SYMBOLIC DYNAMICS FOR THREE DIMENSIONAL FLOWS WITH POSITIVE TOPOLOGICAL ENTROPY

YURI LIMA AND OMRI M. SARIG

Abstract. We construct symbolic dynamics on sets of full measure (w.r.t. an ergodic measure of positive entropy) for \(C^{1+\varepsilon} \) flows on compact smooth three-dimensional manifolds. One consequence is that the geodesic flow on the unit tangent bundle of a compact \(C^\infty \) surface has at least \(\text{const} \times (e^{hT}/T) \) simple closed orbits of period less than \(T \), whenever the topological entropy \(h \) is positive — and without further assumptions on the curvature.

1. Introduction

The aim of this paper is to develop symbolic dynamics for smooth flows with topological entropy \(h > 0 \), on three-dimensional compact Riemannian manifolds. Earlier works treated geodesic flows on hyperbolic surfaces, geodesic flows on surfaces with variable negative curvature, and uniformly hyperbolic flows in any dimension [Ser81, Ser87, KU07], [Rat69], [Rat73, Bow73]. This work only assumes that \(h > 0 \) and that the flow has positive speed (i.e. the vector field which generates it has no zeroes).

This generality allows us to cover several cases of interest that could not be treated before, for example:

1. Geodesic flows with positive entropy in positive curvature: There are many Riemannian metrics with positive curvature somewhere (even everywhere) whose geodesic flow has positive topological entropy [Don88, BG89, KW02, CBP02].
2. Reeb flows with positive entropy: These arise from Hamiltonian flows on surfaces of constant energy, see [Hut10]. Examples with positive topological entropy are given in [MS11]. (This application was suggested to us by G. Forni.)
3. Abstract non-uniformly hyperbolic flows in three dimensions, as in [BP07], [Pes76].

The statement of our main result is somewhat technical, therefore we begin with a down-to-earth corollary. Suppose \(\varphi \) is a flow. A \textit{simple closed orbit of length} \(\ell \) is a parameterized curve \(\gamma(t) = \varphi^t(p), 0 \leq t \leq \ell \) s.t. \(\gamma(0) = \gamma(\ell) \) and \(\gamma(t) \neq \gamma(0) \) when \(0 < t < \ell \). The \textit{trace} of \(\gamma \) is the set \(\{ \gamma(t) : 0 \leq t \leq \ell \} \). Let \([\gamma] \) denote the equivalence class of the relation \(\gamma_1 \sim \gamma_2 \Leftrightarrow \gamma_1, \gamma_2 \) have equal lengths and traces.

Let \(\pi(T) := \#\{[\gamma] : \ell(\gamma) \leq T, \gamma \text{ is simple}\} \).

Theorem 1.1. Suppose \(\varphi \) is a \(C^\infty \) flow with positive speed on a \(C^\infty \) compact three dimensional manifold. If \(\varphi \) has positive topological entropy \(h \), then there is a positive constant \(C \) s.t. \(\pi(T) \geq C(e^{hT}/T) \) for all \(T \) large enough.

1

Date: July 24, 2014.

2010 Mathematics Subject Classification. 37B10, 37C10 (primary), 37C35 (secondary).

Key words and phrases. Markov partitions, symbolic dynamics, geodesic flows.

Y.L. was partially supported by the Brin Fellowship. O.S. was partially supported by ERC award ERC-2009-StG n° 239885.
The theorem strengthens Katok’s bound \(\lim_{T \to \infty} \frac{1}{T} \log \pi(T) \geq h \), see [Kat80, Kat82]. It extends to flows of lesser regularity, under the additional assumption that they possess a measure of maximal entropy (Theorem 8.1). The lower bound \(C(\omega_{T_0}) \) is sharp in many special cases, but not in the general setup of this paper, see §8 for a discussion.

We obtain Theorem 1.1 from a “change of coordinates” that transforms \(\varphi \) into a “symbolic flow” whose orbits are easier to understand. We proceed to define the modeling flow. Let \(\mathcal{G} \) be a directed graph with countable set of vertices \(V \). We write \(v \to w \) if there is an edge from \(v \) to \(w \), and assume throughout that for every \(v \) there are \(u, w \) s.t. \(u \to v, v \to w \).

Topological Markov shifts: The topological Markov shift associated to \(\mathcal{G} \) is the discrete-time topological dynamical system \(\sigma : \Sigma \to \Sigma \) where

\[
\Sigma = \Sigma(\mathcal{G}) := \{ \text{paths on } \mathcal{G} \} = \{ \{ v_i \}_{i \in \mathbb{Z}} : v_i \to v_{i+1} \text{ for all } i \in \mathbb{Z} \}
\]
equipped with the metric \(d(v, w) := \exp(-\min\{|n| : v_n \neq w_n\}) \), and \(\sigma : \Sigma \to \Sigma \) is the left shift map \(\sigma : \{ v_i \}_{i \in \mathbb{Z}} \mapsto \{ v_{i+1} \}_{i \in \mathbb{Z}} \).

Birkhoff cocycle: Suppose \(r : \Sigma \to \mathbb{R} \) is a function. The Birkhoff sums of \(r \)

\[
r_n := r + r \circ \sigma + \cdots + r \circ \sigma^{n-1} \quad (n \geq 1)
\]

are bounded away from zero and infinity. The Birkhoff sum \(B_k \) is sharp in many special cases, but not in the general setup of this paper, see §8 for a discussion.

Topological Markov flow: Suppose \(r : \Sigma \to \mathbb{R}^+ \) is Hölder continuous and bounded away from zero and infinity. The topological Markov flow with roof function \(r \) and base map \(\sigma : \Sigma \to \Sigma \) is the flow \(\sigma_r : \Sigma_r \to \Sigma_r \) where

\[
\Sigma_r := \{ (v, t) \in \Sigma, 0 \leq t < r(v) \}, \quad \sigma_r^\tau(v, t) = (\sigma^n(v), t + \tau - r_n(v))
\]

for the unique \(n \in \mathbb{Z} \) s.t. \(0 \leq t + \tau - r_n(v) < r(\sigma^n(v)) \). Informally, \(\sigma_r \) increases the \(t \) coordinate at unit speed subject to the identifications \((v, r(v)) \sim (\sigma(v), 0) \). The cocycle identity guarantees that \(\sigma_r^{n_1 + n_2} = \sigma_r^n \circ \sigma_r^n \).

Regular part: \(\Sigma^\# := \{ v \in \Sigma : \{ v_i \}_{i \leq 0}, \{ v_i \}_{i \geq 0} \text{ have constant subsequences} \} \) is called the regular part of \(\Sigma \). \(\Sigma^\# := \{ (v, t) \in \Sigma_r : v \in \Sigma^\# \} \) is called the regular part of \(\Sigma_r \). By Poincaré’s Recurrence Theorem, \(\Sigma^\# \) has full measure w.r.t. to any \(\sigma_r \)-invariant probability measure, and it contains all the closed orbits of \(\sigma_r \).

Here is our main result: Let \(M \) be a 3–dimensional compact \(C^\infty \) manifold, and \(X \) be a \(C^{1+\beta} \) \((0 < \beta < 1)\) vector field on \(M \) s.t. \(X_p \neq 0 \) for all \(p \). Let \(\varphi : M \to M \) be the flow determined by \(X \), and let \(\mu \) be a \(\varphi \)-invariant Borel probability measure.

Theorem 1.2. If \(\mu \) is ergodic and the entropy of \(\mu \) is positive, then there is a topological Markov flow \(\sigma_r : \Sigma_r \to \Sigma_r \) and a map \(\pi_r : \Sigma_r \to M \) s.t.:

1. \(r : \Sigma \to \mathbb{R}^+ \) is Hölder continuous and bounded away from zero and infinity.
2. \(\pi_r \) is Hölder continuous with respect to the Bowen-Walters metric (see §5).
3. \(\pi_r \circ \sigma_r^t = \varphi^t \circ \pi_r \) for all \(t \in \mathbb{R} \).
4. \(\pi_r[\Sigma^\#] \) has full measure with respect to \(\mu \).
5. If \(p = \pi_r(v, t) \) where \(x_i = v \) for infinitely many \(i < 0 \) and \(x_i = w \) for infinitely many \(i > 0 \), then \(\# \{ (y, s) \in \Sigma^\# : \pi_r(y, s) = p \} \leq N(v, w) < \infty \).
6. \(\exists N = N(\mu) < \infty \) s.t. \(\mu \)-a.e. \(p \in M \) has exactly \(N \) pre-images in \(\Sigma^\# \).
Some of the applications we have in mind require a version of this result for non-ergodic measures. To state it, we need to recall some facts from smooth ergodic theory [BP07]. Let $T_p M$ be the tangent space at p and let $(d\varphi^t)_p : T_p M \to T_{\varphi^t(p)} M$ be the differential of $\varphi^t : M \to M$ at p. Suppose μ is a φ–invariant Borel probability measure on M (not necessarily ergodic). By the Oseledets Theorem, for μ–a.e. $p \in M$, for every $0 \neq \vartheta \in T_p M$, the limit $\chi_p(\vartheta) := \lim_{t \to \infty} \frac{1}{t} \log \| (d\varphi^t)_p \vartheta \|_{\varphi^t(p)}$ exists. The values of $\chi_p(\cdot)$ are called the Lyapunov exponents at p. If $\dim(M) = 3$, then there are at most three such values. At least one of them, $\chi_p(X_p)$, equals zero.

Hyperbolic measures: Suppose $\chi_0 > 0$. A χ_0–hyperbolic measure is an invariant measure μ s.t. μ–a.e. $p \in M$ has one Lyapunov exponent in $(-\infty, -\chi_0)$, one Lyapunov exponent in (χ_0, ∞) and one Lyapunov exponent equal to zero.

In dimension 3, every ergodic invariant measure with positive metric entropy is χ_0–hyperbolic, for any $0 < \chi_0 < h_\mu(\varphi)$ [Rue78]. But some hyperbolic measures, e.g. those carried by hyperbolic closed orbits, have zero entropy.

Theorem 1.3. Suppose μ is a χ_0–hyperbolic invariant probability measure for some $\chi_0 > 0$. Then there are a topological Markov flow $\sigma_r : \Sigma_r \to \Sigma_r$ and a map $\pi_r : \Sigma_r \to M$ satisfying (1)–(5) in Theorem 1.2. If μ is ergodic, (6) holds as well.

Results in this spirit were first proved by Ratner and Bowen for Anosov flows and Axiom A flows in any dimension [Rat69, Rat73, Bow73], using the technique of Markov partitions introduced by Adler & Weiss and Sinai for discrete-time dynamical systems [AW67, AW70, Sin68a, Sin68b].

In 1975 Bowen gave a new construction of Markov partitions for Axiom A diffeomorphisms, using shadowing techniques [Bow75, Bow78]. One of us extended these techniques to general $C^{1+\beta}$ surface diffeomorphisms [Sar13]. Our strategy is to apply these methods to a suitable Poincaré section for the flow. The main difficulty is that [Sar13] deals with diffeomorphisms, but Poincaré sections are discontinuous.

In part 1 of the paper, we construct a Poincaré section Λ with the following property: If $f : \Lambda \to \Lambda$ is the section map and $\mathcal{E} \subset \Lambda$ is the set of discontinuities of f, then $\lim \inf_{|n| \to \infty} \frac{1}{2} \log \text{dist}(f^n(p), \mathcal{E}) = 0$ a.e. in Λ. This places us in the context of “non-uniformly hyperbolic maps with singularities” studied in [KSLP86].

In part 2 we explain why the methods of [Sar13] apply to $f : \Lambda \to \Lambda$ despite its discontinuities. The result is a countable Markov partition for $f : \Lambda \to \Lambda$, which leads to a coding of f and its Markov shift, and a coding of $\varphi : M \to M$ as a topological Markov flow.

In part 3, we provide two applications: Theorem 1.1 on the growth of the number of closed orbits; and a result saying that the set of measures of maximal entropy is finite or countable. The proof of Theorem 1.1 uses a mixing/constant suspension dichotomy for topological Markov flows, in the spirit of [Pla72].

Standing assumptions. M is a compact 3–dimensional C^∞ Riemannian manifold without boundary, with tangent bundle $TM = \bigcup_{p \in M} T_p M$, Riemannian metric $\langle \cdot, \cdot \rangle_p$, norm $\| \cdot \|_p$, and exponential map \exp_p (this is different from the \Exp_p in §3).

Given $Y \subset M$, $\text{dist}_Y(y_1, y_2) := \inf \{ \text{lengths of rectifiable curves } \gamma \subset Y \text{ from } y_1 \text{ to } y_2 \}$, where $\inf \emptyset := \infty$. Given two metric spaces $(A,d_A), (B,d_B)$ and a map $F : A \to B$, $\text{Hö}l_A(F) := \sup_{x \neq y} \frac{d_B(F(x), F(y))}{d_A(x,y)}$, and $\text{Lip}(F) := \text{Hö}l_1(F)$.

1For geodesic flows on hyperbolic surfaces, alternative geometric and number theoretic methods are possible. See [Ser81, Ser91, KU07] and references therein.
Let \(X : M \to TM \) be a \(C^{1+\beta} \) vector field on \(M \) \((0 < \beta < 1)\), and \(\varphi : M \to M \) is the flow generated by \(X \). This means that \(\varphi \) is a one-parameter family of maps \(\varphi^t : M \to M \) s.t. \(\varphi^{t+s} = \varphi^t \circ \varphi^s \) for all \(t, s \in \mathbb{R} \), and s.t. \(X_p(f) = \frac{d}{dt}|_{t=0} f(\varphi^t(p)) \) for all \(f \in C^\infty(M) \). In this case \((t, p) \mapsto \varphi^t(p) \) is a \(C^{1+\beta} \) map \([-1, 1] \times M \to M \) [EM70, page 112]. We assume throughout that \(X_p \neq 0 \) for all \(p \).

Part 1. The Poincaré section

2. Poincaré sections

Basic definitions. Suppose \(\varphi : M \to M \) is a flow.

Poincaré section: \(\Lambda \subset M \) Borel s.t. for every \(p \in M \), \(\{ t > 0 : \varphi^t(p) \in \Lambda \} \) is a sequence tending to \(+\infty\), and \(\{ t < 0 : \varphi^t(p) \in \Lambda \} \) is a sequence tending to \(-\infty\).

Roof function: \(R_\Lambda : \Lambda \to (0, \infty), R_\Lambda(p) := \min\{ t > 0 : \varphi^t(p) \in \Lambda \} \).

Poincaré map: \(f_\Lambda : \Lambda \to \Lambda, f_\Lambda(p) := \varphi^{R_\Lambda(p)}(p) \).

Induced measure: Every \(\varphi \)-invariant probability measure \(\mu \) on \(M \) induces an \(f_\Lambda \)-invariant measure \(\mu_\Lambda \) on \(\Lambda \) s.t. \(f_\Lambda \mu = \frac{1}{\mu(\Lambda)} \int_\Lambda (\int_0^{R_\Lambda(p)} g(\varphi^s(p)) \, ds) \, d\mu(p) \) for all \(g \in L^1(\mu) \).

Uniform Poincaré section: \(\Lambda \) is called uniform, if its roof function is bounded away from zero and infinity. If \(\Lambda \) is uniform, then \(\mu_\Lambda \) is finite, and can be normalized. With this normalization, for every Borel subset \(E \subset \Lambda \) and \(0 < \varepsilon < \inf R_\Lambda \),

\[
\mu_\Lambda(E) = \mu(\bigcup_{0 < s \leq R_\Lambda} \varphi^s(E)) / \mu(\bigcup_{0 < s \leq R_\Lambda} \varphi^s(\Lambda)).
\]

The uniform Poincaré sections in this paper will be uniform, and they will all be finite disjoint unions of connected embedded smooth submanifolds with boundary. Let \(\partial \Lambda \) denote the union of the boundaries of these submanifolds. \(\partial \Lambda \) will introduce discontinuities to the Poincaré map of \(\Lambda \).

Singular set: The singular set of a Poincaré section \(\Lambda \) is

\[
\mathcal{S}(\Lambda) := \left\{ p \in \Lambda : \begin{array}{l}
p \text{ does not have a relative neighborhood } V \subset \Lambda \setminus \partial \Lambda \text{ s.t. } \\
V \text{ is diffeomorphic to an open disc, and } f_\Lambda : V \to f_\Lambda(V) \text{ are diffeomorphisms}
\end{array} \right\}.
\]

Regular set: \(\Lambda' := \Lambda \setminus \mathcal{S}(\Lambda) \).

Basic constructions. Let \(\varphi \) be a flow satisfying our standing assumptions.

Canonical transverse disc: \(S_r(p) := \{ \exp_p(\bar{v}) : \bar{v} \in T_pM, \langle \bar{v}, \bar{v} \rangle_p \leq r \} \).

Canonical flow box: \(FB_r(p) := \{ \varphi^t(q) : q \in S_r(p), |t| \leq r \} \).

The following lemmas are standard, see the appendix for proofs.

Lemma 2.1. There is a constant \(r_* > 0 \) which only depends on \(M \) and \(\varphi \) s.t. for every \(p \in M \) and \(0 < r < r_* \), \(S := S_r(p) \) is a \(C^\infty \) embedded closed disc, \(|\varphi(X_q, T_qS)| \geq \frac{r}{2} \) radians for all \(q \in S \), and \(\text{dist}_M(\cdot, \cdot) \leq \text{dist}_S(\cdot, \cdot) \leq 2 \text{ dist}_M(\cdot, \cdot) \).

Lemma 2.2. There are constants \(r_f, \delta \in (0, 1) \) which only depend on \(M \) and \(\varphi \) s.t. for every \(p \in M \), \(FB_r(p) \) contains an open ball with center \(p \) and radius \(\delta \), and \((q, t) \mapsto \varphi^t(q) \) is a diffeomorphism from \(S_r(p) \times [-r_f, r_f] \) onto \(FB_r(p) \).
Lemma 2.3. There are constants \(L, H > 1 \) which only depend on \(M \) and \(\varphi \) s.t.
\[t_p : FB_{\tau_f}(p) \to [-\tau_f, \tau_f] \]
and \(q_p : FB_{\tau_f}(p) \to S_{\tau_f}(p) \) defined by
\[z = \varphi^{t_f}(q_p(z)) \]
are well-defined maps s.t. \(\text{Lip}(t_p), \text{Lip}(q_p) \leq L \) and \(\| t_p \|_{C^{1+\beta}}, \| q_p \|_{C^{1+\beta}} \leq H \).

\(t_p \) and \(q_p \) are called the flow box coordinates.

Set \(\tau := 10^{-1} \min \{ 1, \tau_r, \tau_f, d \} / (1 + \max \| X_p \|) \).

Standard Poincaré section: A Poincaré section of the form
\[\Lambda = \Lambda(p_1, \ldots, p_N; r) := \bigcup_{i=1}^N S_r(p_i) \]
where \(r < \tau \), \(\sup R_\Lambda < \tau \), and \(S_r(p_i) \) are pairwise disjoint. The points \(p_1, \ldots, p_N \) are called the centers of \(\Lambda \), and \(r \) is called the radius of \(\Lambda \).

We will discuss the existence of standard Poincaré sections in the next subsection. Let us assume for the moment that they exist, and study some of their properties.

Fix a standard Poincaré section \(\Lambda = \Lambda(p_1, \ldots, p_N; r) \) and write \(f = f_\Lambda \), \(R = R_\Lambda \), \(\mathcal{S} := \mathcal{S}(\Lambda) \), and \(\Lambda' := \Lambda \setminus \mathcal{S} \).

Lemma 2.4. Every standard Poincaré section is uniform: \(\inf R > 0 \).

Proof. Let \(x \in S_r(p_i), f(x) \in S_r(p_j) \). If \(i = j \) then \(R(x) > 2\tau_f \), because \(\varphi^t(x) \) must leave \(FB_{\tau_f}(p_i) \) before it can return to it. If \(i \neq j \), then \(t^i(x) \) is a curve from \(S_r(p_i) \) to \(S_r(p_j) \), and \(R(x) \geq \text{dist}_M(S_r(p_i), S_r(p_j)) / \max \| X_p \| \). \(\square \)

Lemma 2.5. \(R, f \) and \(f^{-1} \) are differentiable on \(\Lambda' \), and \(\exists \mathfrak{C} \) only depending on \(M \) and \(\varphi \) s.t. \(\sup_{x \in \Lambda'} \| dR_x \| < \mathfrak{C}, \sup_{x \in \Lambda'} \| df_x \| < \mathfrak{C}, \sup_{x \in \Lambda'} \| (df_x)^{-1} \| < \mathfrak{C}, \| f \|_{C^{1+\beta}} \mathfrak{C} < \mathfrak{C} \) and \(\| f^{-1} \|_{C^{1+\beta}} \mathfrak{C} < \mathfrak{C} \) for all open and connected \(U \subset \Lambda' \).

Proof. Suppose \(x \in \Lambda' \), then \(\exists i, j, k \) s.t. \(f^{-1}(x) \in S_r(p_i), x \in S_r(p_j), \) and \(f(x) \in S_r(p_k) \). Since \(f \) is continuous at \(x \) and the canonical discs which form \(\Lambda \) are closed and disjoint, \(x \) has an open neighborhood \(V \) in \(S_r(p_j) \), s.t. for all \(y \in V \), \(f(y) \in S_r(p_k) \) and \(f^{-1}(y) \in S_r(p_i) \).

Since \(\sup R < \tau < 10^{-1} \mathfrak{C} / \max \| X_p \| \), for every \(y \in V \),
\[\text{dist}_M(y, p_k) \leq \text{dist}_M(y, f(y)) + \text{dist}_M(f(y), p_k) \leq \max \| X_p \| \sup R + \tau < \mathfrak{C} \).

Similarly, \(\text{dist}_M(y, p_i) < \mathfrak{C} \). Thus \(V \subset B_\mathfrak{C}(p_i) \cap B_\mathfrak{C}(p_k) \subset FB_{\tau_f}(p_i) \cap FB_{\tau_f}(p_k) \), whence \(R|_V = -t_{p_k}, f|_V = q_{p_k}, f^{-1}|_V = q_{p_i} \). Now use Lemma 2.3. \(\square \)

Let \(\mu \) be a flow invariant probability measure, and let \(\mu_\Lambda \) be the induced measure on \(\Lambda \). If \(\mu_\Lambda(\mathcal{S}) = 0 \), then \(\mu_\Lambda(\bigcup_{n \in \mathbb{Z}} f^n(\mathcal{S})) = 0 \), and the derivative cocycle \(\text{df}_n : T_x\Lambda \to T_{f^n(x)}\Lambda \) is well-defined \(\mu_\Lambda - \text{a.e.} \). By Lemma 2.5, \(\log \| df_x \|, \log \| df_x^{-1} \| \) are integrable (even bounded), so the Oseledets Multiplicative Ergodic Theorem applies, and \(f \) has well-defined Lyapunov exponents \(\mu_\Lambda - \text{a.e.} \). Fix \(\chi > 0 \).

Lemma 2.6. Suppose \(\mu_\Lambda(\mathcal{S}) = 0 \). If \(\varphi \) has one Lyapunov exponent in \((-\infty, -\chi) \) and one Lyapunov exponent in \((\chi, \infty) \) \(\mu \)-a.e., then \(f \) has one Lyapunov exponent in \((-\chi, \ln \mathfrak{C}], -\chi \ln R \) and one Lyapunov exponent in \((\chi, \ln \mathfrak{C}] \) \(\mu_\Lambda - \text{a.e.} \).

Proof. Let \(\Omega_\chi \) denote the set of points where the flow has one zero Lyapunov exponent, one Lyapunov exponent in \((-\infty, -\chi) \) and one Lyapunov exponent in \((\chi, \infty) \). By assumption \(\mu_\Lambda(\Omega_\chi^c) = 0 \). Thus \(\Lambda_\chi := \{ x \in \Lambda \setminus \bigcup_{n \in \mathbb{Z}} f^{-n}(\mathcal{S}) : \exists t > 0 \text{ s.t. } \varphi^t(x) \in \Omega_\chi \} \) has full measure with respect to \(\mu_\Lambda \).
Let $\Lambda^\ast := \{x \in \Lambda : \chi(x, \vec{v}) := \lim_{n \to \infty} \frac{1}{n} \log \|df^n_x \vec{v}\|$ exists for all $0 \neq \vec{v} \in T_x \Lambda\}$. By Oseledets’ theorem, Λ^\ast has full μ_Λ-measure. By Lemma 2.5, $|\chi(x, \vec{v})| \leq |\ln C|$.

The Lyapunov exponents of φ are constant along flow lines, therefore for every $x \in \Lambda^\ast$, there are vectors $e^x_s, e^x_u \in T_x M$ s.t. $\lim_{t \to \infty} \frac{1}{t} \log \|d\varphi^t_x e^x_s\| < -\chi$ and $\lim_{t \to \infty} \frac{1}{t} \log \|d\varphi^t_x e^x_u\| > \chi$. Let $\vec{n}(x) := \frac{\vec{X}_x}{\|\vec{X}_x\|}$. Since $\lim_{t \to \infty} \frac{1}{t} \log \|d\varphi^t_x \vec{n}(x)\| < 0$, $\{e^x_s, e^x_u, \vec{n}(x)\}$ span $T_x M$. The vectors e^x_s, e^x_u are not necessarily in $T_x \Lambda$.

Pick two independent vectors $\vec{v}_1, \vec{v}_2 \in T_x \Lambda$ and write $\vec{v}_i = \alpha_i e^x_s + \beta_i e^x_u + \gamma_i \vec{n}(x)$ ($i = 1, 2$). $(\alpha_1), (\beta_2)$ must be linearly independent, otherwise some non-trivial linear combination of \vec{v}_1, \vec{v}_2 equals $\vec{n}(x)$, which is impossible since span$\{\vec{v}_1, \vec{v}_2\} = T_x \Lambda$ and Λ is transverse to the flow. It follows that $T_x \Lambda$ contains two vectors of the form

$$\vec{v}^s = e^x_s + \gamma \vec{n}(x), \quad \vec{v}^u = e^x_u + \gamma \vec{n}(x).$$

These vectors are the projections of e^x_s, e^x_u to $T_x \Lambda$ along $\vec{n}(x)$. We will estimate their Lyapunov exponents.

