σ+ 7→ DX, which determines the next set
of values for X following any history h ∈ Σ+. A play π : s0, s1, . . . is said to be
compatible with strategy σ1 if, for every j ≥ 0, sj+1[X ] = σ1(s0, . . . , sj).

Strategy σ1 is winning for player 1 from state s if all s-originated plays compatible
with σ1 are winning for player 1. If such a winning strategy exists, we call s a
winning state for player 1.

Similar definitions hold for player 2 with strategies of the form σ2 : Σ+×DX 7→ DY .
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From Winning Games to Programs
A game G is said to be winning for player 2 (player 1, respectively) if all (some)
initial states are winning for 2 (1, respectively).

Assume we are given a set of LTL specifications. We construct a game as
follows:

• As Θ we take all the non-temporal specification parts which relate to the initial
state.

• As ρ1 and ρ2, we can take True. A more efficient choice is to include in ρ1

(similarly ρ2) all local limitations on the next values of X (resp. Y ), such as

ri ∧ ¬gi → r′i

• We place in ϕ all the remaining properties that have not already been included
in Θ, ρ1, and ρ2.

We solve the game, attempting to decide whether the game is winning for player
1 or 2. If it is winning for player 1 the specification is unrealizable. If it is winning
for player 2, we can extract a winning strategy which is a working implementation.
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The Game for the Sample Specification

For the specification

∧

i

(

ri ∧ (ri 6= gi)⇒ ( ri = ri) ∧ ri ∧ gi⇒ ri
)

→
∧

i 6=j ¬(gi ∧ gj) ∧ ∧

i



gi ∧

















ri = gi ⇒ gi = gi ∧
ri ∧ gi ⇒ gi ∧
ri ∧ gi ⇒ gi





















We take the following game components:

X ∪ Y : {ri | i = 1, . . . , n} ∪ {gi | i = 1, . . . , n}
Θ :

∧

i (ri ∧ gi)

ρ1 :
∧

i ((ri 6= gi)→ (r′i = ri))

ρ2 :
∧

i 6=j ¬(g′i ∧ g′j) ∧ ∧

i ((ri = gi)→ (g′i = gi))

ϕ :
∧

i (ri ∧ gi ⇒ ri) → ∧

i ((ri ∧ gi⇒ gi) ∧ (ri ∧ gi ⇒ gi))
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Solving Games for Reactivity[1] (Streett[1] )

Following [KPP03], we present an n3 algorithm for solving games whose winning
condition is given by the (generalized) Reactivity[1] condition

p1 ∨ p2 ∨ · · · ∨ pm ∨ q1 ∧ q2 ∧ · · · ∧ qn

equivalently,

( p1 ∧ p2 ∧ · · · ∧ pm) → q1 ∧ q2 ∧ · · · ∧ qn

This class of properties is bigger than the properties specifiable by deterministic
Büchi automata. It covers a great majority of the properties we have seen in the
Prosyd project so far.

For example, a specification for an arbiter system will be of the form

( · · · ∧ gi ⇒ ¬ri ∧ · · · ) → · · · ∧ ri ⇒ gi ∧ · · ·
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Response vs. Recurrence Properties

Every response formula p⇒ q is equivalent to a recurrence formula r for
some past formula r. This is because

p⇒ q ∼ ((¬p) B q)

For the case of the Arbiter specification, such conversion is not necessary,
because we can rewrite the liveness requirements as follows:

Rewrite ri ∧ gi ⇒ ri as ¬(ri ∧ gi)

Rewrite ri ∧ gi ⇒ gi and ri ∧ gi⇒ gi as (ri = gi)
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The Solution

The winning states in a Streett[1] game can be computed by

ϕ = ν























Z1

Z2

...

...

Zn





























































µY





m
∨

j=1

νX(q1 ∧ Z2 ∨ Y ∨ ¬pj ∧ X)





µY





m
∨

j=1

νX(q2 ∧ Z3 ∨ Y ∨ ¬pj ∧ X)





...

...

µY





m
∨

j=1

νX(qn ∧ Z1 ∨ Y ∨ ¬pj ∧ X)











































where

ϕ : ∀X ′ : ρ1(V,X
′)→ ∃Y ′ : ρ2(V, V

′) ∧ ϕ(V ′)
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Results of Synthesis

The design realizing the specification can be extracted as the winning strategy for
Player 2. Applying this to the Arbiter specification, we obtain the following design:

r1 r2 ; g1 g2r1 r2 ; g1 g2 r1 r2 ; g1 g2

r1 r2 ; g1 g2r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2

r1 r2 ; g1 g2 r1 r2 ; g1 g2

We have a symbolic algorithm for extracting the implementing design/winning
strategy.
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Execution Times and Programs Size for Arbiter(N)

N Recurrence Properties Design Size Response Properties
4 0.05 181 0.33
6 0.06 645 0.89
8 0.13 1147 1.77

10 0.25 1793 3.04
12 0.48 2574 4.92
14 0.87 3499 7.30
16 1.16 4559 10.57
18 1.51 5767 15.05
20 1.89 7108 20.70
25 3.03 11076 43.69
30 4.64 15925 88.19
35 6.78 21647 170.50
40 9.50 28238 317.33
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Extent of Properties Class

The presented algorithm is applicable to all properties which can be specified by
a formula of the form

(ϕ1 ∧ · · · ∧ ϕm) → ψ1 ∧ · · · ∧ ψn

where each ϕi, ψi can be specified by a deterministic Büchi automaton.

For example, the LTL formula ψj : p⇒ q can be specified by the deterministic
Büchi automata, whose transition relation is given by:

x′ = (q ∨ x ∧ ¬p)

Thus, we can add this transition relation to ρ2, and replace ψj by x.
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Conclusions

• It is possible to perform design synthesis for restricted fragments of LTL in
acceptable time.

• The tractable fragment (Street(1)) covers most of the properties that appear in
standard specifications.

• It is worthwhile to invest an effort in representing response properties as
recurrence.
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Hierarchy of the Temporal Properties

Safety
p

Obligation
k
∧

i=1

( pi ∨ qi)

Guarantee
p

Response
p

Persistence
p

Reactivity
k
∧

i=1

( pi ∨ qi)

Progress

where p, pi, q, qi are past formulas. A unique proof rule was developed for each
of the classes.
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