Santosh(a)
Pattanayak
Department of Mathematics
Ziskind Building, Room 302
Weizmann Institute of Science
P.O.B. 26, Rehovot 76100, Israel
Tel: +972-8-934-3292
Mobile: +972-542028835
santosha@weizmann.ac.il
|
|

|
RESEARCH
INTEREST : Algebraic Groups and Invariant Theory.
:
Lie Algebras and Representation Theory.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
EMPLOYMENT
: Post Doctoral Fellow (August 2011 -)
Weizmann Institute of Science
EDUCATION
: Ph.D., Mathematics (May 2011)
Chennai Mathematical Institute, India
: M. Sc. in Mathematics;
2003 - 2005
University of Hyderabad, India
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
PUBLICATIONS/ PREPRINTS
1.
Projective normality of finite group quotients (With S. S.
Kannan and Pranab Sardar), Proc. Amer. Math. Soc. 137 (2009),
no. 3, 863-867.
2. Torus
quotients of homogeneous spaces- minimal dimensional Schubert
Varieties admitting semistable points (With S. S. Kannan), Proc.
Indian
Acad. Sci. Math.
Sci. 119 (2009), no.4, 469-485.
3.
Projective Normality of Weyl Group quotients (With S. S.
Kannan), Proc. Indian. Acad. Sci. Math. Sci. 121 (2011), no. 1,
pp. 19-26.
4. Normality,
Projective normality and EGZ theorem (With S. S. Kannan),
INTEGERS: The Electronic Journal
of Combinatorial Number Theory, Vol
11 (2011).
5.
Minimal Schubert Varieties admitting semistable points for
exceptional cases, will appear in Comm. in Algebra. finalstrings C-code.pdf
6. When is the ring of T
invariants of the homogeneous coordinate ring of G/B a polynomial
algebra - connection with the Coxeter elements, with
S.S. Kannan and N. Chary,
arXiv:1110.2291v1. will appear in Comm. in Algebra.
7. On some
standard algebras in Modular Invariant theory, will appear in
Journal of Algebra and Its Applications.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
THESIS/BOOK
Problems related to Invariant Theory of
Torus and finite groups, under the supervision of Prof. S. S.
Kannan
Thesis Defense Slides
My CV
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
WEB LINKS
Math Overflow, Gigapedia,
MathSciNet, Sage, Math Arxiv,
IMDB,
Cricinfo, Wikipedia, Wikimapia,
Googlemaps, IRCTC
Link to my old homepage at
CMI
Site last updated on 18- Oct- 2011
Visitor number -