Write $\Lambda = \Lambda(p_1, \ldots, p_N; r)$. As in the proof of Lemma 2.5, for every $x \in \Lambda \setminus \mathcal{S}$, if $f(x) \in S_r(p)$, then x has a neighborhood V in Λ s.t. $V \subset FB_{\delta r}(p)$, $R|V = -t_{p}$, and $f|V = q_n$. More generally, suppose $f^n(x) \in S_r(q_n)$ for $q_n \in \{p_1, \ldots, p_N\}$. If $x \not\in \bigcup_{k \in \mathbb{Z}} f^k(\mathcal{S})$, then there are open neighborhoods V_n of x in Λ s.t.

$$f^{n-1}(V_n) \subset FB_{\delta r}(q_n), \quad \text{and } f^n|V_n = (q_{q_n} \circ \cdots \circ q_{q_1})|V_n. \quad (2.1)$$

By the definition of the flow box coordinates, for every i, $q_{q_i}(\cdot) = \varphi^{-t_{q_i}(\cdot)}(-\cdot)$. Since $x \not\in \bigcup_{k \in \mathbb{Z}} f^k(\mathcal{S})$, t_{q_i} is continuous on a neighborhood of $f^{i-1}(x)$, therefore the smaller V_n, the closer $-t_{q_i}(f^{i-1}(x))$ is to $R(f^{i-1}(x))$. If V_n is small enough, and

$$R_n := R(f^n(x) + \cdots + R(f^{n-1}(x)),$$

then $\varphi^{R_n}(y) \in FB_{\delta r}(q_n)$ for all $y \in V_n$, and we can decompose

$$q_{q_n} \circ \cdots \circ q_{q_1}(y) = (q_{q_n} \circ \varphi^{R_n})(y) \quad (y \in V_n). \quad (2.2)$$

We emphasize that the power R_n is the same for all $y \in V_n$.

We use (2.1), (2.2) to calculate $\log \|df^n_x \vec{v}_s\|$. First note that $(dq_{q_i})_x \vec{n}(x) = 0$: let $\gamma(t) = \varphi^t(x)$, then $q_{q_i}[\gamma(t)] = q_{q_i}(x)$ for all $|t|$ small, so $\frac{d}{dt}|_{t=0} q_{q_i}[\gamma(t)] = 0$. By (2.1), $\log \|df^n_x \vec{v}_s\| = \max_i \log \|df^n_x e^s_{q_i}\|$. By (2.2), $\|df^n_x \vec{v}_s\| \leq \max_i \log \|df^n_x e^s_{q_i}\| < \mathcal{M} \log R_n \leq -\chi \lim \sup_{n \to \infty} \frac{R_n}{n} \leq -\chi \lim \inf_{n \to \infty} \frac{R_n}{n}.$

Applying this argument to the reverse flow $\psi^{-t} := \varphi^{-t}$, we find that the other Lyapunov exponent belongs to $(-\chi \lim \inf R, \infty)$.

\textbf{Remark.} If μ is ergodic, then $\lim \sup_{n \to \infty} \frac{R_n}{n} = \int R d\mu_\Lambda = 1$, and we get the stronger estimate that the Lyapunov exponents of f are a.s. outside $(-\chi, \chi)$.

\textbf{Adapted Poincaré sections.} Let Λ be a standard Poincaré section. Let dist$_\Lambda$ denote the intrinsic Riemannian distance on Λ (with the convention that the distance between different connected components of Λ is infinite). Let μ be a φ-invariant probability measure, and let μ_Λ be the induced probability measure on Λ.

Recall that $f_\Lambda : \Lambda \to \Lambda$ may have singularities. The following definition is motivated by the treatment of Pesin theory for maps with singularities in [KSLP86].

\textbf{Adapted Poincaré section:} A standard Poincaré section Λ is \textit{adapted to} μ, if

1. $\mu_\Lambda(\mathcal{S}) = 0$, where $\mathcal{S} = \mathcal{S}(\Lambda)$ is the singular set of Λ,
2. $\lim_{n \to \infty} \frac{1}{n} \log \text{dist}_\Lambda(f^n_\Lambda(p), \mathcal{S}) = 0 \mu_\Lambda$-a.e.,
(3) \[\lim_{n \to \infty} \frac{1}{n} \log \text{dist}_P(f_i^n(p), \mathcal{S}) = 0 \text{ } \mu_A\text{-a.e.} \]

Notice that (2) \(\Rightarrow\) (1), by Poincaré’s recurrence theorem.

We wish to show that any \(\varphi\)-invariant Borel probability measure has adapted Poincaré sections. The idea is to construct a one-parameter family of standard Poincaré sections \(\Lambda_r\), and show that \(\Lambda_r\) is adapted to \(\mu\) for a.e. \(r\). The family is constructed in the next lemma:

Lemma 2.7. For every \(h_0 > 0, K_0 > 1\) there are \(p_1, \ldots, p_N \in M, 0 < \rho_0 < h_0/K_0\) s.t. for every \(r \in [\rho_0, K_0\rho_0]\), \(\Lambda(p_1, \ldots, p_N; r)\) is a standard Poincaré section with roof function and radius bounded above by \(h_0\).

Proof. By compactness, \(M\) can be covered by a finite number of flow boxes \(FB_r(z_i)\) with radius \(r\). The union of \(S_r(z_i)\) is a Poincaré section, but this section is not necessarily standard, because \(S_r(z_i)\) are not necessarily pairwise disjoint.

To solve this problem we approximate each \(S_r(z_i)\) by a finite “net” of points \(z_{jk}^i\), and shift each \(z_{jk}^i\) up or down with the flow to points \(p_{jk}^i = \varphi^{\theta_{jk}^i}(z_{jk}^i)\) in such a way that \(S_{R_0}(p_{jk}^i)\) are pairwise disjoint for some \(R_0 < r\) which is still large enough to ensure that \(\bigcup S_{R_0}(z_{jk}^i)\) is a Poincaré section. The details are somewhat lengthy to write down, and they will not be used elsewhere in the paper. The reader who believes that this can be done, may skip the proof.

We begin with the choice of some constants. Let:

\(h_0 > 0\) small, \(K_0 > 1\) large (given to us). W.l.o.g., \(0 < h_0 < r_f\).

\(r_{\text{inj}} \in (0,1)\) s.t. \(\exp_{\mathcal{S}_i} \{ \| \vec{v} \| \leq r_{\text{inj}} \} \to M\) is \(\sqrt{2}\)-bi-Lipschitz for all \(p \in M\).

\(S_0 := 1 + \max \| X_p \|\) and \(\tau, \vartheta, \mathfrak{L}\) are as in Lemmas 2.1–2.3. Recall that \(\tau, \vartheta \in (0,1)\) and \(\mathfrak{L} > 1\).

\(r_0 := \frac{1}{2}\tau h_0 r_{\text{inj}}/(K_0 + S_0).\) Notice that \(r_0 < \frac{1}{2}\tau, \frac{1}{2}\vartheta, \frac{1}{2}h_0, \frac{1}{2}r_{\text{inj}}\).

By Lemma 2.2 and the compactness of \(M\), it is possible to cover \(M\) by finitely many flow boxes \(FB_{r_0}(z_1), \ldots, FB_{r_0}(z_N)\). With this \(N\) in mind, let:

\(\rho_0 := r_0(10K_0S_0N\mathfrak{L})^{-20}\). This is smaller than \(r_0\).

\(R_0 := K_0\rho_0.\) This is larger than \(\rho_0\), but still much smaller than \(r_0\).

\(\delta_0 := \rho_0/(8\mathfrak{L}^2).\) This is much smaller than \(r_0\).

\(\kappa_0 := \lfloor 10^2K_0\mathfrak{L}^4 \rfloor,\) a big integer.

For every \(i,\) complete \(\nu_i := X_{z_i}/\|X_{z_i}\|\) to an orthonormal basis \(\{\vec{u}_i, \vec{v}_i, \vec{n}_i\}\) of \(T_{z_i}M,\) and let \(J_i : \mathbb{R}^2 \to M\) be the map

\[J_i(x, y) = \exp_{z_i}(x\vec{u}_i + y\vec{v}_i), \]

then \(S_{r_0}(z_i) = J_i(\{ (x, y) : x^2 + y^2 \leq r_0^2 \})\). \(J_i\) is \(\sqrt{2}\)-bi-Lipschitz, because \(r_0 < r_{\text{inj}}\).

Let \(I := \{ (j, k) \in \mathbb{Z}^2 : (j\delta_0)^2 + (k\delta_0)^2 \leq r_0^2 \}\). Given \(1 \leq i \leq N\) and \((j, k) \in I,\) define

\[z_{jk}^i := J_i(j\delta_0, k\delta_0). \]

Then \(\{ z_{jk}^i : (j, k) \in I \}\) is a net of points in \(S_{r_0}(z_i)\), and for all \((j, k) \neq (\ell, m)\)

\[
\frac{1}{\sqrt{2}} \leq \frac{\text{dist}_M(z_{jk}^i, z_{lm}^i)}{\delta_0 \sqrt{(j-\ell)^2 + (k-m)^2}} \leq \sqrt{2}.
\]

We will construct points \(p_{jk}^i := \varphi^{\theta_{jk}^i}(z_{jk}^i)\) with \(\theta_{jk}^i \in [-r_0, r_0]\) s.t. \(S_{R_0}(p_{jk}^i)\) are pairwise disjoint. The following claim will help us prove disjointness.
CLAIM. Suppose \(p_{jk}^i = \varphi_{\theta_{jk}}^i(z_{jk}^i) \), \(p_{lm}^j = \varphi_{\theta_{lm}}^j(z_{lm}^j) \), where \(\theta_{jk}^i, \theta_{lm}^j \in [-r_0, r_0] \). If \(S_{R_0}(p_{jk}^i) \cap S_{R_0}(\varphi_{\theta_{jk}}^i(z_{jk}^i)) \neq \emptyset \) and \(S_{R_0}(p_{lm}^j) \cap S_{R_0}(\varphi_{\theta_{lm}}^j(z_{lm}^j)) \neq \emptyset \) for some \(z_{jk}^i, z_{lm}^j \) and some \(\tau_1, \tau_2 \in [-r_0, r_0] \), then \(\max\{|j-\ell|, |k-m|\} < \kappa_0 \).

In particular, \(S_{R_0}(p_{jk}^i) \cap S_{R_0}(p_{lm}^j) \neq \emptyset \Rightarrow \max\{|j-\ell|, |k-m|\} < \kappa_0 \) (take \(z_{jk}^i = z_{lm}^j = \tau_1^i, \tau_2 = \tau_2^j \)).

Proof. \(S_{R_0}(p_{jk}^i), S_{R_0}(p_{lm}^j), z_{\alpha\beta}^\gamma, \varphi_{\theta_{jk}}^i(z_{jk}^i), \varphi_{\theta_{lm}}^j(z_{lm}^j) \) are all contained in \(B_\delta(z_i) \):

1. \(S_{R_0}(p_{jk}^i) \subset B_\delta(z_i) \), because if \(q \in S_{R_0}(p_{jk}^i) \), then \(\text{dist}_M(q, z_i) \leq \text{dist}_M(q, p_{jk}^i) + \text{dist}_M(p_{jk}^i, z_{jk}^i) + \text{dist}(z_{jk}^i, z_i) \leq R_0 + r_0 S_0 + r_0 < \delta \). Similarly, \(S_{R_0}(p_{lm}^j) \subset B_\delta(z_i) \).

2. \(z_{\alpha\beta}^\gamma \in B_\delta(z_i) \): dist\(\left(\text{dist}_M(z_{\alpha\beta}^\gamma, z_i) \leq \text{dist}_M(z_{\alpha\beta}^\gamma, \varphi_{\theta_{jk}}^i(z_{jk}^i)) + \text{dist}_M(\varphi_{\theta_{jk}}^i(z_{jk}^i), p_{jk}^i) \right) + \text{dist}_M(p_{jk}^i, z_{jk}^i) + \text{dist}_M(z_{jk}^i, z_i) \leq R_0 + 2R_0 + r_0 S_0 + r_0 < \delta \).

3. \(\varphi_{\theta_{jk}}^i(z_{jk}^i) \in B_\delta(z_i) \): dist\(\left(\text{dist}_M(\varphi_{\theta_{jk}}^i(z_{jk}^i), z_i) \leq \text{dist}_M(\varphi_{\theta_{jk}}^i(z_{jk}^i), p_{jk}^i) + \text{dist}_M(p_{jk}^i, z_{jk}^i) + \text{dist}_M(z_{jk}^i, z_i) \right) < 2R_0 + r_0 S_0 + r_0 < \delta \). Similarly, \(\varphi_{\theta_{lm}}^j(z_{lm}^j) \in B_\delta(z_i) \).

By Lemma 2.2, the flow box coordinates \(t_{z_i} \), \(z_i \) of \(\varphi_{\theta_{jk}}^i(z_{jk}^i), \varphi_{\theta_{lm}}^j(z_{lm}^j), z_{\alpha\beta}^\gamma \), and of every point in \(S_{R_0}(p_{jk}^i), S_{R_0}(p_{lm}^j) \) are well-defined.

Recall that \(t_{z_i}, q_{z_i} \) have Lipschitz constants less than \(\mathcal{L} \). In the set of circumstances we consider distr\((p_{jk}^i, \varphi_{\theta_{jk}}^i(z_{jk}^i)) \leq 2R_0 \) and \(q_{z_i} = p_{jk}^i, z_{\alpha\beta}^\gamma \), so dist\(\left(\text{dist}_M(z_{jk}^i, q_{z_i}) = \text{dist}_M(q_{z_i}, (p_{jk}^i, q_{z_i})) \leq 2\mathcal{L} R_0 \right) \).

Similarly, dist\((z_{lm}^j, q_{z_i}) \leq 2R_0 \). It follows that dist\(\left(\text{dist}_M(z_{jk}^i, z_{lm}^j) \leq 4\mathcal{L} R_0 \right) \). By (2.3), max\(\{|j-\ell|, |k-m|\} \leq 4\sqrt{2}\mathcal{L} R_0 / \delta_0 = 4\sqrt{2}\mathcal{L} K_0 r_0 / (\rho_0 / 8\mathcal{L}^2) < \kappa_0 \).

The claim is proved. We proceed to construct by induction \(\theta_{jk}^i \in [-r_0, r_0] \) and \(p_{jk}^i := \varphi_{\theta_{jk}^i}(z_{jk}^i) \) such that \(\{S_{R_0}(p_{jk}^i) : i = 1, \ldots, N; (j, k) \in I\} \) are pairwise disjoint.

Basis of induction: \(\exists \theta_{jk}^i \in [-r_0, r_0] \) s.t. \(\{S_{R_0}(p_{jk}^i)\}_{(j, k) \in I} \) are pairwise disjoint.

Construction: Let \(\tilde{\sigma} : \{0, 1, \ldots, \kappa_0 - 1\} \times \{0, 1, \ldots, \kappa_0 - 1\} \to \{0, 1, \ldots, \kappa_0 \} \) be a bijection, and set \(\sigma_{jk} := \tilde{\sigma}(j \mod\kappa_0, k \mod\kappa_0) \). This has the effect that

\[
0 < \max\{|j-\ell|, |k-m|\} < \kappa_0 \Rightarrow |\sigma_{jk} - \sigma_{lm}| \geq 1.
\]

We let \(\theta_{jk}^1 := 2R_0 \mathcal{L} \sigma_{jk} \) and \(p_{jk}^1 := \varphi_{\theta_{jk}^1}(z_{jk}^1) \). It is easy to check that \(0 < \theta_{jk}^1 < r_0 \).

One shows as in the proof of the claim that \(S_{R_0}(p_{jk}^1) \subset B_\delta(z_i) \), therefore \(t_{z_i} \leq \mathcal{L} \) and \(t_{z_i}(p_{jk}^1) = \theta_{jk}^1 \).

\[
t_{z_i}[S_{R_0}(p_{jk}^1)] \subset (\vartheta_{jk}^1 - 2\mathcal{L} R_0, \vartheta_{jk}^1 + \mathcal{L} R_0).
\]

Now suppose \((j, k) \neq (\ell, m) \). If \(\max\{|j-\ell|, |k-m|\} \geq \kappa_0 \), then \(S_{R_0}(p_{jk}^1) \cap S_{R_0}(p_{lm}^j) = \emptyset \), because of the claim. If \(\max\{|j-\ell|, |k-m|\} < \kappa_0 \), then \(\vartheta_{jk}^1 - \vartheta_{lm}^j \geq 2R_0 \mathcal{L} \). By (2.4), \(t_{z_i}[S_{R_0}(p_{jk}^1)] \cap t_{z_i}[S_{R_0}(p_{lm}^j)] = \emptyset \), and again \(S_{R_0}(p_{jk}^1) \cap S_{R_0}(p_{lm}^j) = \emptyset \).

Induction step: If \(\exists \theta_{jk}^i \in [-r_0, r_0] \) s.t. \(\{S_{R_0}(p_{jk}^i) : (j, k) \in I, i = 1, \ldots, n\} \) are pairwise disjoint, then \(\exists \theta_{jk}^i \in [-r_0, r_0] \) s.t. \(\{S_{R_0}(p_{jk}^i) : (j, k) \in I, i = 1, \ldots, n + 1\} \) are pairwise disjoint.

Fix \((j, k) \in I \). We divide \(\{p_{lm}^i : 1 \leq i \leq n, (\ell, m) \in I\} \) into two groups:

1. "Dangerous" (for \(p_{jk}^{i+1} \)): \(\exists \theta \in [-r_0, r_0] \) s.t. \(S_{R_0}(p_{lm}^i) \cap S_{R_0}(\varphi_{\theta}(z_{jk}^{i+1})) \neq \emptyset \);
“Safe” (for p_{jk}^{n+1}): not dangerous.

No matter how we define θ_{jk}^{n+1}, $S_{R_0}(p_{jk}^{n+1}) \cap S_{R_0}(p_{lm}^{i}) = \emptyset$ for all safe p_{lm}^{i}. But the dangerous p_{lm}^{i} will introduce constraints on the possible values of θ_{jk}^{n+1}.

By the claim, if $p_{l,m_1}^{i}, p_{l',m_2}^{i}$ are dangerous for p_{jk}^{n+1}, then $|t_1 - t_2|, |m_1 - m_2| < \kappa_0$. It follows that there are at most $4\kappa_0^2 N$ dangerous points for a given p_{jk}^{n+1}.

Let $W_{n+1}(p_{lm}^{i}) := t_{n+1} [S_{R_0}(p_{lm}^{i})]$. Since $\text{Lip}(t_{n+1}) \leq 2$, $W_{n+1}(p_{lm}^{i})$ is a closed interval of length less than $w_0 := 2\|R_0\|_2$.

If p_{lm}^{i} is dangerous for p_{jk}^{n+1}, then we call $W_{n+1}(p_{lm}^{i})$ a “dangerous interval” for p_{jk}^{n+1}. Let W_{jk}^{n+1} denote the union of all dangerous intervals for p_{jk}^{n+1}, and define

$$T_{jk}^{n+1}(j, k) := \bigcup_{|j' - j|, |k' - k| < \kappa_0} W_{jk}^{n+1}.$$

This is a union of no more than $16\kappa_0^4 N$ intervals of length less than w_0 each.

Cut $[-r_0, r_0]$ into four equal “quarters”: $Q_1 := [-r_0, -\frac{r_0}{2}], \ldots, Q_4 := [\frac{r_0}{2}, r_0]$. If we subtract $n < L/w$ intervals of length less than w from an interval of length L, then the remainder must contain at least one interval of length $(L - nw)/(n + 1)$.

It follows that for every $s = 1, \ldots, 4$,

$$Q_s \setminus T_{jk}^{n+1}(\kappa_0, \kappa_0) \supseteq \text{an interval of length } \frac{r_0}{32\kappa_0^4 N + 2} - w_0 \gg 10\kappa_0^2 N.$$

Let $\tau_{jk}^{n+1}(j, k)$ denote the

- center of such an interval in Q_1, when $\left(\frac{|j|}{\kappa_0}, \frac{|k|}{\kappa_0}\right) = (0, 0) \mod 2$,
- center of such an interval in Q_2, when $\left(\frac{|j|}{\kappa_0}, \frac{|k|}{\kappa_0}\right) = (1, 0) \mod 2$,
- center of such an interval in Q_3, when $\left(\frac{|j|}{\kappa_0}, \frac{|k|}{\kappa_0}\right) = (0, 1) \mod 2$,
- center of such an interval in Q_4, when $\left(\frac{|j|}{\kappa_0}, \frac{|k|}{\kappa_0}\right) = (1, 1) \mod 2$.

Define $\theta_{jk}^{n+1} := \tau_{jk}^{n+1}(\kappa_0, \kappa_0) + 3w_0\sigma_{jk}$.

This belongs to $[-r_0, r_0]$, because $\tau_{jk}^{n+1}(\kappa_0, \kappa_0) = 3w_0\sigma_{jk}$ is the center of an interval in Q_s of radius at least $5\kappa_0^2 w_0 > 3w_0\sigma_{jk}$, and $Q_s \supseteq [-r_0, r_0]$. Moreover, since $\text{Lip}(t_{n+1}) \leq 2$ and $w_0 = 2\|R_0\|_2$ we have $t_{n+1}(S_{R_0}(p_{jk}^{n+1})) \subseteq [\theta_{jk}^{n+1} - w_0, \theta_{jk}^{n+1} + w_0]$, which by the definition of $\tau_{jk}^{n+1}(j, k)$, lies inside $T_{jk}^{n+1}(\kappa_0, \kappa_0)$. So

$$t_{n+1}(S_{R_0}(p_{jk}^{n+1})) \subseteq [-r_0, r_0] \setminus T_{jk}^{n+1}(\kappa_0, \kappa_0). \quad (2.5)$$

We use this to show that $S_{R_0}(p_{jk}^{n+1}) \cap S_{R_0}(p_{lm}^{i}) = \emptyset$ for $(\ell, m) \in I$, $i \leq n$. If p_{lm}^{i} is safe for p_{jk}^{n+1}, then there is nothing to prove. If it is dangerous, $t_{n+1}(S_{R_0}(p_{lm}^{i})) \subseteq W_{jk}^{n+1} \subseteq T_{jk}^{n+1}(\kappa_0, \kappa_0)$. By (2.5), $S_{R_0}(p_{jk}^{n+1}) \cap S_{R_0}(p_{lm}^{i}) = \emptyset$.

Next we show that $S_{R_0}(p_{jk}^{n+1})$ is disjoint from every $S_{R_0}(p_{lm}^{i})$ s.t. $(\ell, m) \neq (j, k)$. There are three cases:

1. $\max\{|j - \ell|, |k - m|\} \geq \kappa_0$: Use the claim.

2. $0 < \max\{|j - \ell|, |k - m|\} < \kappa_0$ and $\left(\frac{|j|}{\kappa_0}, \frac{|k|}{\kappa_0}\right) = \left(\frac{|\ell|}{\kappa_0}, \frac{|m|}{\kappa_0}\right)$: In this case $|\theta_{jk}^{n+1} - \theta_{lm}^{i}| \geq 3w_0$. Since $t_{n+1}(S_{R_0}(p_{jk}^{n+1})) \subseteq [\theta_{jk}^{n+1} - w_0, \theta_{jk}^{n+1} + w_0]$ and $t_{n+1}(S_{R_0}(p_{lm}^{i})) \subseteq [\theta_{lm}^{i} - w_0, \theta_{lm}^{i} + w_0]$ so $S_{R_0}(p_{jk}^{n+1}) \cap S_{R_0}(p_{lm}^{i}) = \emptyset$. So $S_{R_0}(p_{jk}^{n+1}) \cap S_{R_0}(p_{lm}^{i}) = \emptyset$.

3. \(0 < \max\{|j - \ell|,|k - m|\} < \kappa_0 \) and \((\lfloor \frac{\ell}{\kappa_0} \rfloor, \lfloor \frac{k}{\kappa_0} \rfloor) \neq (\lfloor \frac{m}{\kappa_0} \rfloor) \): In this case
\[
\max\{|\lfloor \frac{j}{\kappa_0} \rfloor|,|\lfloor \frac{k}{\kappa_0} \rfloor|,|\lfloor \frac{m}{\kappa_0} \rfloor\|=1,
\]
so \(\tau^{n+1}(\kappa_0[\frac{\ell}{\kappa_0}],\kappa_0[\frac{k}{\kappa_0}]), \tau^{n+1}(\kappa_0[\frac{m}{\kappa_0}]) \) fall in different \(Q_\kappa \). Necessarily \(t_{\ell+1} \cdot S_\kappa(p^{n+1}_j) \cap t_{k+1} \cdot S_\kappa(p^{n+1}_k) = \emptyset \), so \(S_\kappa(p^{n+1}_j) \cap S_\kappa(p^{n+1}_k) = \emptyset \).

This concludes the inductive step, and the construction of \(\theta^j \).

Completion of the proof: For every \(r \in [\rho_0,R_0] \), \(\Lambda_r := \bigcup_{i=1}^N \bigcup_{(j,k) \in I} S_r(p^{i,j}_{jk}) \) is a standard Poincaré section with roof function bounded above by \(h_0 \).

We saw that the union is disjoint for \(r = R_0 \), therefore it’s disjoint for all \(r \leq R_0 \).

We’ll show that the union is a Poincaré section with roof function bounded by \(h_0 \) for \(r = \rho_0 \), and then this statement will follow for all \(r \geq \rho_0 \).

Given \(p \in M \), we must find \(0 < R \leq h_0 \) s.t. \(\varphi^R(p) \in \Lambda_{\rho_0} \). Since \(M \supset \bigcup_{i=1}^N FB_{\rho_0}(z_i) \), \(\exists i \) s.t. \(\varphi^{\rho_0}(p) \in FB_{\rho_0}(z_i) \). Therefore \(\varphi^{\rho_0}(p) = \varphi^t(z) \) for some \(z \in S_{\rho_0}(z_i) \), \(|t| \leq r_0 \), whence \(\varphi^{\rho_0-t}(p) \in S_{\rho_0}(z_i) \).

Write \(\varphi^{\rho_0-t}(p) = J_i(x,y) \) for some \((x,y) \) s.t. \(x^2 + y^2 \leq r_0^2 \), and choose \((j,k) \in I \) s.t. \(|x - j\delta_0|,|y - k\delta_0| < \delta_0 \). Since \(J_i \) is \(\sqrt{2} \)-bi-Lipschitz, \(\text{dist}_M(\varphi^{\rho_0-t}(p),z_{jk}^i) < 2\delta_0 \).

It follows that \(\text{dist}_M(\varphi^{\rho_0-t}(p),p_{jk}^i) < 2\delta_0 + \rho_0 S_0 < \delta_0 \). This places \(\varphi^{\rho_0-t}(p) \) inside \(FB_{\rho_0}(p_{jk}^i) \).

Let \(\text{dist}_S \) denote the intrinsic distance on \(S_{\rho_0}(p_{jk}^i) \). We have \(\text{dist}_S \leq 2 \text{dist}_M \) (see Lemma 2.1), therefore, since \(p_{jk}^i = q_{p_{jk}^i}(z_{jk}^i) \),
\[
\text{dist}_S(q_{p_{jk}^i}(\varphi^{\rho_0-t}(p)),p_{jk}^i) = \text{dist}_S(q_{p_{jk}^i}(\varphi^{\rho_0-t}(p)),q_{p_{jk}^i}(z_{jk}^i)) \leq \\
\leq 2 \text{dist}_M(q_{p_{jk}^i}(\varphi^{\rho_0-t}(p)),q_{p_{jk}^i}(z_{jk}^i)) \leq 2 \text{dist}_M(\varphi^{\rho_0-t}(p),z_{jk}^i) < 4\delta_0 < \rho_0.
\]

So \(\varphi^{R}(p) \in S_{\rho_0}(p_{jk}^i) \subset \Lambda_{\rho_0} \) for \(R := 4\rho_0 - t - t_{p_{jk}^i}(\varphi^{\rho_0-t}(p)) \).

Now \(|t_{p_{jk}^i}(\varphi^{\rho_0-t}(p))| \leq 2\rho_0 \), because \(|t_{p_{jk}^i}| \leq \rho_0 \) and \(|t_{p_{jk}^i}(\varphi^{\rho_0-t}(p)) + \theta^i_{jk} - 2 \text{dist}_M(\varphi^{\rho_0-t}(p),z_{jk}^i) | \leq 2 \text{dist}_M(\varphi^{\rho_0-t}(p),z_{jk}^i) < 2\delta_0 < \rho_0 \). Also \(|t| < \rho_0 \).

So \(\rho_0 < R < 7\rho_0 \). Since \(\rho_0 < \frac{1}{2} h_0 \), \(0 < R < h_0 \).

Theorem 2.8. Every flow invariant probability measure \(\mu \) has adapted standard Poincaré sections with arbitrarily small roof functions.

Proof. We use parameter selection, as in [LS82]. Let \(\Lambda_r := \Lambda(p_1, \ldots , p_N; r) \) \((a \leq r \leq b)\) be a one-parameter family of standard Poincaré sections as in Lemma 2.7.

We will show that \(\Lambda_r \) is adapted to \(\mu \) for a.e. \(r \).

Without loss of generality \(a,b,r, \sup R_{\lambda_r} \leq h_0 < \tau = \frac{1}{\min \{1,\tau_s,\tau_T,\delta\}} \), for all \(r \in [a,b] \), where \(\tau_s, \tau_T, \delta \) are given by Lemmas 2.1–2.3, and \(S_0 := 1 + \max \|X_p\| \).

We define the **boundary** of a canonical transverse slice \(S_r(p) \) by the formula \(\partial S_r(p) := \{\exp_p(\vec{v}) : \vec{v} \in T_p M, \vec{v} \perp X_p, \|\vec{v}\|_p = r \} \).

\[\mathcal{G}_r := \bigcup \{q_{\rho_0}(\partial S_r(p_j)) : 1 \leq i, j \leq N, \text{dist}_M(S_r(p_j), S_r(p_j)) \leq h_0 S_0 \}, \]

where \(q_{\rho_0} : FB_{\rho_0}(p_j) \to S_r(p_j) \) is given by Lemma 2.2.

The assumption \(\text{dist}_M(S_r(p_j), S_r(p_i)) \leq h_0 S_0 \) ensures that \(\partial S_r(p_j) \subset FB_{\rho_0}(p_i) \), because for every \(q \in \partial S_r(p_j) \), \(\text{dist}_M(q, p_i) \leq \text{diam} |S_r(p_j)| + \text{dist}_M(S_r(p_j), S_r(p_i)) + \text{diam} |S_r(p_i)| < h_0 S_0 + 4r < 5\delta S_0 < \delta \), whence \(q \in B_5(p_i) \subset FB_{\rho_0}(p_i) \).

Claim. \(\mathcal{G}_r \) contains the singular set of \(\Lambda_r \).
Proof. Fix r and let $R = R_{\lambda_r}$, $f = f_{\lambda_r}$. We show that if $p \in \Lambda_r \setminus \mathcal{S}_r$, then f, f^{-1} are local diffeomorphisms on a neighborhood of p.

Let i, j be the unique indices s.t. $p \in S_r(p_i)$ and $(f(p)) \in S_r(p_j)$. The speed of the flow is less than S_0, so $\text{dist}_M(p, p_j) \leq \text{dist}_M(p, f(p)) + \text{dist}_M(f(p), p_j) < h_0 S_0 + r < \varnothing$. Thus $p \in FB_{r_j}(p_i)$. Similarly, $\text{dist}_M(f(p), p_i) < \varnothing$, so $(f(p)) \in FB_{r_i}(p_j)$.

It follows that $R(p) = -t_p(p) = \{ |p_j(p) \}$ and $f(p) = q_{p_j}(p)$. Similarly, $p = q_{p_i}(f(p))$. Since $\text{dist}_M(S_r(p_i), S_r(p_j)) \leq \text{dist}_M(p, \varnothing R(p)) < h_0 S_0$ and $p \notin \mathcal{S}_r$, $p \notin \partial S_r(p_i)$ and $(f(p)) \notin \partial S_r(p_j)$.

So $\exists V \subset \Lambda_r \setminus \partial \Lambda_r$ relatively open s.t. $V \ni p$ and $q_{p_j}(V) \subset \Lambda_r \setminus \partial \Lambda_r$. The map $q_{p_j} : V \to q_{p_j}(V)$ is a diffeomorphism, because q_{p_j} is differentiable and $q_{p_j} \circ q_{p_j} = \text{Id}$ on V. We will show that $f \mid_W = q_{p_j} \mid_W$ on some open $W \subset \Lambda_r \setminus \partial \Lambda_r$ containing p.

$R(p) = \{ t_p(p) \}$, so the curve $\{ \varnothing t(p) : 0 < t < |t_p(p)| \}$ does not intersect Λ_r. Λ_r is compact and \varnothing and t_p are continuous, so p has a relatively open neighborhood $W \subset V$ s.t. $\{ \varnothing q(t) : 0 < t < |t_p(q)| \}$ does not intersect Λ_r for all $q \in W$. So $f \mid_W = q_{p_j} \mid_W$, and we see that f is a local diffeomorphism at p.

Similarly, f^{-1} is a local diffeomorphism at p, which proves that $p \notin \mathcal{S}_r(\Lambda_r)$.

The claim is proved, and we proceed to the proof of the theorem. We begin with some reductions. Let $f_r := f_{\lambda_r}$. By the claim it is enough to show that

$$\mu_{\lambda_r} \left\{ p \in \Lambda_r : \lim_{|n| \to \infty} \frac{1}{|n|} \log \text{dist}_{\lambda_r}(f^n_r(p), \mathcal{S}_r) < 0 \right\} = 0 \text{ for a.e. } r \in (a, b).$$ (2.6)

Indeed, this implies $\exists r$ s.t. $\lim_{|n| \to \infty} \frac{1}{|n|} \log \text{dist}_{\lambda_r}(f^n_r(p), \mathcal{S}(\Lambda_r)) \geq 0$ for μ_{λ_r}-a.e. $p \in \Lambda_r$, and the limit is non-positive, because $\text{dist}_{\lambda_r}(q, \mathcal{S}(\Lambda_r)) \leq \text{dist}_{\lambda_r}(q, \partial \Lambda)$ for all $q \in \Lambda$. Let

$$A_\alpha(r) := \{ p \in \Lambda_b : \exists \text{ infinitely many } n \in \mathbb{Z} \text{ s.t. } \frac{1}{|n|} \log \text{dist}_{\lambda_b}(f^n_b(p), \mathcal{S}_r) < -\alpha \}.$$

$\Lambda_r \subset \Lambda_b$, so $\mu_{\lambda_r} \ll \mu_{\lambda_b}$, $\text{dist}_{\lambda_r} \geq \text{dist}_{\lambda_b}$, and $f_r(x) = f^n_b(x)(x)$ with $1 \leq n(x) \leq \sup_{R_b} f^R_b$. Therefore (2.6) follows from the statement

$$\forall \alpha > 0 \text{ rational } (\mu_{\lambda_r}[A_\alpha(r)] = 0 \text{ for a.e. } r \in [a, b]).$$ (2.7)

Let $I_a(p) := \{ a \leq r \leq b : p \in A_\alpha(r) \}$, then $1_{A_\alpha(r)}(p) = 1_{I_a(p)}(r)$, whence by Fubini’s Theorem

$$\int_a^b \mu_{\lambda_b}[A_\alpha(r)] dr = \int_{\Lambda_b} \text{Leb}[I_a(p)] d\mu_{\lambda_b}(p).$$

So (2.7) follows from

$$\text{Leb}[I_a(p)] = 0 \text{ for all } p \in \Lambda_b.$$ (2.8)

In summary, (2.8) ⇒ (2.7) ⇒ (2.6) ⇒ the theorem.

Proof of (2.8): Fix $p \in \Lambda_b$. If $r \in I_a(p)$, then $\text{dist}_{\lambda_b}(f^n_b(p), \mathcal{S}_r) < e^{-\alpha|n|}$ for infinitely many $n \in \mathbb{Z}$. Λ_b is a finite union of canonical transverse discs $S_b(p_i)$, and $S_b(p_i) \cap \mathcal{S}_r$ is a finite union of projections $S_b(p_i) \cap q_{p_i}(\partial S_r(p_j))$, each satisfying $\text{dist}_M(S_r(p_i), S_r(p_j)) \leq h_0 S_0$. It follows that there are infinitely many $n \in \mathbb{Z}$ such that for some fixed $1 \leq i, j \leq N$ s.t. $\text{dist}_M(S_r(p_i), S_r(p_j)) \leq h_0 S_0$, it holds that

$$f^n_b(p) \in S_b(p_i) \text{ and } \text{dist}_{\lambda_b}(f^n_b(p), q_{p_i}(\partial S_r(p_j))) < e^{-\alpha|n|}.$$ (2.9)

Since $\text{dist}_M(S_r(p_i), S_r(p_j)) \leq h_0 S_0$, $\text{dist}_M(p_i, p_j) \leq h_0 S_0 + 2r < \varnothing$. This, and our assumptions on b and h_0 guarantee that $S_b(p_j)$, $f^n_b(p)$, and $q_{p_j}(\partial S_r(p_j))$ are inside $FB_{r_j}(p_i) \cap FB_{r_j}(p_j) = \text{domain of definition of } q_{p_i} \text{ and } q_{p_j}$.
Suppose n satisfies (2.9). Let q be the point which minimizes \(\text{dist}_{\Lambda_n}(f^n_b(p), q_{p_j}(q)) \) over all $q \in \partial S_r(p_j)$, then
\[
e^{-\alpha|n|} > \text{dist}_{\Lambda_n}(f^n_b(p), q_{p_j}(q)) \\
\geq \text{dist}_M(f^n_b(p), q_{p_j}(q)) \\
\geq \mathcal{L}^{-1} \text{dist}_M(q_{p_j}[f^n_b(p)], q_{p_j}[q_{p_j}(q)]) \\
= \mathcal{L}^{-1} \text{dist}_M(q_{p_j}[f^n_b(p)], q) \\
\geq (2\mathcal{L})^{-1} \text{dist}_{\Lambda_n}(q_{p_j}[f^n_b(p)], q).
\]
\] Hence,
\[
\text{dist}_{\Lambda_n}(q_{p_j}[f^n_b(p)], q) \leq 2\mathcal{L}e^{-\alpha|n|}.
\]
It follows that
\[
|\text{dist}_{\Lambda_n}(p_j, q_{p_j}[f^n_b(p)]) - \text{dist}_{\Lambda_n}(p_j, q)| \leq 2\mathcal{L}e^{-\alpha|n|}.
\]
We now use the special geometry of canonical transverse discs: $q \in \partial S_r(p_j)$, so \(\text{dist}_{\Lambda_r}(p_j, q) = r \). Writing $D_{jn}(p) := \text{dist}_{\Lambda_n}(p_j, q_{p_j}[f^n_b(p)])$, we see that for every n which satisfies (2.9), \(|D_{jn}(p) - r| \leq 2\mathcal{L}e^{-\alpha|n|} \). Thus every $r \in I_n(p)$ belongs to
\[
\bigcup_{j=1}^{N} \{ r \in [a, b] : \exists \text{ infinitely many } n \in \mathbb{Z} \text{ s.t. } |r - D_{jn}(p)| \leq 2\mathcal{L}e^{-\alpha|n|} \}.
\]
By the Borel-Cantelli Lemma, this set has zero Lebesgue measure.

Two standard Poincaré sections with the same set of centers are called \textit{concentric}. Since b/a in the last proof can be chosen arbitrarily large, that proof shows

Corollary 2.9. Let μ be a flow invariant probability measure. For every $h_0 > 0$ there are two concentric standard Poincaré sections $\Lambda_i = \Lambda(p_1, \ldots, p_N; r_i)$ with height functions bounded above by h_0, s.t. Λ_1 is adapted to μ and $r_2 > 2r_1$.

To see this take r_1 close to a s.t. Λ_{r_1} is adapted, and $r_2 = b$.

3. Pesin Charts for Adapted Poincaré Sections

One of the central tools in Pesin theory is a system of local coordinates which present a non-uniformly hyperbolic map as a perturbation of a uniformly hyperbolic linear map [Pes76, KH95, BP07]. We will construct such coordinates for the Poincaré map of an adapted Poincaré section. Adaptability is used, as in [KSLP86], to control the size of the coordinate patches along typical orbits (Lemma 3.3).

Suppose μ is a φ-invariant probability measure on M, and assume that μ is χ_0-hyperbolic for some $\chi_0 > 0$. We do not assume ergodicity.

Fix once and for all a standard Poincaré section $\Lambda = \Lambda(p_1, \ldots, p_N; r)$ for φ, which is adapted to μ. Set $f := f_\Lambda, R := R_\Lambda, \mathcal{S} := \mathcal{S}(\Lambda)$, and let μ_Λ be the induced measure on Λ.

Without loss of generality, there is a larger concentric standard Poincaré section $\bar{\Lambda} := \Lambda(p_1, \ldots, p_N; \bar{r})$ s.t. $\bar{r} > 2r, \bar{\Lambda} \supset \Lambda$, and $\text{dist}_\bar{\Lambda}(\Lambda, \partial \bar{\Lambda}) > r$. We'll use $\bar{\Lambda}$ as a safety margin in the following definition of the exponential map of Λ:

\[
\text{Exp}_x : \{ \bar{v} \in T_x \bar{\Lambda} : \| \bar{v} \|_x < r \} \rightarrow \bar{\Lambda}, \quad \text{Exp}_x(\bar{v}) := \gamma_x(\| \bar{v} \|_x),
\]

where $\gamma_x(\cdot)$ is the geodesic in $\bar{\Lambda}$ s.t. $\gamma(0) = x$ and $\dot{\gamma}(0) = \bar{v}$. This makes sense even near $\partial \bar{\Lambda}$, because every Λ-geodesic can be prolonged r units of distance into $\bar{\Lambda}$ without falling off the edge. Notice that $\bar{\Lambda}$-geodesics are usually not M-geodesics, therefore Exp_x is usually different from exp_x.
As in [Spi79, chapter 9], there are \(\rho_{\text{dom}}, \rho_{\text{lim}} \in (0, r) \) s.t. for every \(x \in \Lambda \), \(\text{Exp}_x \) is a bi-Lipschitz diffeomorphism from \(\{ v \in T_x \Lambda : \| v \|_x < \sqrt{2} \rho_{\text{dom}} \} \) onto a relative neighborhood of \(\{ y \in \tilde{\Lambda} : \text{dist}_{\tilde{\Lambda}}(y, x) < \rho_{\text{lim}} \} \), with bi-Lipschitz constant less than 2.

Non-uniform hyperbolicity. Since \(\Lambda \) is adapted to \(\mu \), \(\mu \Lambda(\tilde{\mathcal{S}}) = 0 \). By Lemma 2.6, for \(\mu_\Lambda \)-a.e. \(x \in \Lambda \), \(f \) has one Lyapunov exponent in \((-\infty, -\chi_0 \inf R) \) and one Lyapunov exponent in \((\chi_0 \inf R, \infty) \). Let \(\chi := \chi_0 \inf R \).

Non-uniformly hyperbolic set: Let \(\text{NUH} \) be the set of \(x \in \Lambda \setminus \bigcup_{n \in \mathbb{Z}} f^{-n}(\mathcal{S}) \) s.t. \(T_{f^n(x)} \Lambda = E^u(f^n(x)) \oplus E^s(f^n(x)) \) \((n \in \mathbb{Z}) \), where \(E^u, E^s \) are one-dimensional linear subspaces, and

\[
\begin{align*}
(i) \quad & \lim_{n \to \pm \infty} \frac{1}{n} \log \| df^n_x \| < -\chi \quad \text{for all non-zero} \ v \in E^s(x), \\
(ii) \quad & \lim_{n \to \pm \infty} \frac{1}{n} \log \| df^{-n}_x \| < -\chi \quad \text{for all non-zero} \ v \in E^u(x), \\
(iii) \quad & \lim_{n \to \pm \infty} \frac{1}{n} \log | \sin \angle(E^s(f^n(x)), E^s(f^n(x))) | = 0, \\
(iv) \quad & df_x E^s(x) = E^s(f(x)) \quad \text{and} \quad df_x E^u(x) = E^u(f(x)).
\end{align*}
\]

By the Oseledec Theorem and Lemma 2.6, \(\mu_\Lambda[\text{NUH}_\chi(f)] = 1 \).

Pesin charts. This is a system of coordinates on \(\text{NUH}_\chi(f) \) which simplifies the form of \(f = f_\Lambda \). The following definition is slightly different than in Pesin’s original work [Pes76], but the proofs are essentially the same.

Fix a measurable family of unit vectors \(e^u(x) \in E^u(x), e^s(x) \in E^s(x) \) on \(\text{NUH}_\chi(f) \). Since \(\dim E^{u,s}(x) = 1 \), \(e^{u/s}(x) \) are determined up to a sign. To make the choice, let \((e^1_x, e^2_x) \) be a continuous choice of basis for \(T_x \Lambda \) so that \((e^1_x, e^2_x, X_x) \) has positive orientation. Pick \(e^u(x), e^s(x) \) s.t. \(\angle(e^1_x, e^u(x)) \in (0, \pi) \), and \(\angle(e^1_x, e^u(x)) > 0 \).

Pesin parameters: Given \(x \in \text{NUH}_\chi(f) \), let

\[
\begin{align*}
\circ & \quad \alpha(x) := \angle(e^s(x), e^u(x)), \\
\circ & \quad s(x) := \sqrt{2 \left(\sum_{k=0}^{\pm \infty} e^{2k\chi} \| df^k_x \|_{f^k(x)}^2 f^k(x) \right)}^{\frac{1}{2}}, \\
\circ & \quad u(x) := \sqrt{2 \left(\sum_{k=0}^{\pm \infty} e^{2k\chi} \| df^{-k}_x \|_{f^{-k}(x)}^2 f^{-k}(x) \right)}^{\frac{1}{2}}.
\end{align*}
\]

The infinite series converge, because \(x \in \text{NUH}_\chi(f) \).

Oseledec-Pesin Reduction: Define a linear transformation \(C_\chi(x) : \mathbb{R}^2 \to T_x \Lambda \) by mapping \((\alpha, 0) \mapsto s(x)^{-1} e^s(x) \) and \((0, \alpha) \mapsto u(x)^{-1} e^u(x) \).

This diagonalizes the derivative cocycle \(df_x : T_x M \to T_{f(x)} M \):

Theorem 3.1. \(\exists C_\varphi \) s.t. \(\forall x \in \text{NUH}_\chi(f) \), \(C_\chi(f(x))^{-1} \circ df_x \circ C_\chi(x) = \left(\begin{array}{cc} A_x & 0 \\ 0 & B_x \end{array} \right) \), where \(C_\varphi^{-1} \leq |A_x| \leq e^{-\chi}, \text{ and } |B_x| \leq C_\varphi. \)

The proof is a routine modification of the proofs in [BP07, theorem 3.5.5] or [KH95, theorem S.2.10], using the uniform bounds on \(df |\Lambda \setminus \mathcal{S} \) (Lemma 2.5).

Our conventions for \(e^u(x), e^s(x) \) guarantee that \(C_\chi(x) \) is orientation-preserving, and one can show exactly as in [Sar13, Lemmas 2.4, 2.5] that

\[
\|C_\chi(x)\| \leq 1 \quad \text{and} \quad \frac{1}{\sqrt{2}} \frac{\sqrt{s(x)^2 + u(x)^2}}{|\sin \alpha(x)|} \leq \|C_\chi(x)^{-1}\| \leq \frac{\sqrt{s(x)^2 + u(x)^2}}{|\sin \alpha(x)|}. \tag{3.1}
\]

We see that \(\|C_\chi(x)^{-1}\| \) is large exactly when \(E^s(x) \approx E^u(x) \) (small \(|\sin \alpha(x)| \)), or when it takes a long time to notice the exponential decay of \(\frac{1}{n} \log \| df^n_x e^s(x) \| \) or of \(\frac{1}{n} \log \| df^{-n}_x e^u(x) \| \) (large \(s(x) \) or \(u(x) \)). Large \(\|C_\chi(x)^{-1}\| \) means bad hyperbolicity.
PESIN MAPS: The Pesin map at \(x \in NUH_\Lambda(f) \) (not to be confused with the Pesin chart defined below) is \(\Psi_x : [-\rho_{dom}, \rho_{dom}]^2 \to \Lambda \), given by

\[
\Psi_x(u, v) = \text{Exp}_x \left[C_\chi(x) \begin{pmatrix} u \\ v \end{pmatrix} \right] .
\]

\(\Psi_x \) is orientation-preserving, and it maps \([-\rho_{dom}, \rho_{dom}]^2 \) diffeomorphically onto a neighborhood of \(x \) in \(\Lambda \setminus \partial\Lambda \). Lip(\(\Psi_x \)) \(\leq 2 \), because \(||C_\chi(x)|| \leq 1 \). But Lip(\(\Psi_{x}^{-1} \)) is not uniformly bounded, because \(||C_\chi(x)^{-1}|| \) can be arbitrarily large.

MAXIMAL SIZE: Fix some parameter \(0 < \varepsilon < 2^{-\frac{7}{2}} \) (which will be calibrated later). Although \(\Psi_x \) is well-defined on all of \([-\rho_{dom}, \rho_{dom}]^2 \), it will only be useful for us on the smaller set \([-Q_\varepsilon(x), Q_\varepsilon(x)]^2 \), where

\[
Q_\varepsilon(x) := \left[\frac{\varepsilon^{3/\beta} \left(\sqrt{s(x)^2 + u(x)^2} \right)^{-12/\beta} }{\sin \alpha(x)} \right] \wedge (\varepsilon \text{dist}_\Lambda(x, S)) \wedge \rho_{dom} .
\]

Here \(S \) is the singular set of \(\Lambda \), \(a \wedge b := \min\{a, b\} \), \(\beta \) is the constant in the \(C^{1+\beta} \) assumption on \(\varphi \), and \(|f|_{\varepsilon} := \max\{\theta \in I_\varepsilon : 0 \leq t \} \) where \(I_\varepsilon := \{ e^{-\theta/2} : \ell \in \mathbb{N} \} \).

\(Q_\varepsilon(x) \) is called the maximal size (of the Pesin charts defined below). Notice that \(Q_\varepsilon \leq \varepsilon^{3/\beta} ||C_\chi^{-1}|| \cdot ||\text{large power}|| \), so \(Q_\varepsilon(x) \) is small when \(x \) is close to \(S \) or when the hyperbolicity at \(x \) is bad. Another important property of \(Q_\varepsilon \) is that thanks to the inequalities \(||C_\chi|| \leq 1 \) and \(Q_\varepsilon < 2^{-\frac{1}{2}} \text{dist}_\Lambda(x, S) \),

\[
\Psi_x([-Q_\varepsilon(x), Q_\varepsilon(x)]^2) \subset \Lambda \setminus S.
\]

This is in contrast to \(\Psi_x([-\rho_{dom}, \rho_{dom}]^2) \), which may intersect \(S \) or \(\Lambda \setminus \Lambda \).

PESIN CHARTS: The maximal Pesin chart at \(x \in NUH_\Lambda(f) \) (with parameter \(\varepsilon \)) is \(\Psi_x : [-Q_\varepsilon(x), Q_\varepsilon(x)]^2 \to \Lambda \setminus S \), \(\Psi_x(u, v) = \text{Exp}_x [C_\chi(x)^\varepsilon(u, v)] \). The Pesin chart of size \(\eta \) is \(\Psi_x^\eta := \Psi_x \mid_{[-\eta, \eta]^2} \) for \(0 < \eta \leq Q_\varepsilon(x) \).

The Pesin charts provide a system of local coordinates on a neighborhood of \(NUH_\Lambda(f) \). The following theorem says that the Poincaré map “in coordinates”

\[
f_x := \Psi_{x}^{-1} \circ f \circ \Psi_x : [-Q_\varepsilon(x), Q_\varepsilon(x)]^2 \to \mathbb{R}^2
\]

is close to a uniformly hyperbolic linear map.

In what follows, \(0 = (0,0) \) and “for all \(\varepsilon \) small enough \(P \) holds” means “\(\exists \varepsilon_0 > 0 \) which depends only on \(M, \varphi, \Lambda, \beta \) and \(\chi_0 \) s.t. for all \(\varepsilon < \varepsilon_0, P \) holds”.

Theorem 3.2 (Pesin). For all \(\varepsilon \) small enough, for every \(x \in NUH_\Lambda(f) \), \(f_x \) is well-defined and injective on \([-Q_\varepsilon(x), Q_\varepsilon(x)]^2 \), and can be put there in the form \(f_x(u, v) = (A_x u + h_x^1(u, v), B_x v + h_x^2(u, v)) \), where

1. \(C_\varphi^{-1} \leq |A_x| \leq e^{-\varepsilon} \) and \(e^\varepsilon \leq |B_x| \leq C_\varphi \), with \(C_\varphi \) as in Theorem 3.1;
2. \(h_x^1 \) are \(C^{1+\frac{\beta}{2}} \) functions s.t. \(h_x^1(0) = 0 \), \((\nabla h_x^1)(0) = 0 \);
3. \(||h_x^1||_{C^{1+\frac{\beta}{2}}} < \varepsilon \) on \([-Q_\varepsilon(x), Q_\varepsilon(x)]^2 \).

A similar statement holds for \(f_x^{-1} := \Psi_{f^{-1}(x)} \circ f^{-1} \circ \Psi_x : [-Q_\varepsilon(x), Q_\varepsilon(x)]^2 \to \mathbb{R}^2 \).

Proof. Let \(U := \Psi_x([-Q_\varepsilon(x), Q_\varepsilon(x)]^2) \). By (3.3), \(f \) and \(f^{-1} \) are \(C^{1+\beta} \) on \(U \), with uniform bounds on their \(C^{1+\beta} \) norms (Lemma 2.5). Now continue as in [Sar13, Theorem 2.7] or [BP07, Theorem 5.6.1], replacing \(M \) by \(\Lambda \) and \(\exp_p \) by \(\exp_p \). □
Adaptability and temperedness. The maximal size of Pesin charts may not be bounded below on NUHₜ(f). A central idea in Pesin theory is that it is nevertheless possible to control how fast Qₓ decays along typical orbits.

Define for this purpose the set NUHₜ⁺(f) of all x ∈ NUHₜ(f) which on top of the defining properties (i)–(iv) of NUHₜ(f) also satisfy

(v) \(\lim_{n \to \pm \infty} \frac{1}{n} \log \text{dist}_{\Lambda}(f^n(x), \emptyset) = 0 \),

(vi) \(\lim_{n \to \pm \infty} \frac{1}{n} \log \| C_{\chi}(f^n(x))^{-1} \| = 0 \),

(vii) \(\lim_{n \to \pm \infty} \frac{1}{n} \log \| C_{\chi}(f^n(x)) \| = 0 \) for \(x = \left(\left(\frac{1}{4} \right), \left(\frac{1}{3} \right) \right) \),

(viii) \(\lim_{n \to \pm \infty} \frac{1}{n} \log | \det C_{\chi}(f^n(x)) | = 0 \).

Lemma 3.3. NUHₜ⁺(f) is an f-invariant Borel set of full \(\mu_{\Lambda} \)-measure, and for every x ∈ NUHₜ⁺(f), \(\lim_{n \to \pm \infty} \frac{1}{n} \log Q_x(f^n(x)) = 0 \).

Proof. (v) holds \(\mu_{\Lambda} \)-a.e., because \(\Lambda \) is adapted to \(\mu_{\Lambda} \). (vi)–(viii) hold a.e., because of the Oseledets Theorem (apply the proof of [Sar13, Lemma 2.6] to the ergodic components of \(\mu_{\Lambda} \)). By (3.1), (v),(vi) imply \(\frac{1}{n} \log Q_x(f^n(x)) \to 0 \). \(\square \)

Lemma 3.4 (Pesin’s Temperedness Lemma). There exists a positive Borel function \(q_{\varepsilon} : NUH_{\mu_{\Lambda}}^+(f) \to (0,1) \) s.t. for every \(x \in NUH_{\mu_{\Lambda}}^+(f) \), \(0 < q_{\varepsilon}(x) \leq \varepsilon Q_x(x) \) and \(e^{-\varepsilon/3} \leq q_{\varepsilon} \circ f \leq e^{\varepsilon/3} \).

This follows from Lemma 3.3 as in [BP07, Lemma 3.5.7]. By Lemma 3.4,

\[
Q_x(f^n(x)) > e^{-\frac{1}{3}|n|} q_{\varepsilon}(x) \quad \text{for all } n \in \mathbb{Z}.
\] (3.4)

This control on the decay of \(Q_x(f^n) \) on typical orbits will be crucial for us.

Overlapping Pesin charts. Theorem 3.2 says that \(f_x := \Psi_{f(x)}^{-1} \circ f \circ \Psi_x \) is close to a linear hyperbolic map. This property is stable under perturbations, therefore we expect \(f_{x,y} := \Psi_{y}^{-1} \circ f \circ \Psi_x \) to be close to a linear hyperbolic map, whenever \(\Psi_x \) is “sufficiently close” to \(\Psi_{f(x)} \). We now specify the meaning of “sufficiently close”.

Recall that \(\Lambda \) is the disjoint union of a finite number of canonical transverse discs \(S_r(p_i) \). Let \(D_r(p_i) := S_r(p_i) \setminus \partial S_r(p_i) = \{ \exp_{p_i}(\vec{v}) : \vec{v} \perp X_{p_i}, ||\vec{v}|| < r \} \). Choose for every \(D_r(p_i) \) a map \(\Theta : TD \to \mathbb{R}^2 \) s.t.

1. \(\Theta : T_xD \to \mathbb{R}^2 \) is a linear isometry for all \(x \in D \).
2. Let \(\vartheta_x : (\Theta |_{T_xD})^{-1} : \mathbb{R}^2 \to T_xD \), then \((x, \vec{u}) \mapsto (\exp_x \circ \vartheta_x)(\vec{u}) \) is smooth and Lipschitz on \(\Lambda \times \{ \vec{u} \in \mathbb{R}^2 : ||\vec{u}|| < \rho_{\text{dom}} \} \) with respect to the metric \(d((x, \vec{u}), (x', \vec{u}')) := \text{dist}_{\Lambda}(x, x') + ||\vec{u} - \vec{u}'|| \).
3. \(x \mapsto \vartheta_x^{-1} \circ \exp_{\vartheta_x}^{-1} \) is a Lipschitz map from \(D \) to \(C^2(D, \mathbb{R}^2) \), the space of \(C^2 \) maps from \(D \) to \(\mathbb{R}^2 \).

Recall that the Pesin map is \(\Psi_x : (u, v) = \exp_x[C_{\chi}(x)(u)] \), and the Pesin chart of size \(0 < \eta < Q_x(x) \) is \(\Psi_{\eta}^x := \Psi_x \mid_{[-\eta, \eta]} \).

Overlapping charts: Let \(x_1, x_2 \in NUH_{\mu_{\Lambda}}(f) \). We say that \(\Psi_{x_1}^{\eta_1}, \Psi_{x_2}^{\eta_2} \varepsilon \)-overlap, and write \(\Psi_{x_1}^{\eta_1} \approx \Psi_{x_2}^{\eta_2} \), if \(x_1, x_2 \) lie in the same transversal disc of \(\Lambda \), \(e^{-\varepsilon} < \eta_1 / \eta_2 < e^{\varepsilon} \), and \(\text{dist}_{\Lambda}(x_1, x_2) + ||\Theta \circ C_{\chi}(x_1) - \Theta \circ C_{\chi}(x_2)|| < \eta_1^4 \eta_2^5 \).

Proposition 3.5. The following holds for all \(\varepsilon \) small enough: If \(\Psi_{x_1}^{\eta_1} \approx \Psi_{x_2}^{\eta_2} \), then

1. \(\Psi_{x_1}^{\eta_1} \) chart nearly the same patch: \(\Psi_{x_1}^{\eta_1}([-e^{-2\varepsilon} \eta_1, e^{-2\varepsilon} \eta_1]) \subset \Psi_{x_1}^{\eta_1}([-\eta_j, \eta_j]) \),
(2) Ψ_x, define nearly the same coordinates: $\text{dist}_{C^{1+\beta}}(\Psi_{x_i}^{-1} \circ \Psi_{x_j}, \text{Id}) < \varepsilon \eta_j^2 \rho_j^2$, where ρ_j is the $C^{1+\beta}$ distance calculated on $[-e^{-\varepsilon} \rho_{\text{dom}}, e^{-\varepsilon} \rho_{\text{dom}}]^2$.

Corollary 3.6. For all ε small enough, if $x, y \in \text{NUH}_\chi(f)$ and $\Psi_{f(x)}' \approx \Psi_y'$, then $f_{xy} := \Psi_{f}^{-1} \circ f \circ \Psi_x : [-Q_e(x), Q_e(x)]^2 \to \mathbb{R}^2$ is well-defined, injective, and can be put in the form $f_{xy}(u, v) = (A_{xy}u + h_{xy}^1(u, v), B_{xy}v + h_{xy}^2(u, v))$, where

1. $|A_{xy}| \leq e^{-\chi}$ and $e^\chi \leq |B_{xy}| \leq C \chi$, with C as in Theorem 3.1;
2. $|h_{xy}^i(0)| < \varepsilon \eta_i$, $\|\nabla h_{xy}^i(0)\| < \varepsilon \eta^3/3$;
3. $\|h_{xy}^i\|_{C^{1+\beta}} < \varepsilon (i = 1, 2)$ on $[-Q_e(x), Q_e(x)]^2$.

A similar statement holds for f_{xy}^{-1}, assuming $\Psi_{f^{-1}(y)}' \approx \Psi_x'$.

The proofs are routine modifications of the proofs in [Sar13]: Replace M by one of the canonical transverse discs in Λ, and replace exp_x by Exp_x.

Part 2. Symbolic dynamics

Throughout this part we assume that M, X and φ satisfy our standing assumptions, and that μ is a χ_0–hyperbolic φ–invariant probability measure on M. We fix a standard Poincaré section $\Lambda = \Lambda(p_1, \ldots, p_N; r)$ adapted to μ, and a larger concentric standard section $\Lambda := \Lambda(p_1, \ldots, p_N; r)$ s.t. $r > 2r$. Let f, R and \mathcal{G} denote the Poincaré map, roof function, and singular set of Λ, and let $\chi := \chi_0 \inf R$ (a bound for the Lyapunov exponents of f μ_A–a.e., see Lemma 2.6).

Suppose P is a property. “For all $\varepsilon > 0$ small enough P holds” means “$\exists \varepsilon_0 > 0$ which only depends on M, φ, Λ, β, χ_0 s.t. P holds for all $0 < \varepsilon < \varepsilon_0$.”

In this part of the paper we construct a countable Markov partition for f on a set of full measure with respect to μ, and we use it to develop symbolic dynamics for φ. This was done in [Sar13] for surface diffeomorphisms, and the proof would have applied to our setup verbatim had \mathcal{G} been empty. We will indicate the changes needed to treat the case $\mathcal{G} \neq \emptyset$.

Not many changes are needed, because most of the work is done inside Pesin charts, where f and f^{-1} are smooth with uniformly bounded $C^{1+\beta}$ norm. One point is worth mentioning, though: [Sar13] uses a uniform bound on $|\ln Q_e(f(x))/Q_e(x)|$, where $Q_e(x)$ is the maximal size of a Pesin chart. This quantity is no longer bounded when $\mathcal{G} \neq \emptyset$. When this or other effects of \mathcal{G} matter, we will give complete details. Otherwise, we will just sketch the general idea and refer to [Sar13] for details.

4. Generalized pseudo-orbits and shadowing

Generalized pseudo-orbits (gpo). Fix some small $\varepsilon > 0$. Recall that a pseudo-orbit with parameter ε is a sequence of points $\{x_i\}_{i \in \mathbb{Z}}$ satisfying the nearest neighbor conditions $\text{dist}(f(x_i), x_{i+1}) < \varepsilon$ for all $i \in \mathbb{Z}$. A gpo is also a sequence of objects satisfying nearby neighbor conditions, but the objects and the conditions are more complicated, because of the need to record the hyperbolic features of each point:

ε–Double charts: Ordered pairs $\Psi_x^{p, p'} := (\Psi_x |_{[-p, p']^2} \Psi_x |_{[-p, p']^2})$ where $x \in \text{NUH}_\chi(f)$ and $0 < p, p' \leq Q_e(x)$ (same Pesin chart, different domains).

ε–Generalized pseudo-orbits (gpo): A sequence $\{\Psi_x^{p, p'}\}_{i \in \mathbb{Z}}$ of ε–double charts which satisfies the following nearest neighbor conditions for all $i \in \mathbb{Z}$:
(GPO1) $\Psi^{p_i}_{x_i \to x_{i+1}} \approx \Psi^{p_i}_{x_i \to x_{i+1}}$ and $\Psi^{p_i}_{x_{i+1} \to x_i} \approx \Psi^{p_i}_{x_{i+1} \to x_i}$, cf. Prop. 3.5.

(GPO2) $p_{i+1} = \min\{e^{p_i}Q_{x_{i+1}}, p_{i+1}\} \approx \min\{e^{p_i}Q_{x_i}, p_{i+1}\}$.

A positive gpo is a one-sided sequence $\{\Psi^{p_i}_{x_i \to x_{i+1}}\}_{i \geq 0}$ with (GPO1), (GPO2). A negative gpo is a one-sided sequence $\{\Psi^{p_i}_{x_{i+1} \to x_i}\}_{i \leq 0}$ with (GPO1), (GPO2). Gpos were called “chains” in [Sar13].

Shadowing: A gpo $\{\Psi^{p_i}_{x_i \to x_{i+1}}\}_{i \in \mathbb{Z}}$ shadows the orbit of x, if $f^i(x) \in \Psi_{x_i, \{[-\eta_i, \eta_i]^2\}}$ for all $i \in \mathbb{Z}$, where $\eta_i := p_i^u \wedge p_i^s$.

This notation is heavy, so we will sometime abbreviate it by writing v_i instead of $\Psi^{p_i}_{x_i \to x_{i+1}}$, and letting $p^u(v_i) := p^u_i$, $p^s(v_i) := p^s_i$, $x(v_i) := x_i$. The nearest neighbor conditions [(GPO1) + (GPO2)] will be expressed by the notation $v_i \xrightarrow{\varepsilon} v_{i+1}$.

Lemma 4.1. Suppose $0 < p^u_i, p^s_i \leq Q_i$ satisfy $p^u_{i+1} = \min\{e^{p^u_i}Q_{i+1}, \} \approx \min\{e^{p^s_i}, Q_{i+1}\}$ for $i = 0, 1$. If $\eta_i := p^u_i \wedge p^s_i$, then $\eta_{i+1}/\eta_i \in [\varepsilon, \varepsilon^3]$.

Proof. See [Sar13], Lemma 4.4.

Admissible Manifolds: An s/u-admissible manifold in a ε-double chart $v = \Psi^{p^u}_{x} - p^s$ is a set of the form $\Psi_x \{(t, F(t)) : |t| \leq p^u\}$, where $F : [-p^u, p^u] \to \mathbb{R}$ satisfies:

(Ad1) $|F(0)| \leq 10^{-3}(p^u \wedge p^s)$.

(Ad2) $|F'(0)| \leq \frac{1}{3}(p^u \wedge p^s)^{3/2}$.

(Ad3) F is $C^{1+\frac{3}{2}}$ and $\sup |F'| + \text{Höl}_{3/2}(F) \leq \frac{1}{2}$.

Similarly, a u-admissible manifold in v is a set of the form $\Psi_x \{|F(t), t| : |t| \leq p^u\}$, where $F : [-p^u, p^u] \to \mathbb{R}$ satisfies (Ad1–3).

F is called the representing function, and the collections of all s/u-admissible manifolds in v are denoted by $\mathcal{M}^s(v)$ and $\mathcal{M}^u(v)$.

The representing function satisfies $\|F\|_\infty \leq Q(x)$, because $p^u, p^s \leq Q_x$, $|F(0)| \leq 10^{-3}(p^u \wedge p^s)$ and $|F'| \leq \frac{1}{2}$. As a result, s/u-admissible manifolds are subsets of $\Psi_x([-Q_{x_i}(x_i), Q_{x_i}(x_i)])^2$, a set where f is smooth, and where if ε is small enough then f is a perturbation of a uniformly hyperbolic linear map in Pesin coordinates (Theorem 3.2). This implies the following:

Graph Transform Lemma: For all ε small enough, if $v_i \xrightarrow{\varepsilon} v_{i+1}$, then the forward image of a u-admissible manifold $V^u \in \mathcal{M}^u(v_i)$ contains a unique u-admissible manifold $\mathcal{F}v_{i+1}^u[V^u]$, called the (forward) graph transform of V^u.

Sketch of proof (see [Sar13, Prop. 4.12], [KH95, Supplement], or [BP07] for details): Let $f_{x_{i+1}} := \Psi_{x_{i+1}}^{-1} \circ f \circ \Psi_{x_i} : [-Q_{x_i}(x_i), Q_{x_i}(x_i)]^2 \to \mathbb{R}^2$. By (GPO1) and Corollary 3.6, $f_{x_{i+1}}$ is ε close in the $C^{1+\frac{3}{2}}$ norm on $[-Q_{x_i}(x_i), Q_{x_i}(x_i)]^2$ to a linear map which contracts the x-coordinate by at least $e^{-\chi}$ and expands the y-coordinate by at least e^χ. Direct calculations show that if ε is much smaller than χ and $V^u \in \mathcal{M}^u(v_i)$, then $f(V^u) \supset \Psi_{x_{i+1}}\{(G(t), t) : t \in [a, b]\}$ where G satisfies (Ad1–3), and $[a, b] \supset [-e^{\chi/2}p^u_i, e^{\chi/2}p^u_i]$. By (GPO2), if $\varepsilon < \chi/2$ then $[-e^{\chi/2}p^u_i, e^{\chi/2}p^u_i] \supset [-p^u_{i+1}, p^u_{i+1}]$, so $f(V^u)$ restricts to a u-admissible manifold in v_{i+1}.

There is also a (backward) graph transform $\mathcal{F}v_{i+1}^s : \mathcal{M}^s(v_{i+1}) \to \mathcal{M}^s(v_i)$, obtained by applying f^{-1} to s-admissible manifolds in v_{i+1} and restricting the result to an s-admissible manifold in v_i.\footnote{In fact $|F'(t)| \leq |F'(0)| + \frac{1}{2}|t|^{3/2} \leq \varepsilon$ for $t \in \text{dom}(F)$, since $|t| \leq p^u/s \leq Q_x \leq \varepsilon^{3/\beta}$.}
Put a metric on \(\mathcal{M}^u(v_i) \) and \(\mathcal{M}^s(v_{i+1}) \) by measuring the sup-norm distance between the representing functions. Using the form of \(f_{x,v_{i+1}} \) in coordinates, one can show by direct calculations that \(\mathcal{F}^u_{v_i,v_{i+1}} : \mathcal{M}^u(v_i) \to \mathcal{M}^u(v_{i+1}) \) and \(\mathcal{F}^s_{v_i,v_{i+1}} : \mathcal{M}^s(v_{i+1}) \to \mathcal{M}^s(v_i) \) contract distances by at least \(e^{-\lambda/2} \) [Sar13, Prop. 4.14].

Suppose \(\mathcal{F}^- = \{v_i\}_{i\leq 0} \) is a negative gpo, and pick arbitrary \(V^-_n \in \mathcal{M}^u(v_{-n}) \) \((n \geq 0)\), then \(V^-_n := (\mathcal{F}^u_{v_{-1}v_0} \circ \cdots \circ \mathcal{F}^u_{v_{-n+1}v_{-n+2}} \circ \mathcal{F}^u_{v_{-n}v_{-n+1}})(V^-_n) \in \mathcal{M}^u(v_0) \). Using the uniform contraction of \(\mathcal{F}^-_{v_{-1}v_{-1}} \), it is easy to see that \(\{V^-_n\}_{n\geq 1} \) is a Cauchy sequence, and that its limit is independent of the choice of \(V^-_n \) [Sar13, Prop. 4.15]. Thus the following definition is proper for all \(\varepsilon \) small enough:

The unstable manifold of a negative gpo \(\mathcal{F}^- \):

\[
V^u[\mathcal{F}^-] := \lim_{n \to \infty} (\mathcal{F}^u_{v_{-1}v_0} \circ \cdots \circ \mathcal{F}^u_{v_{-n+1}v_{-n+2}} \circ \mathcal{F}^u_{v_{-n}v_{-n+1}})(V^-_n).
\]

for some (any) choice of \(V^-_n \in \mathcal{M}^u(v_{-n}) \).

Working with positive gpos and backward graph transforms, we can also make the following definition:

The stable manifold of a positive gpo \(\mathcal{F}^+ \):

\[
V^s[\mathcal{F}^+] := \lim_{n \to \infty} (\mathcal{F}^s_{v_1v_0} \circ \cdots \circ \mathcal{F}^s_{v_{n-1}v_{n-2}} \circ \mathcal{F}^s_{v_nv_{n-1}})(V^+_n).
\]

for some (any) choice of \(V^+_n \in \mathcal{M}^s(v_n) \).

The following properties hold:

1. **Admissibility:** \(V^u[\mathcal{F}^-] \in \mathcal{M}^u(v_0) \) and \(V^s[\mathcal{F}^+] \in \mathcal{M}^s(v_0) \). This is because \(\mathcal{M}^u(v_0), \mathcal{M}^s(v_0) \) are closed in the supremum norm.

2. **Invariance:** \(f^{-1}(V^u[\{v_i\}_{i\leq 0}]) \subset V^u[\{v_i\}_{i\leq -1}] \), \(f(V^s[\{v_i\}_{i\geq 0}]) \subset V^s[\{v_i\}_{i\geq 1}] \). This is immediate from the definition.

3. **Hyperbolicity:** if \(x, y \in V^u[\mathcal{F}^-] \), then \(\text{dist}_A(f^{-n}(x), f^{-n}(y)) \xrightarrow{n \to \infty} 0 \), and if \(x, y \in V^s[\mathcal{F}^+] \), then \(\text{dist}_A(f^n(x), f^n(y)) \xrightarrow{n \to \infty} 0 \). The rates are exponential.

To prove part (3) notice first that by the invariance property, \(f^n(V^s[\mathcal{F}^+]) \) and \(f^{-n}(V^u[\mathcal{F}^-]) \) remain inside Pesin charts. Therefore \(f^n[V^s[\mathcal{F}^+]] \) and \(f^{-n}[V^u[\mathcal{F}^-]] \) can be written in Pesin coordinates as compositions of \(n \) uniformly hyperbolic maps on \(\mathbb{R}^2 \). One can then use direct calculations as in the proof of Pesin’s Stable Manifold Theorem to prove (3). See e.g. [Sar13, Prop. 6.3].

The Shadowing Lemma.

Theorem 4.2. The following holds for all \(\varepsilon \) small enough: Every gpo with parameter \(\varepsilon \) shadows a unique orbit.

Sketch of proof. Let \(\mathcal{F}^- = \{v_i\}_{i\in \mathbb{Z}} \) be a gpo, \(v_i = \Psi_{\xi_i}^+ p_i^+ \). We have to show that there exists a unique \(x \) s.t. \(f^n(x) \in \Psi_{\xi_i}([-\eta_i, \eta_i]^2) \) for all \(i \in \mathbb{Z} \), where \(\eta_i = p_i^+ \wedge p_i^- \).

\(V^u := V^u[\{v_i\}_{i\leq 0}] \) and \(V^s := V^s[\{v_i\}_{i\geq 0}] \) are admissible manifolds in \(v_0 \). Because of properties (Ad1–3), \(V^u \) and \(V^s \) intersect at a unique point \(x \), and \(x \) belongs to \(\Psi_{\xi_k}([-10^{-2} \eta_k, 10^{-2} \eta_k]^2) \) [Sar13, Prop. 4.11], see also [KH95, Cor. S.3.8.]. By the invariance property,

\[
f^n(x) \in \Psi_{\xi_k}([-Q\varepsilon(x_n), Q\varepsilon(x_n)]^2) \text{ for all } n \in \mathbb{Z}.
\]

We will show that \(x \) shadows \(x \), and \(x \) is the only such point.
Any y s.t. $f^n(y) \in \Psi_{x_n}([-Q_n(x_n), Q_n(x_n)]^2)$ for all $n \in \mathbb{Z}$ equals x. The map $f_{x_n,x_{n+1}} := \Psi_{x_{n+1}}^{-1} \circ f \circ \Psi_{x_n}$ is uniformly hyperbolic on $[-Q_n(x_n), Q_n(x_n)]^2$. If $\Psi_{x_0}^{-1}(x)$ and $\Psi_{y_0}^{-1}(y)$ have different y-coordinates, then successive application of $f_{x_n,x_{n+1}}$ will expand the difference between the y-coordinates of $\Psi_{x_n}^{-1}(f^n(x))$, $\Psi_{x_n}^{-1}(f^n(y))$ exponentially as $n \to \infty$. If $\Psi_{x_0}^{-1}(x), \Psi_{y_0}^{-1}(y)$ have different x-coordinates, then successive application of $f_{x_n,x_{n-1},x_{n}}$ will expand the difference between the x-coordinates of $\Psi_{x_n}^{-1}(f^n(x)), \Psi_{x_n}^{-1}(f^n(y))$ exponentially as $n \to -\infty$. But these differences are bounded by $2Q_n(x_n)$ whence by a constant, so $\Psi_{x_0}^{-1}(x) = \Psi_{y_0}^{-1}(y)$, whence $x = y$.

Let y_k denote the unique intersection point of $V^n[(v_i)_{i \leq k}]$ and $V^s[(v_i)_{i \geq k}]$, then $f^n(y_k)$, $f^{n+k}(x) \in \Psi_{x_{n+k}}([-Q_n(x_{n+k}), Q_n(x_{n+k})]^2)$ for all $n \in \mathbb{Z}$. By the previous paragraph, $y_k = f^k(x)$. Since y_k is the intersection of a u-admissible manifold and an s-admissible manifold in v_k, $y_k \in \Psi_{x_k}([-\eta_k, \eta_k]^2)$ where $\eta_k := p_k^u \wedge p_k^s$. It follows that $f^k(x) \in \Psi_{x_k}([-\eta_k, \eta_k]^2)$ for all $k \in \mathbb{Z}$.

Thus Ψ shadows the orbit of x, and x is unique with this property. □

Which points are shadowed by gpos? To appreciate the difficulty of this question, let us try the naïve approach: Given $x \in \text{NUH}_x(f)$, set $x_i := f^i(x)$, and look for p_i^u, p_i^s s.t. $\{\Psi_{x_i}^{p_i^u, p_i^s}\}_{i \in \mathbb{Z}}$ is a gpo. (GPO1) is automatic, but without additional information on $Q_n(f^n(x))$, it is not clear that there exist p_i^u, p_i^s satisfying (GPO2).

This is where the adaptedness of Λ is used: For a.e. x, $\lim_{|n| \to \infty} \frac{1}{n} \log Q_n(f^n(x)) = 0$, whence by (3.4) there exist $q_n(x) > 0$ s.t. $Q_n(f^n(x)) > e^{-\frac{1}{2}|n|q_n(x)} > e^{-\varepsilon n}q_n(x)$ for all $n \in \mathbb{Z}$.

So the following supreme range over non-empty sets:

\[
\begin{align*}
p_i^n &:= \sup\{t > 0 : Q_n(f^{i-n}(x)) \geq e^{-\varepsilon n}t \text{ for all } n \geq 0\}, \\
p_i^s &:= \sup\{t > 0 : Q_n(f^{i+n}(x)) \geq e^{-\varepsilon n}t \text{ for all } n \geq 0\}.
\end{align*}
\]

It is easy to see that p_i^n, p_i^s satisfy (GPO2). $\{\Psi_{x_i}^{p_i^n, p_i^s}\}_{i \in \mathbb{Z}}$ is a gpo which shadows x.

If we want to use the previous construction to shadow a set of full measure of orbits, then we need uncountably many “letters” $\Psi_x^{p^n, p^s}$. The following proposition achieves this with a countable discrete collection. Recall the definition of $\text{NUH}_x^\#(f)$ from Lemma 3.3, and let

\[
\text{NUH}_x^\#(f) := \{x \in \text{NUH}_x^\#(f) : \lim_{n \to \infty} \sup_{n} q_n(f^n(x)) \lim_{n \to -\infty} \sup_{n} q_n(f^n(x)) \neq 0\}. \tag{4.1}
\]

$\text{NUH}_x^\#(f)$ has full measure by Poincaré’s recurrence theorem. It is f-invariant.

Proposition 4.3. The following holds for all ε small enough. There exists a countable collection of ε-double charts \mathcal{A} with the following properties:

(1) **Discreteness:** Let $D(x) := \text{dist}_\Lambda \{\{x, f(x), f^{-1}(x)\}, \mathfrak{G}\}$, then for every $t > 0$ the set $\{\Psi^{p^n, p^s}_x \in \mathcal{A} : D(x), p^n, p^s \geq t\}$ is finite.

(2) **Sufficiency:** For every $x \in \text{NUH}_x^\#(f)$ there is a gpo $\Psi \in \mathcal{A}^Z$ which shadows x, and which satisfies $p^n(v_n) \wedge p^s(v_n) \geq e^{-\varepsilon/3}q_n(f^n(x))$ for all $n \in \mathbb{Z}$.

(3) **Relevance:** For every $v \in \mathcal{A}$ there is a gpo $\Psi \in \mathcal{A}^Z$ s.t. $v_0 = v$ and Ψ shadows a point in $\text{NUH}_x(f)$.

Proof. The proof for diffeomorphisms in [Sar13, Prop. 3.5 and 4.5] does not extend to our case, because it uses a uniform bound $F^{-1} \leq Q_n \circ f/Q_n \leq F$ which does not hold in the presence of singularities. We bypass this difficulty as follows.
Let $X := [\Lambda \setminus \bigcup_{i=-1,0,1} f^{i}(\mathcal{S})]^3 \times (0, \infty)^3 \times \text{GL}(2, \mathbb{R})$, together with the product topology, and let $Y \subset X$ denote the subset of $(x, Q, C) \in X$ of the form

$$
\varnothing = (x, f(x), f^{-1}(x)), \quad \text{where} \quad x \in \text{NUH}_Y^+ (f),
$$

$$
Q = (Q_x(f(x)), Q_x(f^{-1}(x))),
$$

$$
C = (C_x(f(x)), C_x(f^{-1}(x))).
$$

Cut Y into the countable disjoint union $Y = \bigcup_{(k, \ell) \in \mathbb{N}_0^2} Y_{k,\ell}$ where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and

$$
Y_{k,\ell} := \left\{ (x, Q, C) \in Y : \begin{align*}
&x \in \text{NUH}_Y^+(f), \quad e^{-k} < Q_x(f(x)) \leq e^{-k - 1} < \text{dist}_A(f(x), \mathcal{S}) \leq e^{-\ell_i} \quad (i = 0, 1, -1) \end{align*} \right\}.
$$

Precompactness Lemma. $Y_{k,\ell}$ are precompact in X.

Proof. Suppose $(x, Q, C) \in Y_{k,\ell}$. By (3.1) and (3.2), $\|C_{x}(y)^{-1}\| \leq e^{\frac{m+1}{4}}$. One can show as in [Sar13, page 403], that $C_{x}^{-1} \leq \|C_{x}(y)^{-1}\|/\|C_{x}(f(y))^{-1}\| \leq C$ for all $y \in \text{NUH}_Y^+(f)$ for some global constant C. It follows that

$$
\|C_{x}(f(i)^{-1})\| \leq C e^{e^{-\ell_i}} e^{\frac{(k+1)}{4}} \quad \text{for} \quad i = 0, 1, -1.
$$

Since C_{x}^{-1} is a contraction, $C \in G_{x} \times G_{x} \times G_{k}$, where G_{k} is the compact set

$$
\{ A \in \text{GL}(2, \mathbb{R}) : \|A\| \leq 1, \|A^{-1}\| \leq C e^{e^{-\ell_i}} \},
$$

Next we bound Q in a compact set. By (3.1), if $(x, Q, C) \in Y_{k,\ell}$, then

$$
\frac{Q_x(f(i))}{Q_x(f(x))} \geq \left(\frac{\sqrt{2} \|C_{x}(f(i)^{-1})\|}{\|C_{x}(x)^{-1}\|} \right)^{-\frac{m}{2}} \wedge \left(\frac{\text{dist}_A(f(i), \mathcal{S})}{\text{dist}_A(f(x), \mathcal{S})} \right) \geq 2^{-m} C e^{-\frac{m}{2}} \wedge \text{dist}(f(i+1), f(x)),
$$

whence $Q_x(f(i)) \geq 2^{-m} C e^{-\frac{m}{2}} \wedge \text{dist}(f(i+1), f(x))$. By definition, $Q_x(f(i)) \leq \rho_{\text{dom}},$ so $Q \in (F_{k,\ell})^3$ with $F_{k,\ell} \subset \mathbb{R}$ compact.

Finally, $x \in E_{\ell_0} \times f(E_{\ell_0}) \times f^{-1}(E_{\ell_0})$, with $E_{\ell_0} := \{ y \in \Lambda : \text{dist}_A(y, \mathcal{S}) \geq e^{-\ell_0} \}$. E_{ℓ_0} is compact because Λ is compact, and $f(E_{\ell_0}), f^{-1}(E_{\ell_0})$ are compact because $f \mid_{E_{\ell_0}}, f^{-1} \mid_{E_{\ell_0}}$ are continuous.

In summary, $Y_{k,\ell} \subset \prod_{i=0,1,-1} f(E_{\ell_0}) \times (F_{k,\ell})^3 \times (G_{k})^3$, a compact subset of X. So $Y_{k,\ell}$ is precompact in X, proving the lemma.

Since $Y_{k,\ell}$ is precompact in X, $Y_{k,\ell}$ contains a finite set $Y_{k,\ell}(m)$ s.t. for every $(x, Q, C) \in Y_{k,\ell}$ there exists some $(y, Q', C') \in Y_{k,\ell}(m)$ s.t. for every $|i| \leq 1$,

(a) $\text{dist}_A(f(i), f^{i}(x)) + \|\Theta \circ C_{x}(f(i)) - \Theta \circ C_{x}(f^{i}(y))\| \leq e^{-8(m+3)},$

(b) $e^{-\varepsilon/3} < Q_x(f^{i}(x))/Q_x(f^{i}(y)) < e^{\varepsilon/3}.$

(Θ is defined at the end of §3.)

Definition of \mathcal{A}: The set of double charts $\Psi_x^{x',x''}$ s.t. for some $k, \ell_0, \ell_1, \ell_{-1}, m \geq 0$

(A1) x is the first coordinate of some $(x, Q, C) \in Y_{k,\ell}(m);$

(A2) $0 < p^u, p^x \leq Q_x(x)$ and $p^u, p^x \in I_{e} = \{ e^{-\frac{m}{2}} : \ell \in \mathbb{N} \};$

(A3) $p^u \wedge p^x \in [e^{-m-2}, e^{-m+2}].$

Proof that \mathcal{A} is discrete: Fix $t > 0$. Suppose $\Psi_x^{x',x''} \in \mathcal{A}$ and let k, ℓ, m be as above. If $D(x), p^u, p^x \geq t$, then:

$\circ k \leq |\log t|$ because $t < p^u \leq Q_x(x) \leq e^{-k};$

$\circ \ell_{i} \leq |\log t|$ because $t < D(x) \leq \text{dist}_A(f^{i}(x), \mathcal{S}) \leq e^{-\ell_{i}};$

$\circ m \leq |\log t| + 2$ because $t < p^u \wedge p^x \leq e^{-m+2}.$
So \(\# \{ x : \Psi^{p^u, p^v}_x \in \mathcal{A}, D(x), p^u, p^v > t \} \leq \sum_{k, t, d \in \mathbb{N}_+} \sum_{l = 0}^{[\log t]} + 2 \sum_{m = 0}^{[\log t]} \# K_q(m) < \infty. \)

Also, \(\# \{ (p^u, p^v) : \Psi^{p^u, p^v}_x \in \mathcal{A}, D(x), p^u, p^v > t \} \leq (\#(I_\varepsilon \cap [t, 1]))^2 < \infty. \) Thus \(\# \{ \Psi^{p^u, p^v}_x \in \mathcal{A} : D(x), p^u, p^v > t \} < \infty, \) proving that \(\mathcal{A} \) is discrete.

The proof of sufficiency requires some preparation. A sequence \(\{ (p^u_n, p^v_n) \}_{n \in \mathbb{Z}} \) is called \(\varepsilon \)-subordinated to a sequence \(\{Q_n\}_{n \in \mathbb{Z}} \subset I_\varepsilon, \) if \(0 < p^u_n, p^v_n \leq Q_n; p^u_n, p^v_n \in I_\varepsilon; \)

\[p^u_{n+1} = \min \{ e^{-p^u_n} Q_{n+1} \} \text{ and } p^v_{n+1} = \min \{ e^{-p^v_n} Q_{n-1} \} \text{ for all } n. \]

First Subordination Lemma. Let \(\{ q_n \}_{n \in \mathbb{Z}}, \{ Q_n \}_{n \in \mathbb{Z}} \subset I_\varepsilon. \) If for every \(n \in \mathbb{Z} \) \(0 < q_n \leq Q_n \) and \(e^{-\varepsilon} \leq q_n / q_{n+1} \leq e^\varepsilon, \) then there exists \(\{ (p^u_n, p^v_n) \}_{n \in \mathbb{Z}} \) which is \(\varepsilon \)-subordinated to \(\{Q_n\}_{n \in \mathbb{Z}}, \) and such that \(p^u_n \wedge p^v_n \geq q_n \) for all \(n. \)

Second Subordination Lemma. Suppose \(\{ (p^u_n, p^v_n) \}_{n \in \mathbb{Z}} \) is \(\varepsilon \)-subordinated to \(\{Q_n\}_{n \in \mathbb{Z}}. \) If \(\limsup_{n \to -\infty} (p^u_n \wedge p^v_n) > 0 \) and \(\limsup_{n \to -\infty} (p^u_n \wedge p^v_n) > 0, \) then \(p^u_n \) (resp. \(p^v_n \)) is equal to \(Q_n \) for infinitely many \(n > 0, \) and for infinitely many \(n < 0. \)

These are Lemmas 4.6 and 4.7 in [Sar13].

Proof of Sufficiency: Fix \(x \in \text{NUH}^\#(f). \) Recall the definition of \(q_\varepsilon(\cdot) \) from Pesin’s Temperedness Lemma (Lemma 3.4), and choose \(q_n \in I_\varepsilon \) s.t. \(q_n / q_\varepsilon(f^n(x)) \in [e^{-\varepsilon/3}, e^{\varepsilon/3}]. \) Necessarily \(e^{-\varepsilon} \leq q_n / q_{n+1} \leq e^\varepsilon.

By the first subordination lemma there exists \(\{ (q^u_n, q^v_n) \}_{n \in \mathbb{Z}} \) s.t. \(\{ (q^u_n, q^v_n) \}_{n \in \mathbb{Z}} \) is \(\varepsilon \)-subordinated to \(\{ e^{-\varepsilon/3} Q_\varepsilon(f^n(x)) \}_{n \in \mathbb{Z}}, \) and \(q^u_n \wedge q^v_n \geq q_n \) for all \(n \in \mathbb{Z}. \) Let \(\eta_n := q^u_n \wedge q^v_n. \) By Lemma 4.1, \(e^{-\varepsilon} \leq \eta_{n+1}/\eta_n \leq e^\varepsilon. \) Since \(\eta_n \geq q_n \geq e^{-\varepsilon/3} q_\varepsilon(f^n(x)) \) and \(x \in \text{NUH}^\#(f) \), \(\limsup_{n \to -\infty} \eta_n > 0. \)

Choose non-negative integers \(m_n, k_n, \ell_n = (\ell^u_0, \ell^v_1, \ell^n_{-1}) \) s.t. for all \(n \in \mathbb{Z}, \)

- \(\eta_n \in [e^{-m_n-1}, e^{-m_n+1}], \)
- \(Q_\varepsilon(f^n(x)) \in (e^{-k_n-1}, e^{-k_n}], \)
- \(\text{dist}(f^{\ell^n_{i}}(x), \Theta) \in (e^{-\ell^v_i-1}, e^{-\ell^u_i}] \text{ for } i = 0, 1, -1. \)

Choose an element of \(Y_{k_n, \ell_n} \) with first coordinate \(f^n(x) \), and approximate it by some element of \(Y_{m_n, k_n, \ell_n}(m_n) \) with first coordinate \(x_n \) s.t. for \(i = 0, 1, -1 \)

\[(a_n) \text{ dist}(f^i(f^n(x)), f^i(x_n)) + ||\Theta \circ C_X(f^i(f^n(x))) - \Theta \circ C_X(f^i(x_n))) < e^{-8(m_n+3)}, \]

\[(b_n) \text{ e}^{-\varepsilon/3} < Q_\varepsilon(f^i(f^n(x)))/Q_\varepsilon(f^i(x_n)) < e^{\varepsilon/3}. \]

By \((b_n) \) with \(i = 0, Q_\varepsilon(x_n) \geq e^{-\varepsilon/3} Q_\varepsilon(f^n(x)) \geq \eta_n. \) By the first subordination lemma, there exists \(\{ (p^u_n, p^v_n) \}_{n \in \mathbb{Z}} \) \(\varepsilon \)-subordinated to \(\{Q_\varepsilon(x_n)\}_{n \in \mathbb{Z}} \) such that \(p^u_n \wedge p^v_n \geq \eta_n \) for all \(n \in \mathbb{Z}. \) Necessarily, \(p^u_n \wedge p^v_n \geq e^{-\varepsilon/3} q_\varepsilon(f^n(x)). \) Let

\[\psi := \{ \Psi^{p^u_n, p^v_n}_{x_n} \}_{n \in \mathbb{Z}}. \]

We will show that \(\psi \in \mathcal{A}^2, \psi \) is a gpo, and \(\psi \) shadows the orbit of \(x. \)

Proof that \(\Psi^{p^u_n, p^v_n}_{x_n} \in \mathcal{A} : (A1), (A2) \) are clear, so we focus on \((A3). \) It is enough to show that \(1 \leq (p^u_n \wedge p^v_n) / \eta_n \leq e. \) The lower bound is by construction. For the upper bound, recall that \(\limsup_{n \to \pm \infty} \eta_n > 0, \) so by the second subordination lemma \(q^u_n = e^{-\varepsilon/3} Q_\varepsilon(f^n(x)) \) for infinitely many \(n < 0. \) By \((b_n) \) with \(i = 0, \) \(q^u_n \geq e^{-\varepsilon/3} Q_\varepsilon(f^n(x)). \)
$e^{-\varepsilon}Q_\varepsilon(x_n) \geq e^{-\varepsilon}p_n^u$ for infinitely many $n < 0$. If $q_n^u \geq e^{-\varepsilon}p_n^u$, then $q_{n+1}^u \geq e^{-\varepsilon}p_{n+1}^u$:

$$q_{n+1}^u = \min\{e^{-\varepsilon/3}Q_\varepsilon(f^{n+1}(x)), e^{-\varepsilon/3}Q_\varepsilon(x_{n+1})\}$$

It follows that $q_n^u \geq e^{-\varepsilon}p_n^u$ for all $n \in \mathbb{Z}$. Similarly $q_n^s \geq e^{-\varepsilon}p_n^s$ for all $n \in \mathbb{Z}$, whence $q_n^s \geq e^{-\varepsilon}(p_n^u \wedge p_n^s)$ for all n, giving us (A3).

Proof that $\{\Psi_{x,n}^{p_n^u,p_n^s}\}_{n \in \mathbb{Z}}$ is a gpo. (GPO2) is true by construction, so we just need to check (GPO1). We write (a_n) with $i = 1$, and (a_n+1) with $i = 0$:

1. $\text{dist}_A(f^{n-1}(x), f(x_{n+1}) + \|\Theta \circ C_\chi(f^{n+1}(x)) - \Theta \circ C_\chi(f(x_{n+1}))\| < e^{-8(m_{n+3})}$;
2. $\text{dist}_A(f^{n+1}(x), f(x_{n+1}) + \|\Theta \circ C_\chi(f^{n+1}(x)) - \Theta \circ C_\chi(f(x_{n+1}))\| < e^{-8(m_{n+4})}$.

So $x_{n+1}, f(x_n), f^{n+1}(x)$ are all in the same canonical transverse disc, and

$$\text{dist}_A(f(x_n), x_{n+1}) + \|\Theta \circ C_\chi(f(x_{n+1})) - \Theta \circ C_\chi(f(x_{n+1}))\| < e^{-8(m_{n+3})} + e^{-8(m_{n+4})}.$$ (4.2)

The proof of (A3) above shows that $\xi_n := p_n^s \wedge p_n^u \in [e^{-m_{n-2}}, e^{-m_{n+2}}]$. Also $\xi_n/\xi_{n+1} \in [e^{-\varepsilon}, e^\varepsilon]$ because $(p_n^u, p_n^s)_{n \in \mathbb{Z}}$ is ε-subordinated (see Lemma 4.1). So the right hand side of (4.2) is less than $e^{-8(1 + e^{8\varepsilon})\xi_n/\xi_{n+1}} < (p_n^u + p_n^s)^8$. Thus $\Psi_{x,n}^{p_n^u,p_n^s} \approx \Psi_{x,n+1}^{p_n^s,p_n^u}$. A similar argument with (a_n) and $i = -1$, and with (a_{n-1}) and $i = 0$ shows that $\Psi_{x,n-1}^{p_n^u,p_n^s} \approx \Psi_{x,n-1}^{p_n^s,p_n^u}$. So (GPO1) holds, and ν is a gpo.

Proof that ν shadows x: By (a_n) with $i = 0$, $\Psi_{x,n}^{p_n^u,p_n^s} \approx \Psi_{x,n}^{p_n^s,p_n^u}$ for all $n \in \mathbb{Z}$. By Proposition 3.5, $f^n(x) = \Psi_{x,n}^{p_n^u,p_n^s}(\Theta)$ in $\mathbb{A}_x([-p_n^s \wedge p_n^u, p_n^u \wedge p_n^s]^2)$. So ν shadows x.

ARRANGING RELEVANCE: Call an element $v \in \mathbb{A}$ relevant, if there is a gpo $\nu \in \mathbb{A}^Z$ s.t. $v_0 = v$ and ν shadows a point in NUH$_\chi(f)$. In this case every v_i is relevant, because NUH$_\chi(f)$ is f-invariant. So $\mathbb{A}' := \{v \in \mathbb{A} : v$ is relevant $\}$ is sufficient. It is discrete, because $\mathbb{A}' \subseteq \mathbb{A}$ and \mathbb{A} is discrete. The theorem follows with \mathbb{A}'. \square

The inverse shadowing problem. The same orbit can be shadowed by many different gpos. The “inverse shadowing problem” is to control the set of gpos $\{\Psi_{x,n}^{p_n^u,p_n^s}\}_{n \in \mathbb{Z}}$ which shadow the orbit of a given point x. (GPO1) and (GPO2) were designed to make this possible. We need the following condition.

REGULARITY: Let \mathbb{A} be as in Proposition 4.3. A gpo $\nu \in \mathbb{A}^Z$ is called regular, if $\{v_{i}\}_{i \geq 0}$, $\{v_{i}\}_{i \leq 0}$ have constant subsequences.

Proposition 4.4. Almost every $x \in \Lambda$ is shadowed by a regular gpo in \mathbb{A}^Z.

Proof. We will show that this is the case for all $x \in NUH^\#_\chi(f)$. Since \mathbb{A} is sufficient (Prop. 4.3(2)), for every $x \in NUH^\#_\chi(f)$ there is a gpo $\nu = \{\Psi_{x,k}^{p_k^u,p_k^s}\}_{k \in \mathbb{Z}} \in \mathbb{A}^Z$ which shadows x s.t. for all $k \in \mathbb{Z}$, $\eta_k := p_k^u \wedge p_k^s \geq e^{-\varepsilon/3}q_\varepsilon(f^k(x))$.

Since $p_{n/s}^u \leq Q_\varepsilon(\cdot) \leq \varepsilon \text{dist}_A(\cdot, \mathcal{G})$, $\text{dist}_A(x_k, \mathcal{G}) \geq e^{-1}e^{-\varepsilon/3}q_\varepsilon(f^k(x))$ for all $k \in \mathbb{Z}$. (4.3)
Since $v_k \xrightarrow{c} v_{k+1}$, $\Psi^{g_{k+1}}_{f(x)} \xrightarrow{c} \Psi^{g_{k+1}}_{f(x)}$, whence $f(x_k) \in \Psi_{x_k+1}([-Q(x_{k+1}), Q(x_{k+1})]^2)$. Since $\text{Lip}(\Psi_{x_1, \ldots, x_k}) \leq 2$, $\text{dist}_{A}(f(x_k), x_{k+1}) \leq 2\sqrt{2}Q(x_{k+1}) \leq 3\varepsilon \text{dist}_{A}(x_{k+1}, \mathcal{G})$. By the triangle inequality, (4.3), and the inequality $e^{-\varepsilon / 3} \leq q_{\varepsilon} \leq e^{\varepsilon / 3}$,

$$\text{dist}_{A}(f(x_k), \mathcal{G}) \geq \text{dist}_{A}(x_{k+1}, \mathcal{G}) - \text{dist}_{A}(f(x_k), x_{k+1}) \geq (1 - 3\varepsilon) \text{dist}_{A}(x_{k+1}, \mathcal{G})$$

provided ε is small enough. Similarly, $\text{dist}_{A}(f^{-1}(x_k), \mathcal{G}) > q_{\varepsilon}(f^k(x))$, and we obtain that $\min\{D(x_k), p_{S}^k, p_{\mathcal{G}}^k\} \geq e^{-\varepsilon / 3} q_{\varepsilon}(f^k(x))$ for all $k \in \mathbb{Z}$.

Since $x \in \text{NUH}^{\mathcal{G}}(f)$, $\exists k, \ell_i \uparrow \infty$ and $c > 0$ s.t. $q_{\varepsilon}(f^{-k_i}(x)) \geq c$, $q_{\varepsilon}(f^{k_i}(x)) \geq c$. Since \mathcal{A} is discrete, there must be some constant subsequences $v_{-k_{i}}, v_{k_{i}}$.

The following proposition says in a precise way, that if u is a regular gpo which shadows the orbit of x, then u_i is determined “up to bounded error.” Together with the discreteness of \mathcal{A}, this implies that for every i there are only finitely many possibilities for u_i.

Theorem 4.5. The following holds for all ε small enough. Let u, v be regular gpos which shadow the orbit of the same point x. If $u_i = \Psi^k_{x_i} \Psi_{x_i}^k$ and $v_i = \Psi^k_{y_i} \Psi_{y_i}^k$, then

1. $\text{dist}_{A}(x_i, y_i) < 10^{-1} \max\{p^u_i \wedge p^v_i, q^u_i \wedge q^v_i\}$;
2. $\text{dist}_{A}(f^k(x_i), x_i) / \text{dist}_{A}(f^k(y_i), y_i) \in [e^{-\sqrt{2}}, e^{\sqrt{2}}]$ for $k = 0, 1, -1$;
3. $Q_{\varepsilon}(x_i) / Q_{\varepsilon}(y_i) \in [e^{-\sqrt{2}}, e^{\sqrt{2}}]$;
4. $(\Psi_{y_i}^{-1} \circ \Psi_{x_i}) = (-1)^{n} \text{Id} + c_1 + \Delta_i$ on $[-\varepsilon, \varepsilon]^2$, where $\|c_1\| < 10^{-1} (q^u_i \wedge q^v_i)$ and $\sigma_i \in \{0, 1\}$ are constants, and $\Delta_i : [-\varepsilon, \varepsilon]^2 \to \mathbb{R}^2$ is a vector field such that $\Delta_i(0) = 0$ and $\|d\Delta_i\| < \sqrt{2}$ on $[-\varepsilon, \varepsilon]^2$;
5. $p^u_i / q^u_i, p^v_i / q^v_i \in [e^{-\sqrt{2}}, e^{\sqrt{2}}]$.

Proof. Denote the stable and unstable manifolds of u and v by U^u, U^s and V^u, V^s. By the proof of the shadowing lemma, $U^u \cap U^s = V^u \cap V^s = \{x\}$.

PART (1). U^u / s are admissible manifolds. By (Ad1–3), their intersection point must satisfy $x = \Psi_{x_0}(x)$ where $\|x\|_{\infty} \leq 10^{-2} (p^u_0 \wedge p^v_0)$, see [Sar13, Prop. 4.11]. Since $\text{Lip}(\Psi_{x_0}) \leq 2$, $\text{dist}_{A}(x_0, x) \leq \frac{1}{10} (p^u_0 \wedge p^v_0)$. Similarly, $\text{dist}_{A}(y_0, x) \leq \frac{1}{10} (q^u_0 \wedge q^v_0)$, whence $\text{dist}_{A}(x_0, y_0) \leq \frac{1}{25} \max\{p^u_0 \wedge p^v_0, q^u_0 \wedge q^v_0\}$.

PART (2). In what follows $a = b \pm c$ means $b - c \leq a \leq b + c$.

$$\text{dist}_{A}(x_0, \mathcal{G}) = \text{dist}_{A}(x, \mathcal{G}) \pm \text{dist}_{A}(x, x_0) = \text{dist}_{A}(x, \mathcal{G}) \pm 50^{-1} (p^u_0 \wedge p^v_0),$$

by part 1

$$= \text{dist}_{A}(x, \mathcal{G}) \pm 50^{-1} Q_{\varepsilon}(x_0),$$

because $p^u_0, p^v_0 \leq Q_{\varepsilon}(x_0)$

$$= \text{dist}_{A}(x, \mathcal{G}) \pm 50^{-1} \varepsilon \text{dist}_{A}(x_0, \mathcal{G}),$$

by the definition of $Q_{\varepsilon}(x_0)$.

Therefore $\text{dist}_{A}(x, \mathcal{G}) = 1 \pm 50^{-1} \varepsilon$. Similarly $\text{dist}_{A}(x, \mathcal{G}) = 1 \pm 50^{-1} \varepsilon$. It follows that if ε is small enough then $\text{dist}_{A}(x_0, \mathcal{G}) \in [e^{-\varepsilon}, e^{\varepsilon}]$.

Applying this argument to suitable shifts of u, v, we obtain $\text{dist}_{A}(x_1, \mathcal{G}) \in [e^{-\varepsilon}, e^{\varepsilon}]$ and $\text{dist}_{A}(x_{-1}, \mathcal{G}) \in [e^{-\varepsilon}, e^{\varepsilon}]$.

4But the set of all possible full sequences u can be uncountable.
Since $u_0 \xrightarrow{\varepsilon} u_1$, $\Psi_{f(x_0)}^{\rho_i \wedge p_i^1} \xrightarrow{\varepsilon} \Psi_{f(x_0)}^{\rho_i \wedge p_i^1}$. So $x_1, f(x_0) \in \Psi_{x_1}([-Q_\varepsilon(x_1), Q_\varepsilon(x_1)])^2$. Since $\text{Lip}(\Psi_{x_1}) \leq 2$, $\text{dist}_A(x_1, f(x_0)) \leq 2\sqrt{2}Q_\varepsilon(x_1) < 6\varepsilon \text{dist}_A(x_1, \mathcal{G})$. Thus $\text{dist}_A(f(x_0), \mathcal{G}) = \text{dist}_A(x_1, \mathcal{G}) \pm \text{dist}_A(x_1, f(x_0)) = \text{dist}_A(x_1, \mathcal{G}) \pm 6\varepsilon \text{dist}_A(x_1, \mathcal{G}) = e^{\pm 7\varepsilon} \text{dist}_A(x_1, \mathcal{G})$, provided ε is small enough.

Similarly, $\text{dist}_A(f(y_0), \mathcal{G}) = e^{\pm 7\varepsilon} \text{dist}_A(y_1, \mathcal{G})$. Since $\frac{\text{dist}_A(f(x_0), \mathcal{G})}{\text{dist}_A(f(y_0), \mathcal{G})} \in [e^{-15\varepsilon}, e^{15\varepsilon}] \subset [e^{-\sqrt{\varepsilon}}, e^{\sqrt{\varepsilon}}]$, provided ε is small enough.

Similarly, one shows that $\frac{\text{dist}_A(f^{-1}(x_0), \mathcal{G})}{\text{dist}_A(f^{-1}(y_0), \mathcal{G})} \in [e^{-\sqrt{\varepsilon}}, e^{\sqrt{\varepsilon}}]$.

Part (3). One shows as in [Sar13, §6 and §7] that for all ε small enough,

$$\frac{\sin \alpha(x_1)}{\sin \alpha(y_1)} \in [e^{-\sqrt{\varepsilon}}, e^{\sqrt{\varepsilon}}] \quad \text{and} \quad \frac{s(x_1)}{s(y_1)} \frac{u(x_1)}{u(y_1)} \in [e^{-4\sqrt{\varepsilon}}, e^{4\sqrt{\varepsilon}}]. \quad (4.4)$$

The proof carries over without change, because all the calculations are done on $f^n(U^s), f^n(V^s)$ $(n \geq 0)$ and $f^n(U^u), f^n(V^u)$ $(n \leq 0)$, and these sets stay inside Pesin charts, away from \mathcal{G}. By (4.4), for all ε small enough,

$$\left(\frac{\sqrt{s(x_0)^2 + u(x_0)^2}}{\sin \alpha(x_0)} \right)^{-\frac{1}{2}} \left(\frac{\sqrt{s(y_0)^2 + u(y_0)^2}}{\sin \alpha(y_0)} \right)^{-\frac{1}{2}} \in [e^{-2\sqrt{\varepsilon}}, e^{2\sqrt{\varepsilon}}].$$

By part (2) and the definition of Q_ε, $\frac{Q_\varepsilon(x_0)}{Q_\varepsilon(y_0)} \in [e^{-\sqrt{\varepsilon}}, e^{\sqrt{\varepsilon}}]$.

Part (4). This is done exactly as in [Sar13, §9], except that one needs to add the constraint $\varepsilon < \rho_{\text{dom}}$ to be able to use the smoothness of $p \to \text{Exp}_p$ on Λ.

Part (5). This is done exactly as in the proof of [Sar13, Prop. 8.3], except that step 1 there should be replaced by part (3) here.

Remark. Regularity is needed in parts (3), (4), (5). Parts (3), (4) also use the full force of (Ad1–3), and Part (5) is based on (GPO2). See [Sar13].

5. **Countable Markov partitions and symbolic dynamics**

Sinai and Bowen gave several methods for constructing Markov partitions for uniformly hyperbolic diffeomorphisms. One of these, due to Bowen, uses pseudo-orbits and shadowing [Bow75]. The theory of gpos we developed in the previous section allows us to apply this method to adapted Poincaré sections. The result is a Markov partition for $f : \Lambda \to \Lambda$. It is then a standard procedure to code $f : \Lambda \to \Lambda$ by a topological Markov shift, and $\varphi : M \to M$ by a topological Markov flow.

Step 1: A Markov extension. Let \mathcal{A} be the countable set of double charts we constructed in Proposition 4.3, and let \mathcal{G} denote the countable directed graph with set of vertices \mathcal{A} and set of edges $\{(u, v) \in \mathcal{A} \times \mathcal{A} : u \xrightarrow{\varepsilon} v\}$.

Lemma 5.1. Every vertex of \mathcal{G} has finite ingoing degree, and finite outgoing degree.

Proof. We fix $u \in \mathcal{A}$, and bound the number of v s.t. $u \xrightarrow{\varepsilon} v$, using the discreteness and relevance of \mathcal{A} (cf. Prop. 4.3).

By the relevance property, $u \xrightarrow{\varepsilon} v$ extends to a path $u \xrightarrow{\varepsilon} v \xrightarrow{\varepsilon} w$. Write $u = \Psi_x^{i^*}, v = \Psi_y^{i^*}, w = \Psi_z^{i^*}$, then
1. $\frac{q_u q_v}{q_u q_v'} \in [e^{-\varepsilon}, e^\varepsilon]$, by Lemma 4.1.
2. $\text{dist}_A (y, \mathcal{G}) \geq e^{-1} e^{-2} (p^u \wedge p^v)$, because $\text{dist}_A (y, \mathcal{G}) \geq e^{-1} Q_v (y, Q_v (y) \geq q^u \wedge q^v$.
3. $\text{dist}_A (f(y), \mathcal{G}) \geq e^{-2} (e^{-1} - 3) (p^u \wedge p^v)$, because

\[\text{dist}_A (f(y), \mathcal{G}) \geq e^{-1} Q_v (z) - 2 \sqrt{2} Q_v (z) \quad : f(y) \in \Psi_z ([Q_v (z), Q_v (z)])^2, \quad \text{Lip} (\Psi_z) \leq 2 \]

\[\geq (e^{-1} - 3) (p^u \wedge p^v) \geq e^{-2} (e^{-1} - 3) (p^u \wedge p^v). \]
4. $\text{dist}_A (f^{-1}(y), \mathcal{G}) \geq e^{-2} (e^{-1} - 3) (p^u \wedge p^v)$, for similar reasons.

So $D(y) := \text{dist}_A \{ (y, f(y), f^{-1}(y)) \}, \mathcal{G} \geq t := e^{-2} (e^{-1} - 3) (p^u \wedge p^v)$.

By the discreteness of \mathcal{A} (and assuming $\varepsilon < \frac{1}{3}$), $\# \{ v \in \mathcal{A} : u \not\sim v \} < \infty$. The finiteness of the ingoing degree is proved in the same way.

\[\Box \]

The Markov Extension: Let $\Sigma(\mathcal{G})$ denote the set of two-sided paths on \mathcal{G}:

\[\Sigma(\mathcal{G}) := \{ v \in \mathcal{A}^\mathbb{Z} : v_i \not\sim v_{i+1} \text{ for all } i \in \mathbb{Z} \}. \]

We equip $\Sigma(\mathcal{G})$ with the metric $d(y, v) = \exp \left[- \min \{ |u| : u_n \neq u_{n+1} \} \right]$, and with the action of the *left shift map* $\sigma : \Sigma(\mathcal{G}) \to \Sigma(\mathcal{G})$, $\sigma : \{ v_i \}_{i \in \mathbb{Z}} \mapsto \{ v_{i+1} \}_{i \in \mathbb{Z}}$. $\Sigma(\mathcal{G})$ is exactly the collection of gpos belonging to $\mathcal{A}^\mathbb{Z}$, therefore $\pi : \Sigma(\mathcal{G}) \to \Lambda$ given by

\[\pi (v) := \text{unique point whose } f\text{-orbit is shadowed by } v \]

is well-defined. Necessarily $f \circ \pi = \pi \circ \sigma$, so $\sigma : \Sigma(\mathcal{G}) \to \Sigma(\mathcal{G})$ is an extension of $f : \Lambda \to \Lambda$ (at least on a subset of full measure, by Prop. 4.4).

It is easy to see, using the finite degree of the vertices of \mathcal{G}, that $(\Sigma(\mathcal{G}), d)$ is a locally compact, complete and separable metric space. The left shift map is a bi-Lipschitz homeomorphism. The subset of *regular gpos*

\[\Sigma^\#(\mathcal{G}) := \{ v \in \Sigma(\mathcal{G}) : \{ v_i \}_{i \leq 0}, \{ v_i \}_{i \geq 0} \text{ contain constant subsequences} \} \]

has full measure w.r.t. every σ–invariant Borel probability measure.

As we saw in the proof of the shadowing theorem (Thm. 4.2), $\pi [v]$ is the unique intersection of $V^u (v^\pm)$ and $V^s (v^\pm)$ where v^\pm are the half gpos determined by v.

The proof shows that the following holds for all ε small enough:

1. **Hölder continuity:** π is Hölder continuous (because $\mathcal{G}^u, \mathcal{G}^s$ are contractions, see [Sar13, Thm 4.16(2)].)
2. **Almost surjectivity:** $\mu_\Lambda (\Lambda \setminus \pi (\Sigma^\#(\mathcal{G}))) = 0$ (Prop. 4.4).
3. **Inverse Property:** for all $x \in \Lambda, i \in \mathbb{Z}$, $\# \{ v_i : v \in \Sigma^\# (\mathcal{G}), \pi (v) = x \} < \infty$ (Thm 4.5 and the discreteness of \mathcal{A}.)

The inverse property does *not* imply that π is finite-to-one or even countable-to-one. The following steps will lead us to an a.e. finite-to-one Markov extension.

Step 2: A Markov cover. Given $v \in \mathcal{A}$, let $0[v] := \{ v \in \Sigma(\mathcal{G}) : v_0 = v \}$. This is a partition of $\Sigma(\mathcal{G})$. The projection to Λ

\[\mathcal{Z} := \{ Z(v) : v \in \mathcal{A} \}, \quad \text{where } Z(v) := \{ \pi (v) : v \in \Sigma^\# (\mathcal{G}), v_0 = v \} \]

is not a partition. It could even be the case that $Z(v) = Z(u)$ for $u \neq v$ (in this case, we agree to think of $Z(v), Z(u)$ as different elements of \mathcal{Z}). Here are some important properties of \mathcal{Z}.

Covering property: \mathcal{Z} covers a set of full μ_Λ–measure.

Proof. \mathcal{Z} covers $\text{NUH}^\# (f)$.

Local finiteness: For all $Z \in Z'$, $\#\{Z' : Z' \cap Z \neq \emptyset\} < \infty$. Even better: $\#\{u \in A : Z(u) \cap Z \neq \emptyset\} < \infty$ for all $Z \in Z'$.

Proof. Write $Z = Z(\Psi^{u^+ v^+}_{y^+ y^+})$. If $Z(\Psi^{u^+ v^+}_{y^+ y^+}) \cap Z \neq \emptyset$, then $q^u \wedge q^v \geq e^{-\sqrt{3}}(p^u \wedge p^v)$ and $\text{dist}_A(\{(y, f(y), f^{-1}(y)), \mathcal{S}\}) \geq e^{-\sqrt{3}} \text{dist}_A(\{(x, f(x), f^{-1}(x)), \mathcal{S}\})$ (Theorem 4.5).

Since A is discrete, there are only finitely many such $\Psi^{u^+ v^+}_{y^+ y^+}$ in A.

Product structure: Suppose $v \in A$ and $Z = Z(v)$. For every $x \in Z$ there are sets $W^u(x, Z)$ and $W^v(x, Z)$ called the s-fibre and u-fibre of x in Z s.t.

1. $Z = \bigcup_{x \in Z} W^u(x, Z)$, $Z = \bigcup_{x \in Z} W^v(x, Z)$.
2. Any two s-fibres in Z are either equal or disjoint. Any two u-fibres in Z are either equal or disjoint.

3. For every $x, y \in Z$, $W^u(x, Z) \cap W^v(y, Z)$ intersect at a unique point.

Notation: $[x, y] \in Z := \text{unique point in } W^u(x, Z) \cap W^v(x, Z)$ ("Smale bracket").

Proof. Recall the notation for the stable and unstable manifolds of positive and negative gpos ($\S 4$). Fix $Z = Z(v) \in Z'$, $x \in Z$, and let

- $V^u(x, Z) := V^u(\{v_i \geq 0\})$, for some (any) $v_i \in \Sigma^#(\mathcal{G})$ s.t. $v_0 = v$ and $\pi(v) = x$.
- $V^v(x, Z) := V^v(\{v_i \leq 0\})$, for some (any) $v_i \in \Sigma^#(\mathcal{G})$ s.t. $v_0 = v$ and $\pi(v) = x$.
- $W^s(x, Z) := W^s(x, Z) \cap Z$.
- $W^u(x, Z) := V^u(x, Z) \cap Z$.

To see that the definition is proper, suppose u, v are two regular gpos such that $u_0 = v_0 = v$. If $V^u(w), V^v(w)$ intersect at some point z for $t = s$ or u, then $V^u(w) \cap V^v(w)$, because both are equal to the piece of the local stable/unstable manifold of z at $\Psi_{l^u(w)}([-p^u(w), p^u(w)]^2)$. See [Sar13, Prop. 6.4] for details. In particular, $\pi(w) = \pi(w') \Rightarrow V^u(w) = V^u(w') (t = u, s)$.

This argument also shows that any two t-fibres ($t = s$ or u) are equal or disjoint.

(1) is because $W^u(x, Z), W^s(x, Z)$ contain x. For (3), Write $W^u(x, Z) = V^u(y) \cap Z$ and $W^s(y, Z) = V^s(x) \cap Z$ where $y, u \in \Sigma^#(\mathcal{G})$ satisfy $u_0 = v_0 = v$. Let $w := (\ldots, u_{-2}, u_{-1}, \ldots)$ with the dot indicating the zeroth coordinate. Clearly $\pi(w) \in W^u(x, Z) \cap W^s(y, Z)$. Since $W^u(x, Z) \cap W^s(y, Z) \subset V^u(x, Z) \cap V^s(y, Z)$ and a u-admissible manifold intersects an s-admissible at most once [KHC95, Cor. S.3.8], [Sar13, Prop. 4.11], $W^u(x, Z) \cap W^s(y, Z) = \{\pi(w)\}$.

Symbolic Markov property: If $x = \pi(u) \in \Sigma^#(\mathcal{G})$, then $f[W^u(x, Z(v_0))] \subset W^s(f(x), Z(v_1))$ and $f^{-1}[W^u(f(x), Z(v_1))] \subset W^s(x, Z(v_0))$.

Proof. Fix $y \in W^s(x, Z(v_0))$. Choose $y \in \Sigma^#(\mathcal{G})$ s.t. $u_0 = v_0$ and $y = \pi(y)$. Write $u_i := \Psi^{u^+}_{y^+ i}, v_i := v_i \wedge q^v$, and $\eta_i := q_i \wedge q^v$, then $f^{-n}(y) \in \Psi_{y^{-n}, \eta_i}([-\eta_{-n}, \eta_i]^2)$ for all $n \geq 0$.

Write $v_i := \Psi^{v^+}_{x^+ i}$ and $\xi_i := p_i \wedge p^v_i$. Since $y \in W^s(x, Z(v_0)) \subset V^s(y^+)$, $f^n(y) \in f^n[V^s(y^+)] \subset V^s(\sigma^n y^+) \subset \Psi_{x^+}([-\xi_{-n}, \xi_i]^2)$ for all $n \geq 0$.

It follows that the gpo $w := (\ldots, u_{-2}, u_{-1}, v, v_0, v, \ldots)$ shadows y (the dot indicates the position of the zeroth coordinate). Necessarily, $f(y) = f[\pi(w)] = \pi(\sigma[w]) \in V^s([v_1] \geq 1) \cap Z(v_1) = W^s(f(x), Z(v_1))$. Thus $f(y) \in W^s(f(x), Z(v_1))$.

Since $y \in W^s(x, Z(v_0))$ was arbitrary, $f[W^s(x, Z(v_0))] \subset W^s(f(x), Z(v_1))$. The other inequality is symmetric.

Overlapping charts property: The following holds for all ε is small enough.

Suppose $Z, Z' \in Z'$ and $Z \cap Z' \neq \emptyset$.

1. If $Z = Z(\Psi^{u^+ v^+}_{y^+ y^+})$, $Z' = Z(\Psi^{u^+ v^+}_{y^+ y^+})$, then $Z \subset \Psi_{y^+}([-q_0^u \wedge q_0^v, q_0^u \wedge q_0^v]^2)$.
(2) For all \(x, y \in Z' \), \(V^u(x, Z) \) intersects \(V^s(y, Z') \) at a unique point.
(3) For any \(x \in Z \cap Z' \), \(W^u(x, Z) \subseteq V^u(x, Z') \) and \(W^s(x, Z) \subseteq V^s(x, Z') \).

Proof sketch. If \(Z \cap Z' \neq \emptyset \), then there are \(u, v \in \Sigma^\#(\mathcal{G}) \) s.t. \(u_0 = \Psi_{x_0}^{-1} \circ v_0 \), \(v_0 = \Psi_{y_0}^{-1} \circ v_0 \), and \(\pi(u) = \pi(v) \). By Theorem 4.5(4), \(\Psi_{x_0}^{-1} \circ \Psi_{x_0} \) is close to \(\pm 1 \). This is enough to prove (1)–(3), see Lemmas 10.8 and 10.10 in [Sar13] for details.

Step 3 (Bowen, Sinai): A countable Markov partition. We refine \(\mathcal{Z} \) into a partition without destroying the Markov property or the product structure.

The refinement procedure we use below is due to Bowen [Bow75], building on earlier work of Sinai [Sin68a, Sin68b]. It was designed for finite Markov covers, but works equally well for locally finite infinite covers. Local finiteness is essential: A general non-locally finite cover may not have a countable refining partition as can be seen in the example of the cover \(\{ (\alpha, \beta) : \alpha, \beta \in \mathbb{Q} \} \) of \(\mathbb{R} \).

Enumerate \(\mathcal{Z} = \{ Z_i : i \in \mathbb{N} \} \). For every \(Z_i, Z_j \in \mathcal{Z} \) s.t. \(Z_i \cap Z_j \neq \emptyset \), let

\[
T^{us}_{ij} := \{ x \in Z_i : W^u(x, Z_i) \cap Z_j \neq \emptyset, W^s(x, Z_i) \cap Z_j \neq \emptyset \},
\]

\[
T^{u\emptyset}_{ij} := \{ x \in Z_i : W^u(x, Z_i) \cap Z_j \neq \emptyset, W^s(x, Z_i) \cap Z_j = \emptyset \},
\]

\[
T^{s\emptyset}_{ij} := \{ x \in Z_i : W^u(x, Z_i) \cap Z_j = \emptyset, W^s(x, Z_i) \cap Z_j \neq \emptyset \},
\]

\[
T^{\emptyset\emptyset}_{ij} := \{ x \in Z_i : W^u(x, Z_i) \cap Z_j = \emptyset, W^s(x, Z_i) \cap Z_j = \emptyset \}.
\]

This is a partition of \(Z_i \). Let \(\mathcal{T} := \{ T^{\alpha\beta}_{ij} : i, j \in \mathbb{N}, \alpha \in \{ u, \emptyset \}, \beta \in \{ s, \emptyset \} \} \). This is a countable set, and \(T^{us}_{ii} = Z_i \) for all \(i \), \(\mathcal{T} \supseteq \mathcal{Z} \). Necessarily, \(\mathcal{T} \) covers \(\text{NUH}^\#(f) \).

The Markov partition: \(\mathcal{R} := \{ \mathcal{T}^{\alpha\beta}_{ij} \} \) where \(\mathcal{T}^{\alpha\beta}_{ij} := \{ x \in \mathcal{T} : T^{\alpha\beta}_{ij} \cap \mathcal{T} \neq \emptyset \} \) for some \(x \in \bigcup_{i \geq 1} Z_i \).

Proposition 5.2. \(\mathcal{R} \) is a countable pairwise disjoint cover of \(\text{NUH}^\#(f) \). It refines \(\mathcal{Z} \), and every element of \(\mathcal{Z} \) contains only finitely many elements of \(\mathcal{R} \).

Proof. See [Bow75] or [Sar13, Prop. 11.2]. The local finiteness of \(\mathcal{Z} \) is needed to show that \(\mathcal{R} \) is countable: It implies that \(\# \{ T \in \mathcal{T} : T \ni x \} < \infty \) for all \(x \).

The following proposition says that \(\mathcal{R} \) is a Markov partition in the sense of Sinai [Sin68b]. First, some definitions. The \(u \)-fibre and \(s \)-fibre of \(x \in R \in \mathcal{R} \) are

\[
W^u(x, R) := \bigcap \{ W^u(x, Z_i) \cap T^{\alpha\beta}_{ij} \in \mathcal{T} \text{ contains } R \}
\]

\[
W^s(x, R) := \bigcap \{ W^s(x, Z_i) \cap T^{\alpha\beta}_{ij} \in \mathcal{T} \text{ contains } R \}.
\]

Proposition 5.3. The following properties hold:

(1) Product structure: Suppose \(R \in \mathcal{R} \).
(a) If \(x \in R \), then the \(s \) and \(u \) fibres of \(x \) contain \(x \), and are contained in \(R \), therefore \(R = \bigcup_{x \in R} W^u(x, R) \) and \(R = \bigcup_{x \in R} W^s(x, R) \).
(b) For all \(x, y \in R \), either the \(u \)-fibres of \(x, y \) in \(R \) are equal, or they are disjoint. Similarly for \(s \)-fibres.
(c) For all \(x, y \in R \), \(W^u(x, R) \) and \(W^s(y, R) \) intersect at a unique point, denoted by \([x, y] \) and called the Smale bracket of \(x, y \).

(2) Hyperbolicity: For all \(z_1, z_2 \in W^s(x, R) \), \(\text{dist}_A(f^n(z_1), f^n(z_2)) \xrightarrow{n \to \infty} 0 \), and for all \(z_1, z_2 \in W^u(x, R) \), \(\text{dist}_A(f^{-n}(z_1), f^{-n}(z_2)) \xrightarrow{n \to \infty} 0 \). The rates are exponential.
(3) Markov property: Let $R_0, R_1 \in \mathcal{R}$. If $x \in R_0$ and $f(x) \in R_1$, then $f[W^s(x, R_0)] \subset W^s(f(x), R_1)$ and $f^{-1}[W^u(f(x), R_1)] \subset W^u(x, R_0)$.

Proof. This follows from the Markov properties of \mathcal{Z} as in [Bow75]. See [Sar13, Prop. 11.5–11.7] for a proof using the notation of this paper. □

Step 4: Symbolic coding for $f : \Lambda \to \Lambda$ [AW67, Sin68b]. Let \mathcal{R} denote the partition we constructed in the previous section. Suppose $R, S \in \mathcal{R}$. We say that R connects to S, and write $R \to S$, whenever $\exists x \in R$ s.t. $f(x) \in S$. Equivalently, $R \to S$ iff $R \cap f^{-1}(S) \neq \emptyset$.

The dynamical graph of \mathcal{R}: This the directed graph $\hat{\mathcal{R}}$ with set of vertices \mathcal{R} and set of edges $\{(R, S) \in \mathcal{R} \times \mathcal{R} : R \to S\}$.

Fundamental observation [AW67, Sin68b]: Suppose $m \leq n$ are integers, and $R_m \to \cdots \to R_n$ is a finite path on $\hat{\mathcal{R}}$, then

$$
\ell[R_m, \ldots, R_n] := f^{-\ell}(R_m) \cap f^{-\ell-1}(R_{m+1}) \cap \cdots \cap f^{-\ell-(n-m)}(R_n) \neq \emptyset.
$$

Proof. This can be seen by induction on $n - m$ as follows: If $n - m = 0$ or 1 there is nothing to prove. Assume by induction that the statement holds for $m - n$, then $\exists x \in \ell[R_m, \ldots, R_n]$ and $\exists y \in R_n$ s.t. $f(y) \in R_{n+1}$. Let $z := [f^n(x), y]$, then $f^{-n}(z) \in \ell[R_m, \ldots, R_{n+1}]$ by the Markov property.

The brevity of the proof should not hide the amazing nature of the statement. Here is a consequence: Given $R_0 \in \mathcal{R}$, if there is an x s.t. $f^i(x) \in R_i$ for $i = -n, \ldots, 0$ and there is a y s.t. $f^i(y) \in R_i$ for $i = 0, \ldots, n$, then there is a z s.t. $f^i(z) \in R_i$ for $i = -n, \ldots, n$. Thus given the “present” R_0, any concatenation of a possible “past” $R_{-n} \to \cdots \to R_0$ with a possible “future” $R_0 \to \cdots \to R_n$ is realized by some orbit. That such combinatorial independence of the near past from the near future (given the present)5 can be present in a deterministic dynamical system is truly counterintuitive. It is a tool of immense power.

The sets $\ell[R_m, \ldots, R_n]$ can be related to cylinders in $\Sigma^\#(\mathcal{Z})$ as follows. Define for every path $v_m \to \cdots \to v_n$ on \mathcal{Z} (not $\hat{\mathcal{Z}}$)

$$Z_\ell(v_m, \ldots, v_n) := \{\pi(y) : y \in \Sigma^\#(\mathcal{Z}), u_i = v_i \ (i = \ell, \ldots, \ell + n - m)\}.$$

Lemma 5.4. For every infinite path $\cdots \to R_0 \to R_1 \to \cdots$ on $\hat{\mathcal{Z}}$ there is a gpo $v \in \Sigma(\mathcal{Z})$ s.t. for every n, $R_n \subset Z(v_n)$ and $-n[R_{-n}, \ldots, R_n] \subset Z_n(R_{-n}, \ldots, R_n)$.

Proof. See [Sar13, Lemma 12.2]. □

Proposition 5.5. Every vertex of $\hat{\mathcal{Z}}$ has finite outgoing and ingoing degrees.

Proof. Fix $R_0 \in \mathcal{R}$. For every path $R_{-1} \to R_0 \to R_1$ in $\hat{\mathcal{Z}}$, find a path $v_{-1} \to v_0 \to v_1$ in \mathcal{Z} s.t. $Z(v_i) \supset R_i$ for $|i| \leq 1$. Since \mathcal{Z} is locally finite, there are finitely many possibilities for v_0. Since every vertex of \mathcal{Z} has finite degree, there are also only finitely many possibilities for v_{-1}, v_1. Since every element in \mathcal{Z} contains at most finitely many elements in \mathcal{R}, there is a finite number of possibilities for R_{-1}, R_1. □

5Notice the similarity to the Markov property from the theory of stochastic processes.
Let $\Sigma(\hat{G}) := \{\text{doubly infinite paths on } \hat{G}\} = \{R \in \mathcal{F}^\mathbb{Z} : \forall i, R_i \to R_{i+1}\}$, equipped with the metric $d(R, S) := \exp[-\min\{|i| : R_i \neq S_i\}]$, and the action of the left shift map $\sigma : \Sigma(\hat{G}) \to \Sigma(\hat{G})$, $\sigma(R)_i = R_{i+1}$. Let

$$
\Sigma^\#(\hat{G}) := \left\{ R \in \Sigma(\hat{G}) : \{R_i\}_{i \leq 0}, \{R_i\}_{i \geq 0} \text{ contain constant subsequences} \right\}.
$$

Since $\pi : \Sigma(\hat{G}) \to \Lambda$ is Hölder continuous, there are constants $C > 0, \theta \in (0, 1)$ s.t. for every finite path $v_{-n} \to \cdots \to v_n$ on \hat{G}, diam$(Z_{-n}(v_{-n}, \ldots, v_n)) \leq C\theta^n$. By Lemma 5.4, diam$(\cdots [R_{-n}, \ldots, R_n]) \leq C\theta^n$ for every finite path $R_{-n} \to \cdots \to R_n$ on \hat{G}. This allows us to make the following definition:

Symbolic dynamics for f: Let $\hat{\pi} : \Sigma(\hat{G}) \to \Lambda$ be defined by

$$
\hat{\pi}(R) := \text{The unique point in } \bigcap_{n=0}^\infty \{R_{-n}, \ldots, R_n\}.
$$

Theorem 5.6. The following holds for all ε small enough in the definition of gpos:

1. $\hat{\pi} \circ \sigma = f \circ \hat{\pi}$.
2. $\hat{\pi} : \Sigma(\hat{G}) \to \Lambda$ is Hölder continuous.
3. $\hat{\pi}[\Sigma^\#(\hat{G})]$ has full μ_Λ-measure.
4. Every $x \in \hat{\pi}[\Sigma^\#(\hat{G})]$ has finitely many pre-images in $\Sigma^\#(\hat{G})$. If μ is ergodic, this number is equal a.e. to a constant.
5. Moreover, there exists $N : \hat{G} \times \hat{G} \to \mathbb{N}$ s.t. if $x = \hat{\pi}(R)$ where $R_i = R$ for infinitely many $i < 0$ and $R_i = S$ for infinitely many $i > 0$, then $\#\{S \in \Sigma^\#(\hat{G}) : \pi(S) = x\} \leq N(R, S)$.

Proof. If $R \in \Sigma(\hat{G})$, then $\hat{\pi}(\sigma(R)) = f(\hat{\pi}(R))$:

$$
\{\hat{\pi}(\sigma(R))\} = \bigcap_{n \geq 0} \{-n[R_{-n+1}, \ldots, R_{n+1}] \supseteq \bigcap_{n \geq 0} \{-n+2[R_{-n-1}, \ldots, R_{n+1}] \}
\overset{\uparrow}{=} \bigcap_{n \geq 0} f\left(\{-n-1[R_{-n+1}, \ldots, R_{n+1}]\}\bigcap_{n \geq 0} f\left(\{-n-1[R_{-n+1}, \ldots, R_{n+1}]\} \right) \overset{\uparrow}{=} f\left(\bigcap_{n \geq 0} \{-n-1[R_{-n+1}, \ldots, R_{n+1}]\}\right) = \{f(\hat{\pi}(R))\}.
$$

The equalities $\overset{\uparrow}{=}$ are because f is invertible. To justify $\overset{\uparrow}{=}$, it is enough to show that f is continuous on an open neighborhood of $C := \{-n-1[R_{-n+1}, \ldots, R_{n+1}]\}$. Fix some $v_0 = \Psi_{x_0}^{R_0} \psi_0$ s.t. $Z(v_0) \supset R_0$, then $C \subset \overline{T_0} \subset \bigcup_{v_0} \Psi_{x_0}[-Q_\varepsilon(x_0), Q_\varepsilon(x_0)] \subset \Lambda \setminus \mathcal{G}$. So f is continuous on C.

(2) is because of the inequality diam$(\cdots [-n[R_{-n}, \ldots, R_n]) \leq C\theta^n$ mentioned above.

(3) is because for every $x \in \text{NUH}^\#(f)$, $x = \hat{\pi}(R)$ where $R_i := \text{unique element of } \hat{G}$ which contains $f^i(x)$. Clearly $R \in \Sigma(\hat{G})$. To see that $R \in \Sigma^\#(\hat{G})$, we use Proposition 4.4 to construct a regular gpo $\Psi \in \Sigma^\#(\hat{G})$ s.t. $x = \pi(\Psi)$. Necessarily, $R_i \subset Z(v_i)$. Every $Z(v)$ contains at most finitely many elements of \mathcal{G} (Proposition 5.2). Therefore, the regularity of Ψ implies the regularity of R.

(4) follows from (5) and the f–invariance of $x \mapsto \#\{R \in \Sigma^\#(\hat{G}) : \hat{\pi}(R) = x\}$.
(5) is proved using Bowen’s method [Bow78, pp. 13–14], see also [PP90, p. 229]. The proof is the same as in [Sar13], but since the presentation there has an error, we decided to include the complete details in the appendix.

□

Step 5: Symbolic dynamics for \(\varphi : M \to M \). Let \(\pi : \Sigma(\hat{\mathcal{G}}) \to \Lambda \) denote the symbolic coding of \(f : \Lambda \to \Lambda \) given by Theorem 5.6.

Recall that \(R : \Lambda \to (0, \infty) \) denotes the roof function of \(\Lambda \). By the choice of \(\Lambda, R \) is bounded away from zero and infinity, and there is a global constant \(C \) s.t.

\[
\text{sup}_{x \in \Lambda \setminus \mathcal{O}} \|dR_x\| < C,
\]

see Lemma 2.5. Let

\[
r : \Sigma(\hat{\mathcal{G}}) \to (0, \infty), \quad r := R \circ \pi.
\]

This function is also bounded away from zero and infinity, and since \(\pi : \Sigma(\hat{\mathcal{G}}) \to \Lambda \) is Hölder and Pesin charts are connected subsets of \(\Lambda \setminus \mathcal{O}, r \) is Hölder continuous.

Let \(\sigma_r : \hat{\Sigma}_r \to \hat{\Sigma}_r \) denote the topological Markov flow with roof function \(r \) and base map \(\sigma : \Sigma(\hat{\mathcal{G}}) \to \Sigma(\hat{\mathcal{G}}) \) (see page 2 for definition). Recall that the regular part of \(\hat{\Sigma}_r \) is \(\hat{\Sigma}_r^\# := \{(x,t) : x \in \Sigma^\#(\hat{\mathcal{G}}), 0 \leq t < r(x)\} \). This is a flow invariant set, which contains all the periodic orbits of \(\sigma_r \). By Poincaré’s recurrence theorem, \(\hat{\Sigma}_r^\# \) has full measure with respect to every flow invariant probability measure. Let

\[
\hat{\pi}_r : \hat{\Sigma}_r \to M, \quad \hat{\pi}_r(x,t) := \varphi^t(\pi(x)).
\]

The following claims follow directly from Theorem 5.6:

1. \(\hat{\pi}_r \circ \sigma^t_r = \varphi^t \circ \hat{\pi}_r \) for all \(t \in \mathbb{R} \).
2. \(\hat{\pi}_r(\hat{\Sigma}_r^\#) \) has full measure with respect to \(\mu \).
3. Every \(\pi \in \hat{\pi}_r(\hat{\Sigma}_r^\#) \) has finitely many pre-images in \(\hat{\Sigma}_r^\# \). In case \(\mu \) is ergodic, \(\pi \) is \(\varphi \)-invariant, whence constant almost everywhere.
4. Moreover, there exists \(N : \hat{\mathcal{G}} \times \hat{\mathcal{G}} \to \mathbb{N} \) s.t. if \(p = \hat{\pi}_r(x,t) \) where \(x = R \) for infinitely many \(i < 0 \) and \(x_i = S \) for infinitely many \(i > 0 \), then \(\#\{(y,s) \in \hat{\Sigma}_r^\# : \hat{\pi}_r(y,s) = p\} \leq N(R,S) \).

This proves all parts of Theorem 1.3, except for the Hölder continuity of \(\hat{\pi}_r \).

Step 6: Hölder continuity of \(\hat{\pi}_r \). Every topological Markov flow is continuous with respect to a natural metric, introduced by Bowen and Walters. We will show that \(\hat{\pi}_r : \hat{\Sigma}_r \to M \) is Hölder continuous with respect to this metric.

First we recall the definition of the Bowen-Walters metric. Let \(\sigma_r : \Sigma_r \to \Sigma_r \) denote a general topological Markov flow (cf. page 2).

Suppose first that \(r \equiv 1 \) (constant suspension). Let \(\psi : \Sigma_1 \to \Sigma_1 \) be the suspension flow, and make the following definitions [BW72]:

- **Horizontal segments**: Ordered pairs \([z,w]_h \in \Sigma_1 \times \Sigma_1 \) where \(z = (x,t) \) and \(w = (y,t) \) have the same height \(0 \leq t < 1 \). The length of a horizontal segment \([z,w]_h \) is defined to be

\[
\ell([z,w]_h) := (1-t)d(x,y) + td(x,y),
\]

where \(d \) is the metric on \(\Sigma \) given by \(d(x,y) := \exp\left(-\min\{|n| : x_n \neq y_n\}\right) \).

- **Vertical segments**: Ordered pairs \([z,w]_v \in \Sigma_1 \times \Sigma_1 \) where \(w = \psi^t(z) \) for some \(t \). The length of a vertical segment \([z,w]_v \) is

\[
\ell([z,w]_v) := \min\{|t| : 0 < t : w = \psi^t(z)\}.
\]

- **Basic paths** from \(z \) to \(w \): \(\gamma := (z_0 = z \xrightarrow{t_0} z_1 \xrightarrow{t_1} \cdots \xrightarrow{t_{n-2}} z_{n-1} \xrightarrow{t_{n-1}} z_n = w) \) with \(t_i \in \{h,v\} \) such that \([z_{i-1},z_i]_{t_{i-1}} \) is a horizontal segment when \(t_{i-1} = h \), and a vertical segment when \(t_{i-1} = v \). Define

\[
\ell(\gamma) := \sum_{i=0}^{n-1} \ell([z_i,z_{i+1}]_{t_i}).
\]
Bowen-Walters Metric on Σ_1: $d_1(z, w) := \inf \{ \ell(\gamma) \}$ where γ ranges over all basic paths from z to w.

Next we consider the general case $r \neq 1$. The idea is to use a canonical bijection from Σ_r to Σ_1, and declare that it is an isometry.

Bowen-Walters Metric on Σ_r [BW72]: $d_r(z, w) := d_1(\vartheta_r(z), \vartheta_r(w))$, where $\vartheta_r : \Sigma_r \to \Sigma_1$ is the map $\vartheta_r(x, t) := (x, t/r(x))$.

Lemma 5.7. Assume r is bounded away from zero and infinity, and Hölder continuous. Then d_r is a metric, and there are constants $C_1, C_2, C_3 > 0$, $0 < \kappa < 1$ which only depend on r such that for all $z = (x, t), w = (y, s)$ in Σ_r:

1. $d_r(z, w) \leq C_1 [d(x, y)]^\kappa + |t - s|$.
2. Conversely:
 - (a) If $|\frac{1}{r(x)} - \frac{x}{r(y)}| \leq \frac{1}{2}$, then $d(\vartheta_r(x), \vartheta_r(y)) \leq C_2 d_r(z, w)$ and $|s - t| \leq C_2 d_r(z, w)$.
 - (b) If $|\frac{1}{r(x)} - \frac{x}{r(y)}| > \frac{1}{2}$, then $d(\vartheta_r(x), \vartheta_r(y)) \leq C_3 d_r(z, w)$ and $|s - t| \leq C_3 d_r(z, w)$.
3. For all $|r| < 1$, $d_r(\sigma_r^t(z), \sigma_r^s(w)) \leq C_2 d_r(z, w)$.

See the appendix for a proof.

Lemma 5.8. $\hat{\pi}_r : \hat{\Sigma}_r \to M$ is Hölder with respect to the Bowen-Walters metric.

Proof. Fix $(x, t), (y, s) \in \hat{\Sigma}_r$. If $|\frac{1}{r(x)} - \frac{x}{r(y)}| \leq 1/2$, then

$$\text{dist}_M(\hat{\pi}_r(x, t), \hat{\pi}_r(y, s)) \leq \text{dist}_M(\varphi_r^t(\hat{\pi}(x)), \varphi_r^s(\hat{\pi}(y)))$$

$$\leq \text{dist}_M(\varphi_r^t(\hat{\pi}(x)), \varphi_r^s(\hat{\pi}(x))) + \text{dist}_M(\varphi_r^t(\hat{\pi}(x)), \varphi_r^s(\hat{\pi}(y)))$$

$$\leq \max_{p \in M} \|X_p\| \cdot |t - s| + \text{Lip}(\varphi_r^t) \text{Hö}(\pi)d(x, y)^\delta$$

where X_p is the flow vector field of φ, and δ is the Hölder exponent of $\hat{\pi} : \Sigma(\hat{\varrho}) \to \Lambda$.

The first summand is bounded by const $d_r(z, w)^\kappa$, by Lemma 5.7(2)(a). The second summand is bounded by const $d_r(z, w)^\delta$, because φ is a flow of a Lipschitz (even $C^{1+\delta}$) vector field, therefore there are global constants a, b s.t. $\text{Lip}(\varphi_r^t) \leq b\sup |s|$ [AMR88, Lemma 4.1.8], therefore $\text{Lip}(\varphi_r^t) \leq b^{\text{sup} R} = O(1)$. It follows that $\text{dist}_M(\hat{\pi}_r(x, t), \hat{\pi}_r(y, s)) \leq \text{const} d_r((x, t), (y, s))^\min(\kappa, \delta)$.

Now assume that $|\frac{1}{r(x)} - \frac{x}{r(y)}| > \frac{1}{2}$. Since $\varphi_r^t(\hat{\pi}(x)) = \hat{\pi}(\sigma_r(x))$, we have

$$\text{dist}_M(\hat{\pi}_r(x, t), \hat{\pi}_r(y, s)) = \text{dist}_M(\varphi_r^t(\hat{\pi}(x)), \varphi_r^s(\hat{\pi}(y)))$$

$$\leq \text{dist}_M(\varphi_r^t(\hat{\pi}(x)), \varphi_r^s(\hat{\pi}(x))) + \text{dist}_M(\hat{\pi}(\sigma_r(x)), \hat{\pi}(y)) + \text{dist}_M(\hat{\pi}(y), \varphi_r^s(\hat{\pi}(y)))$$

$$\leq \max_{p \in M} \|X_p\| \cdot (|t - r(x)| + |s|) + \text{Hö}(\hat{\pi})d(\sigma_r(x), y)^\delta \leq \text{const} d_r((x, t), (y, s))^\gamma,$$

By part (2)(b) of Lemma 5.7.

In both cases we find that $\text{dist}_M(\hat{\pi}_r(x, t), \hat{\pi}_r(y, s)) \leq \text{const} d_r((x, t), (y, s))^\gamma$, where $\gamma := \min(\kappa, \delta)$.

Part 3. Applications

6. Measures of maximal entropy

We use the symbolic coding of Theorem 1.3 to show that a geodesic flow on a compact smooth surface with positive topological entropy can have at most countably many ergodic measures of maximal entropy. This application requires dealing with non-ergodic measures.
Lemma 6.1. Let φ be a continuous flow on a compact metric space X. If φ has uncountably many ergodic measures of maximal entropy, then φ has at least one measure of maximal entropy with non-atomic ergodic decomposition.

Proof. Let $M_\varphi(X)$ denote the space of φ-invariant probability measures, together with the weak star topology. This is a compact metrizable space [Wal82, Thm 6.4]. The following claims are standard, but we could not find them in the literature:

Claim 1. Suppose $E \subset X$ is Borel measurable, then $\mu \mapsto \mu(E)$ is Borel measurable.

Proof. Let $\mathcal{M} := \{E \subset X : E$ is Borel, and $\mu \mapsto \mu(E)$ is Borel measurable\}. Let \mathcal{A} denote the collection of Borel sets E for which there are $f_n \in C(X)$ s.t. $0 \leq f_n \leq 1$ and $f_n(x) \longrightarrow 1_E(x)$ everywhere.

- \mathcal{A} is an algebra, because if $0 \leq f_n, g_n \leq 1$ and $f_n \to 1_A, g_n \to 1_B$, then $f_n g_n \to 1_{A \cap B}$, $(1 - f_n) \to 1_{X \setminus A}$, and $(f_n + g_n - f_n g_n) \wedge 1 \to 1_{A \cup B}$.
- \mathcal{A} generates the Borel σ-algebra $\mathcal{B}(X)$, because it contains every open ball $B_r(x_0)$: take $f_n(x) := \varphi_n[d(x,x_0)]$ where $\varphi_n \in C(\mathbb{R})$, $1_{[0, r - \frac{1}{n}]} \leq \varphi_n \leq 1_{[0, r]}$.
- $\mathcal{M} \supset \mathcal{A}$: if $A \in \mathcal{A}$, then by the dominated convergence theorem $\mu(A) = \lim_{n \to \infty} \int f_n \mu$ for the $f_n \in C(X)$ s.t. $0 \leq f_n \leq 1$ and $f_n \to 1_A$. Since $\mu \mapsto \int f_n \mu$ is continuous, $\mu \mapsto \mu(A)$ is Borel measurable.
- \mathcal{M} is closed under increasing unions and decreasing intersections.

By the monotone class theorem [Sri98, Prop. 3.1.14], \mathcal{M} contains the σ-algebra generated by \mathcal{A}, whence $\mathcal{M} = \mathcal{B}(X)$. The claim follows.

Claim 2. $E_\varphi(X) := \{\mu \in M_\varphi(X) : \mu$ is ergodic} is a Borel subset of $M_\varphi(X)$.

Proof. Fix a countable dense collection $\{f_n\}_{n \geq 1} \subset C(X)$, $0 \leq f_n \leq 1$, then μ is ergodic iff $\limsup_{n \to \infty} \int \frac{1}{k} \int_0^k f_n \circ T^t - \int f_n \mu dt \mu = 0$ for every n. This is a countable collection of Borel conditions.

Claim 3. The entropy map $\mu \mapsto h_\mu(\varphi)$ is Borel measurable.

Proof. Let $T := \varphi^1$ (the time-one map of the flow φ), then $h_\mu(\varphi) = h_\mu(T)$. Thus $h_\mu(\varphi) = h_\mu(T) = \lim_{n \to \infty} h_\mu(T, \alpha_n)$ for any sequence of finite Borel partitions α_n s.t. $\max\{\text{diam}(A) : A \in \alpha_n\} \longrightarrow 0$ [Wal82, Thm 8.3]. The claim follows, since it easily follows from claim 1 that $\mu \mapsto h_\mu(T, \alpha_n)$ is Borel measurable.

Let $E_{\text{max}}(X)$ denote the set of ergodic measures with maximal entropy. By claims 2 and 3, this is a Borel subset of $M_\varphi(X)$. By the assumptions of the lemma, $E_{\text{max}}(X)$ is uncountable. Every uncountable Borel subset of a compact metric space carries a non-atomic Borel probability measure, because it contains a subset homeomorphic to the Cantor set [Sri98, Thm 3.2.7]. Let ν be a non-atomic Borel probability measure s.t. $\nu[E_{\text{max}}(X)] = 1$, and let $m := \int_{E_{\text{max}}(X)} \mu d\nu(\mu)$. This is a φ-invariant measure with non-atomic ergodic decomposition. Since the entropy map is affine [Wal82, Thm 8.4], m has maximal entropy.

Theorem 6.2. Suppose φ is a $C^{1+\beta}$ flow with positive speed and positive topological entropy on a C^∞ compact three dimensional manifold, then φ has at most countably many ergodic measures of maximal entropy.

Proof. Let $h :=$ topological entropy of φ, and assume by way of contradiction that φ has uncountably many ergodic measures of maximal entropy. By Lemma 6.1, φ has at least one measure of maximal entropy μ with a non-atomic ergodic decomposition.
By the variational principle [Wal82, Thm 8.3], \(h_\mu(\varphi) = h \). By the affinity of the entropy map [Wal82, Thm 8.4], almost every ergodic component \(\mu_x \) of \(\mu \) has entropy \(h \). Fix some \(0 < \chi_0 < h \). By Ruelle’s entropy inequality [Rue78], a.e. ergodic component \(\mu_x \) is \(\chi_0 \)--hyperbolic. Consequently, \(\mu \) is \(\chi_0 \)--hyperbolic.

This places us in the setup considered in part 2, and allows us to apply Theorem 1.3 to \(\mu \). We obtain a coding \(\pi_r : \Sigma_r \to M \) s.t. \(\mu[\pi(\Sigma_r)] = 1 \) and \(\pi_r : \Sigma_r \to M \) is finite-to-one (though not necessarily bounded-to-one).

Lifting Procedure: Define a measure \(\hat{\mu} \) on \(\Sigma_r \) by setting for \(E \subset \Sigma_r \) Borel

\[
\hat{\mu}(E) := \int_{\pi_r(\Sigma_r)} \left(\frac{1}{|\pi^{-1}_r(p) \cap \Sigma_r|} \sum_{\pi_r(x,t) = p} 1_E(x,t) \right) d\mu(p),
\]

then \(\hat{\mu} \) is a \(\sigma_r \)--invariant measure, \(\hat{\mu} \circ \pi_r^{-1} = \mu \), and \(h_\hat{\mu}(\sigma_r) = h_\mu(\varphi) \).

Proof. We start by clearing away all the measurability concerns. Let \(X := \Sigma_r \) and \(Y := M \cup X \) (disjoint union). Define \(f : \Sigma_r \to Y \) by \(f|_{\Sigma_r} = \pi_r \) and \(f|_{\Sigma_r \setminus \Sigma_r} = \text{id} \), then \(f : X \to Y \) is a countable-to-one Borel map between polish spaces. Such maps send Borel sets to Borel sets [Sri98, Thm 4.12.4], so \(\pi_r(\Sigma_r) = f(\Sigma_r) \) is Borel.

Next we show that the integrand in (6.1) is Borel. Let \(B := \{ (x, f(x)) : f(x) \in M \} \). This is a Borel subset of \(X \times Y \), because the graph of a Borel function is Borel [Sri98, Thm 4.5.2]. For every \(y \in Y \), \(B_y := \{ x \in X : (x, y) \in B \} \) is countable, because either \(y \in M \) and \(B_y := \pi_r^{-1}(y) \cap \Sigma_r \), or \(y \notin M \) and then \(B_y = \emptyset \). By Luzin’s theorem [Sri98, Thm 5.8.11], there are countably many partially defined Borel functions \(\varphi_n : M_n \to X \) s.t. \(B = \bigcup_{y=1}^{\infty} \{ (\varphi_n(y), y) : y \in M_n \} \). Write \(B = \bigcup_{n=1}^{\infty} \{ (\varphi_n(y), y) : y \in M_n \} \), \(M_n := \{ y \in M : k < n, y \in M_k \Rightarrow \varphi_n(y) \neq \varphi_k(y) \} \).

Then for every \(y \in M \),

\[
\pi_r^{-1}(y) = \{ \varphi_n(y) : n \geq 1, y \in M_n \}, \text{ and } m \neq n \Rightarrow \varphi_m(y) \neq \varphi_n(y).
\]

Thus, the integrand in (6.1) equals \(\sum_{n=1}^{\infty} 1_{M_n}(p)1_E(\varphi_n(p))/\sum_{n=1}^{\infty} 1_{M_n}(p) \), a Borel measurable function.

Now that we know that (6.1) makes sense it is a trivial matter to see that it defines a measure \(\hat{\mu} \). This measure is \(\sigma_r \)--invariant because of the flow invariance of \(\mu \) and the commutation relation \(\pi_r \circ \sigma_r = \varphi \circ \pi_r \). It has the same entropy as \(\mu \), because finite-to-one factor maps preserve entropy [AR62].

Projection Procedure: Every \(\sigma_r \)--invariant probability measure \(\hat{m} \) on \(\Sigma_r \) projects to a \(\varphi \)--invariant probability measure \(m := \hat{m} \circ \pi_r^{-1} \) on \(M \) with the same entropy.

Proof. By Poincaré’s recurrence theorem every \(\sigma_r \)--invariant probability measure is carried by \(\Sigma_r \), therefore \(\pi_r : (\Sigma_r, \hat{m}) \to (M, m) \) is a finite-to-one factor map. Such maps preserve entropy.

Combining the lifting procedure and the projection procedure we see that the supremum of the entropies of \(\varphi \)--invariant measures on \(M \) equals the supremum of the entropies of \(\sigma_r \)--invariant measures on \(\Sigma_r \), and therefore \(\hat{\mu} \) given by (6.1) is a measure of maximal entropy for \(\sigma_r \).

Claim. \(\sigma_r \) has at most countably many ergodic measures of maximal entropy.

Proof. We recall the well-known relation between measures of maximal entropy for \(\sigma_r \) and equilibrium measures for the shift map \(\sigma : \Sigma \to \Sigma \) [BR75]: \(S := \Sigma \times \{0\} \) is a Poincaré section for \(\sigma : \Sigma_r \to \Sigma_r \), therefore every measure of maximal entropy \(\hat{\mu} \) for \(\sigma_r \) can be put in the form \(\hat{\mu} = \int_{\Sigma} f^r(x) \delta_{\pi(x)} dt \hat{\mu}_{\Sigma}(x)/\int_{\Sigma} r d\hat{\mu}_{\Sigma} \) where \(\hat{\mu}_{\Sigma} \)
is a shift-invariant measure on \(\Sigma \). The denominator is well-defined, because \(r \) is bounded away from zero and infinity. If \(\hat{\mu} \) is ergodic, \(\hat{\mu}_\Sigma \) is ergodic.

By Abramov’s formula, \(h_{\Sigma} (\sigma_r) = h_{\hat{\mu}_\Sigma} (\sigma) / \int_{\Sigma} r \, d\hat{\mu}_\Sigma \). Similar formulas hold for all other \(\sigma \)-invariant probability measures \(m \) and the measures \(m_\Sigma \) they induce on \(\Sigma \). Since \(\hat{\mu} \) is a measure of maximal entropy, \(h_{m_\Sigma} (\sigma) / \int_{\Sigma} r \, dm_\Sigma = h_m (\sigma_r) \leq h \) (the maximal possible entropy) for all \(\sigma \)-invariant measures \(m_\Sigma \). This is equivalent to saying that \(h_{m_\Sigma} (\sigma) + \int_{\Sigma} (-hr) \, dm_\Sigma \leq 0 \), with equality iff \(h_m (\sigma_r) = h \).

Thus, if \(\hat{\mu} \) is a measure of maximal entropy for \(\sigma_r \), then \(\hat{\mu}_\Sigma \) is an equilibrium measure for \(-hr\), where \(h \) is the value of the maximal entropy. Also \(P(-hr) := \sup \{ h_{\Sigma} (\sigma) - h \int_{\Sigma} r \, d\nu \} = 0 \), where the supremum ranges over all \(\sigma \)-invariant probability measures \(\nu \) on \(\Sigma \).

Recall that \(r : \Sigma \to \mathbb{R} \) is Hölder continuous. By [BS03], a Hölder continuous potential on a topologically transitive countable Markov shift has at most one equilibrium measure. If the condition of topological transitivity is dropped, then there are at most countably many such measures (see the proof of Thm 5.3 in [Sar13]). It follows that there are at most countably many possibilities for \(\hat{\mu}_\Sigma \), and therefore at most countably many possibilities for \(\hat{\mu} \).

We can now obtain the contradiction which proves the theorem. Consider the ergodic decomposition of \(\hat{\mu} \) given by (6.1). Almost every ergodic component is a measure of maximal entropy (because the entropy function is affine). By the claim there are at most countably many different such measures. Therefore the ergodic decomposition of \(\hat{\mu} \) is atomic: \(\hat{\mu} = \sum p_i \mu_i \) with \(\mu_i \) ergodic and \(p_i \in (0,1) \) s.t. \(\sum p_i = 1 \). Projecting to \(M \) and noting that factors of ergodic measures are ergodic, we find that \(\mu = \sum p_i \mu_i \) where \(\mu_i := \mu_i \circ \pi_r^{-1} \) are ergodic. This is an atomic ergodic decomposition for \(\mu \). But the ergodic decomposition is unique, and we assumed that \(\mu \) has a non-atomic ergodic decomposition.

\[\square \]

7. Mixing for equilibrium measures on topological Markov flows

Let \(\sigma_r : \Sigma_r \to \Sigma_r \) be a topological Markov flow, together with the Bowen-Walters metric (see Lemma 5.7). Let \(\Phi : \Sigma_r \to \mathbb{R} \) be bounded and continuous.

The topological pressure of \(\Phi \): \(P(\Phi) := \sup \{ h_{\mu} (\sigma_r) + \int \Phi \, d\mu \} \), where the supremum ranges over all \(\sigma_r \)-invariant probability measures \(\mu \) on \(\Sigma_r \).

An equilibrium measure for \(\Phi \): A \(\sigma_r \)-invariant probability measure \(\mu \) on \(\Sigma_r \), s.t. \(h_{\mu} (\sigma_r) + \int \Phi \, d\mu = P(\Phi) \).

Theorem 7.1. Suppose \(\mu \) is an equilibrium measure of a bounded Hölder continuous potential for a topological Markov flow \(\sigma_r : \Sigma_r \to \Sigma_r \). If \(\sigma_r \) is topologically transitive, then the following are equivalent:

1. if \(e^{i\theta r} = h / h \circ \sigma \) for some Hölder continuous \(h : \Sigma \to S^1 \) and \(\theta \in \mathbb{R} \), then \(\theta = 0 \) and \(h = \text{const.} \)
2. \(\sigma_r \) is weak mixing,
3. \(\sigma_r \) is mixing.

(3) \(\Rightarrow \) (2) \(\Rightarrow \) (1) are because if \(e^{i\theta r} = h / h \circ \sigma \), then \(F(x,t) = e^{-i\theta t} h(x) \) is an eigenfunction of the flow. (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) are known in the special case when \(\Sigma \) is a subshift of finite type: Parry and Pollicott proved (1) \(\Rightarrow \) (2) [PP90], and Ratner proved (2) \(\Rightarrow \) (3) \(\Rightarrow \) Bernoulli [Rat74],[Rat78]. Dolgopyat showed us a different proof of (2) \(\Rightarrow \) (3) (private communication).
These proofs can be pushed through to the countable alphabet case with some effort, using the thermodynamic formalism for countable Markov shifts [BS03]. The details can be found in [LLS14].

The following theorem is a symbolic analogue of Plante’s necessary and sufficient condition for a transitive Anosov flow to be a constant suspension of an Anosov diffeomorphism [Pla72], see also [Bow73]:

Theorem 7.2. Let \(\sigma_r : \Sigma_r \to \Sigma_r \) be a topologically transitive topological Markov flow. Either every equilibrium measure of a bounded Hölder continuous potential is mixing, or there is \(\Sigma'_r \subset \Sigma_r \) of full measure s.t. \(\sigma_r : \Sigma'_r \to \Sigma'_r \) is topologically conjugate to a topological Markov flow with constant roof function.

Proof. If \(\Sigma \) is a finite set, then \(\Sigma_r \) equals a single closed orbit, and the claim is trivial. From now on assume that \(\Sigma \) is infinite.

Assume \(\sigma_r \) is not mixing, then \(\exp[i\theta r] = h/h \circ \sigma \) with \(h : \Sigma \to S^1 \) Hölder continuous and \(\theta \neq 0 \). Write \(\theta = 2\pi/c \) and put \(h \) in the form \(h = \exp[i\theta U] \), where \(U : \Sigma \to \mathbb{R} \) is Hölder continuous. Necessarily \(r + U \circ \sigma - U \in c\mathbb{Z} \).

We are free to change \(U \) on every partition set by a constant in \(c\mathbb{Z} \) to make sure \(U \) is bounded and positive. Fix \(N > 2\|U\|_{\infty}/\inf(r) \).

Construction: There is a cylinder \(A =_{m} [y_{m}, \ldots, y_{n}] \) such that

(i) \(m, n > 0 \) and \(y_{m} = y_{n} \),

(ii) \(n_{A}(\cdot) > N \) on \(\Omega \), where \(n_{A}(x) := \inf\{n \geq 1 : \sigma^{n}(x) \in A\} \),

(iii) \(x, x' \in A \Rightarrow |U(x) - U(x')| < N \inf(r) \).

To find \(A \), take \(y \in \Sigma \) with dense orbit. Since \(\Sigma \) is infinite, \(\sigma^{k}(y) \) are distinct.

Therefore, \(y \) has a cylindrical neighborhood \(C \) s.t. \(\sigma^{k}(C) \cap C = \emptyset \) for \(k = 1, \ldots, N \). Choose \(m, n > 0 \) so large that \(y_{m}[y_{m}, \ldots, y_{n}] \subset C \), and \(|U(z) - U(z')| < N \inf(r) \) for all \(z, z' \in C \). Since \(y \) has a dense orbit, every symbol appears in \(y \) infinitely often in the past and in the future, therefore we can choose \(m, n \) so that \(y_{m} = y_{n} \).

The cylinder \(A =_{m} [y_{m}, \ldots, y_{n}] \) satisfies (i), (ii) and (iii), because \(A \subset C \).

Since \(\mu \) is ergodic and globally supported, the following set has full \(\mu \)-measure:

\[\Sigma'_r = \{ z \in \Sigma_r : \sigma^r(z) \in A \times \{0\} \} \text{ infinitely often in the past and in the future} \].

Step 1: \(\sigma_r : \Sigma'_r \to \Sigma'_r \) is topologically conjugate to a topological Markov flow \(\sigma^*_{r} : \Sigma^*_r \to \Sigma^*_r \), whose roof function \(r^* \) takes values in \(c\mathbb{Z} \).

Proof. \(A \times \{0\} \) is a Poincaré section for \(\sigma_r : \Sigma'_r \to \Sigma'_r \). The roof function is \(r^*_A := r + r \circ \sigma + \cdots + r \circ \sigma^{n-1} \). By (ii), \(\inf(r_A) > N \inf(r) \), so \(0 < U < \inf(r_A) \).

Let \(S := \{ \sigma^r_{U}(x,0) : (x,0) \in \Sigma'_{r} \} \). This is a Poincaré section for \(\sigma_r : \Sigma'_r \to \Sigma'_r \), and its roof function is \(r^*_A := r_A + U \circ \sigma^{n-1} - U \) (this is always positive because \(U < \inf(r_A) \)). All the values of \(r^*_A \) belong to \(c\mathbb{Z} \), as can be seen from the identity \(r^*_A = \sum_{k=0}^{n-1} (r + U \circ \sigma - U) \circ \sigma^k \).

We claim that the section map of \(S \) is topologically conjugate to a topological Markov shift. Let \(V \) denote the collection of sets of the form

\[\langle B \rangle := \{ \sigma^r_{U}(x,0) : x \in_{m} \{A, B, A\} \} \],

where \(A =_{m} [y_{m}, \ldots, y_{n}] \) is the word defining \(A \), and \(B \) is any other word s.t. \(_{-m} \{A, B, A\} \neq \emptyset \) for which the only appearances of \(A \) in \(\{A, B, A\} \) are at the beginning and the end.
It is easy to see that $\sigma^\nu(x,0) \in S$ if $x = (\ldots; A, B^1, A, B^2, A, \ldots)$ with $\langle B^1 \rangle \subseteq V$, and that any sequence $\{(B^1)\}_{i \in \mathbb{Z}} \subseteq V^\mathbb{Z}$ appears this way. Let $\pi : S \to V^\mathbb{Z}$ be the map $\pi(x) = \{(B^1)\}_{i \in \mathbb{Z}}$. Since A appears in $\langle A, B^1, A \rangle$ only at the beginning and the end, $\pi \circ \sigma^\nu = \pi \circ \sigma$, with σ is the left shift on $V^\mathbb{Z}$. So the section map of S is topologically conjugate to the shift on $V^\mathbb{Z}$. Let $\Sigma^* := V^\mathbb{Z}$.

The roof function w.r.t. this new coding is $r^* := r^\nu \circ \pi^{-1}$. Routine calculations show that the H"older continuity of r implies the H"older continuity of r^*. So $\sigma^\nu : \Sigma^*_r \to \Sigma^*_r$, is a TMF, and $\sigma^\nu : \Sigma^*_r \to \Sigma^*_r$ is topologically conjugate to σ^ν.

Step 2: $\sigma^\nu : \Sigma^*_r \to \Sigma^*_r$ is topologically conjugate to a topological Markov flow $\sigma^\nu_\tau : \Sigma^*_\tau \to \Sigma^*_\tau$, where τ takes values in $c\mathbb{Z}$, and $\tau(x) = \tau(\pi(x))$.

Proof. Since r^* is H"older continuous and takes values in $c\mathbb{Z}$, there must be some $n_0 > 0$ s.t. r^* is constant on every cylinder of the form $-n_0[a_{-n_0}, \ldots, a_{n_0}]$.

Take $\pi(x,t) := (x^t)_{i \in \mathbb{Z}}, t$, where $x^t = (x_{-n_0+i}, \ldots, x_{n_0+i})$. The reader can check that the collection of $\{x^t\}_{i \in \mathbb{Z}}$ thus obtained is a topological Markov shift Σ^*_τ, and that $\tau((x^t)_{i \in \mathbb{Z}})$ only depends on the first symbol x^0.

Step 3: $\sigma^\nu_\tau : \Sigma^*_\tau \to \Sigma^*_\tau$ is topologically conjugate to a topological Markov flow $\sigma^\nu_\tau : \Sigma^*_\tau \to \Sigma^*_\tau$ where τ is constant equal to c.

Proof. The set $\{(x,kc) : x \in \Sigma^*_\tau, k \in \mathbb{Z}, 0 \leq kc < \text{value of } \tau \text{ on } 0[x_0]\}$ is a Poincaré section for the suspension flow with constant roof function (equal to c). The section map is conjugate to a topological Markov shift Σ^*_τ which we now describe.

Let $\mathcal{G} = \mathcal{G}(V,E)$ denote the graph of Σ^*_τ. Then $\Sigma^*_\tau = \Sigma(\mathcal{G})$, where \mathcal{G} has set of vertices $V := \{v : v \in V, 0 \leq kc < \text{value of } \tau \text{ on } 0[v]\}$ and edges $(u,v) \to (v)$ when $(v) \in \Sigma^*_\tau$ and $(u) \to (v)$ when $(v) \not\in \Sigma^*_\tau$. The conjugacy $\pi_\tau : \Sigma^*_\tau \to \Sigma^*_\tau$ is $\pi_\tau(x,t) := (\sigma^t/c(y), t - |t/c|c)$, where y is given by $(\ldots; (x_0), (x_1), \ldots), (\pi(x_0)_{c-1}^{-1}; (x_1), (x_2), \ldots, (\pi(x_1)_{c-1}^{-1}) \ldots)$ with (x_0) at the zeroth coordinate.

\[\square \]

8. Counting simple closed orbits

Let $\pi(T) := \#\{[\gamma] : \ell[\gamma] \leq T, \gamma \text{ simple closed geodesic}\}$. In this section we prove the following generalization of Theorem 1.1:

Theorem 8.1. Suppose φ is a $C^{1+\beta}$ flow with positive speed and positive topological entropy h on a C^∞ compact three dimensional manifold M. If φ has a measure of maximal entropy, then $\pi(T) \geq C(e^{hT}/T)$ for all T large enough and $C > 0$.

This implies Theorem 1.1, because every C^∞ flow admits a measure of maximal entropy. Indeed, by a theorem of Newhouse [New89], $\varphi^t : M \to M$ admits a measure of maximal entropy μ, and $\mu := \int_0^T m \circ \varphi^t dt$ has maximal entropy for φ.

Discussion. The theorem strengthens Katok’s bound $\lim_{T \to \infty} \frac{1}{T} \log \pi(T) \geq h$, see [Kat80, Kat82] for general flows, and it improves Macarini and Schlenk’s bound $\lim_{T \to \infty} \frac{1}{T} \log \pi(T) > 0$ for the class of Reeb flows in [MS11].

If one assumes more on the flow, then much better bounds for $\pi(T)$ are known:

1. Geodesic flows on closed hyperbolic surfaces: $\pi(T) \sim e^t/t$ [Hub59].
(2) **Topologically weak mixing Anosov flows** (e.g. geodesic flows on compact surfaces with negative curvature): \(\pi(T) \sim C e^{hT}/T \) [Mar69]. \(C = 1/h \) (C. Toll, unpublished). See [PS98] for estimates of the error term. The earliest estimates for \(\pi(T) \) in variable curvature are due to Sinai [Sin66].

(3) **Topologically weak mixing Axiom A flows**: \(\pi(T) \sim e^{hT}/hT \) [PP83]. See [PS01] for an estimate of the error term.

(4) **Geodesic flows on compact rank one manifolds**: \(C_1(e^{hT}/T) \leq \pi_0(T) \leq C_2(e^{hT}/T) \) for some \(C_1, C_2 > 0 \), where \(\pi_0(T) \) counts the homotopy classes of simple closed geodesics with length less than \(T \) [Kni97, Kni02].

(5) **Geodesic flows for certain non-round spheres**: For certain metrics constructed by [Don88, BG89], \(\pi(T) \sim e^{hT}/hT \) [Wea].

We cannot give upper bounds for \(\pi(T) \) as in (1)–(5), because in the general setup we consider there can be compact invariant sets with lots of closed geodesics but zero topological entropy (e.g. embedded flat cylinders). Such sets have zero measure for any ergodic measure with positive entropy, and they lie outside the "sets of full measure" that we can control using the methods of this paper. Adding to our pessimism is the existence of \(C^r \) \((1 < r < \infty) \) surface diffeomorphisms with super-exponential growth of periodic points [Kal00]. The suspension of these examples gives \(C^r \) flows with super-exponential growth of closed orbits. To the best of our knowledge, the problem of doing this in \(C^\infty \) is still open.

Preparations for the proof of Theorem 8.1. Fix an ergodic measure of maximal entropy for \(\varphi \), and apply Theorem 1.2 with this measure. The result is a topological Markov flow \(\sigma_r : \Sigma_r \rightarrow \Sigma_r \) together with a Hölder continuous map \(\pi_r : \Sigma_r \rightarrow M \), satisfying (1)–(6) in Theorem 1.2.

We saw in the proof of Theorem 6.2 (see page 33) that if \(\varphi \) has a measure of maximal entropy, then \(\sigma_r \) has a measure of maximal entropy. By the ergodic decomposition, \(\sigma_r \) has an ergodic measure of maximal entropy. Fix such a measure \(\mu \), and write \(\mu = \int_{\Sigma_r} f^{\tau(E)} \delta_x dt d\nu(x)/\int_{\Sigma_r} r dt \). The induced measure \(\nu \) is an ergodic shift invariant measure on \(\Sigma \). When we proved Theorem 6.2, we saw that \(\nu \) is an equilibrium measure of \(\phi = -hr \).

Like all ergodic shift invariant measures, \(\nu \) is supported on a topologically transitive topological Markov shift \(\Sigma' \subseteq \Sigma [ADU93] \). There is no loss of generality in assuming that \(\sigma : \Sigma \rightarrow \Sigma \) is topologically transitive (otherwise work with \(\Sigma' \)).

Proof of Theorem 8.1 when \(\mu \) is mixing. Fix \(0 < \varepsilon < 10^{-\inf(r)} \). Since \(r \) is Hölder, there are \(H > 0 \) and \(0 < \alpha < 1 \) s.t. \(|r(x) - r(y)| \leq H d(x, y)^\alpha \). Recall that

\[
d(x, y) = \exp(-\min\{n : x_n \neq y_n\})\]

For every \(\ell \geq 1 \), if \(x_n^{n_0+\ell} = y_n^{n_0+\ell} \) then

\[
|r_{\ell}(x) - r_{\ell}(y)| \leq \sum_{i=0}^{\ell-1} H d(\sigma^i(x), \sigma^i(y))^\alpha \leq H \sum_{i=0}^{\ell-1} e^{-\alpha \min\{n_0+i, n_0+\ell-i\}} \leq \frac{2He^{-\alpha n_0}}{1-e^{-\alpha}}.
\]

Choose \(n_0 \) s.t. \(\sup\{|r_{\ell}(x) - r_{\ell}(y)| : x_n^{n_0+\ell} = y_n^{n_0+\ell}, \ell \geq 1\} < \varepsilon \). Fix some cylinder \(A := [-n_0, a_{n_0}, \ldots, a_{n_0}] \) s.t. \(r(A) \neq 0 \), and let \(\Upsilon(T) := \bigcup_{n=1}^{\infty} \Upsilon(T, n) \), where

\[
\Upsilon(T, n) := \{y, n : y \in A, \sigma^n(y) = y, |r_n(y) - T| < 2\varepsilon\}
\]

Given \((y, n) \in \Upsilon(T, n) \), let \(\gamma_{y, n} : [0, r_n(y)] \rightarrow M, \gamma_{y, n}(t) = r_n(y, 0) \). This is a closed orbit with length \(\ell(\gamma_{y, n}) = r_n(y) \in [T - 2\varepsilon, T + 2\varepsilon] \). But \(\gamma_{y, n}(t) \) is not necessarily simple, because \(\pi \) is not injective.
Let $\gamma_{y,n}^a := \gamma_{y,n} \lfloor [0,\ell(\gamma_{y,n})/N]$, $N = N(y, n) := \#\{0 \leq t < \ell(\gamma_{y,n}) : \gamma_{y,n}(t) = \gamma_{y,n}(0)\}$. This is a simple closed orbit. If $N = 1$ if $\gamma_{y,n}$ is simple, and $N < \ell(\gamma_{y,n})/\inf(r)$, because an orbit with length less than $\inf(r)$ cannot be closed.

We obtain a map $\Theta : \Upsilon(T) \to \{[\gamma] : \gamma$ is a simple closed s.t. $\ell(\gamma) \leq T + 2\varepsilon\}$

$$\Theta : (y, n) \mapsto [\gamma_{y,n}^a].$$

Θ is not one-to-one, but we there is a uniform bound on its non-injectivity:

$$1 \leq \frac{\#\Theta^{-1}([\gamma_{y,n}^a])}{n} \leq c_0. \quad (8.1)$$

Here is the proof. Suppose $(y, n), (z, m) \in \Upsilon(T)$ and $[\gamma_{z,m}^a] = [\gamma_{z,m}^a]$, then:

- $N(y, n) = N(z, m)$.
- $[\gamma_{y,n}^a]$ and $[\gamma_{z,m}^a]$ both contain $\ell = \ell(\gamma_{y,n}) = \ell(\gamma_{z,m})$. But $N(y, n), N(z, m) < \frac{T + 2\varepsilon}{\inf(r)}$, and $[\gamma_{y,n}^a]$ and $[\gamma_{z,m}^a]$ are pairwise disjoint.
- By (8.1) and the fact shown above that Θ is not one-to-one, but we there is a uniform bound on its non-injectivity.

By Theorem 1.2(5) there is a constant $c_0 := N(a_0, a_0)$ s.t. if $x_i = a_0$ for infinitely many $i > 0$, then $\Theta^{-1}([\gamma_{y,n}^a]) \leq \# Y \cap \{\pi_1(\gamma_{y,n}^a)\} \leq c_0 n$. Hence $\Theta^{-1}([\gamma_{y,n}^a]) = \# \{\gamma_{y,n} : \gamma_{y,n} \in \Upsilon(T, n)\}$.

By (8.1) and the fact shown above that $[\gamma_{y,n}^a] = [\gamma_{z,m}^a]$ \Rightarrow $m = n$,

$$\#([\gamma] : \gamma \text{ simple closed orbit s.t. } \ell(\gamma) \leq T + 2\varepsilon) \geq \sum_{n=1}^{\infty} \frac{\# \Upsilon(T, n)}{n}, \text{ where } A_n \asymp B_n \text{ means } \exists C, N_0 \text{ s.t. } \forall n > N_0, C^{-1} \leq A_n^{-1} B_n \leq C$$

$$= \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{\sigma_n(y) = y} 1_A(y)1_{[-2\varepsilon, 2\varepsilon]}(r_n(y) - T) \right)$$

$$\leq \frac{e^{\varepsilon T}}{T} \sum_{n=1}^{\infty} \sum_{\sigma_n(y) = y} 1_A(y)1_{[-2\varepsilon, 2\varepsilon]}(r_n(y) - T)e^{-hr_n(y)}$$

$$= \frac{e^{\varepsilon T}}{T} S(T), \text{ where } S(T) := \sum_{n=1}^{\infty} \sum_{\sigma_n(y) = y} 1_A(y)1_{[-2\varepsilon, 2\varepsilon]}(r_n(y) - T)e^{-hr_n(y)}.$$

To prove the theorem, it is enough to show that $\liminf S(T) > 0$.

Recall that ν is an equilibrium measure of $\phi = -hr$ and $P(-hr) = 0$ (see the claim on page 33). The structure of such measures was found in [BS03]. We will not repeat the characterizations here, but we will simply note that it implies the following uniform estimate [BS03, page 1387]: There exists $G(a) > 0$ s.t. for every
cylinder of the form $0[b] = 0[\xi_0, \ldots, \xi_n]$ with $\xi_n = a$, $C(a)^{-1} \leq \frac{\nu_0(b)}{\exp(-hr_n(y))} \leq C(a)$ for all $y \in 0[b]$. It follows that there is a constant $G = G(A)$ s.t.

$$G^{-1} \leq \frac{\exp[-hr_n(y)]}{\nu(-n_0[a_{-n_0}, \ldots, a_{-1}; y_0, \ldots, y_{n-1}; a_0, \ldots, a_{n_0}])} \leq G$$

for every $y \in -n_0[a_{-n_0}, \ldots, a_{-1}; y_0, \ldots, y_{n-1}; a_0, \ldots, a_{n_0}]$. Let

$$U_T := \bigcup_{(y,n) \in \Gamma(T)} -n_0[a_{-n_0}, \ldots, a_{-1}; y_0, \ldots, y_{n-1}; a_0, \ldots, a_{n_0}],$$

then $S(T) \propto \nu[U_T] = (e^{-1} \int r \, d\nu)\mu(U_T \times [0, \varepsilon])$.

We claim that

$$U_T \times [0, \varepsilon] \supset (A \times [0, \varepsilon]) \cap \sigma_r^{-T}(A \times [0, \varepsilon]). \quad (8.2)$$

Once this shown, we can use the mixing of μ to get $\lim \inf \mu(U_T \times [0, \varepsilon]) > 0$, whence $\liminf S(T) > 0$.

Suppose $(x, t), \sigma_r^T(x, t) \in A \times [0, \varepsilon]$, and write $\sigma_r^T(x, t) = (\sigma^n(x), t + T - r_n(x))$. Since $x \in A \cap \sigma^{-n}(A)$, there exists $y \in A$ s.t. $\sigma^n(y) = y$ and $r_n(x) = x_{-n_0}$. By the choice of n_0, $|r_n(x) - r_n(y)| < \varepsilon$. Since $t, t + T - r_n(x) \in [0, \varepsilon]$, $|r_n(x) - T| < \varepsilon$, whence $|r_n(y) - T| < 2\varepsilon$. So $(x, t) \in U_T \times [0, \varepsilon]$. This proves (8.2).

Proof of Theorem 8.1 when μ is not mixing. In this case, Theorem 7.1 gives us a set of full measure $\Sigma'_r \subset \Sigma_r$ s.t. $\sigma_r : \Sigma'_r \to \Sigma'_r$ is topologically conjugate to a constant suspension over a topologically transitive topological Markov shift $\sigma_r : \tilde{\Sigma} \times [0, c) \to \tilde{\Sigma} \times [0, c)$. Let $\theta : \tilde{\Sigma} \times [0, c) \to \Sigma_r$ denote the topological conjugacy, and let $\tilde{\sigma} : \tilde{\Sigma} \times [0, c) \to M$ be the map $\tilde{\sigma} := \sigma_r \circ \theta$.

The map $\tilde{\sigma}$ has the same finiteness-to-one properties of π_r, because looking carefully at the proof of Theorem 7.1, we can see that if $x \in \tilde{\Sigma}$ contains some symbol a infinitely many times in its future (resp. past), then $\theta(x, t) = (y, s)$ where y contains some symbol $a = a(v)$ infinitely many times in its future (resp. past).

Since $\sigma_r : \Sigma'_r \to \Sigma'_r$ has a measure of maximal entropy, $\sigma_r : \tilde{\Sigma} \times [0, c) \to \tilde{\Sigma} \times [0, c]$ has a measure of maximal entropy. By Abramov's formula, $\sigma : \tilde{\Sigma} \to \tilde{\Sigma}$ has a measure of maximal entropy, and the value of this entropy is hc.

Gurevich characterized the countable state topological Markov shifts which possess measures of maximal entropy [Gur69, Gur70]. His work shows that there are $p \in \mathbb{N}$, $C > 0$, and a vertex v s.t. #{$x \in \tilde{\Sigma} : x_0 = v, \sigma^{np}(x) = x$} $\propto e^{np \cdot hc}$.

Such x determines a simple closed orbit $\gamma^*_x(np) : [0, \frac{np}{N(x, np)}] \to M$, where $\gamma^*_x(np)(t) = \tilde{p}[\tilde{\sigma}^t((x, 0))]$, $N(x, np) := \#\{0 \leq t < np : \tilde{p}[\tilde{\sigma}^t((x, 0))] \neq \tilde{p}((x, 0))\}$. We get a map

$$\Theta : \{(x, n) : x_0 = v, \sigma^{np}(x) = x\} \to \{[\gamma] : \gamma \text{ simple, } \ell(\gamma) \leq np\}, \Theta(x, n) = : \gamma^*_x(np).$$

Θ is not one-to-one, but one can show as before that $1 \leq \frac{\#\Theta^{-1}(\gamma^*_x(np))}{np} \leq C(v)$, where $C(v) = N(a(v), a(v))$. Thus $\#\{[\gamma^*_y(np) : y \in \tilde{\Sigma}, y_0 = v, \sigma^{np}(y) = y\} \propto e^{np \cdot hc}$. Since $\ell(\gamma^*_x(np)) \leq np$, $\#\{[\gamma] : \ell(\gamma) \leq T_n, \gamma \text{ is simple}\} \geq \const(e^{hT_n/T_n})$ for $T_n = np$. It follows that $\#\{[\gamma] : \ell(\gamma) \leq T, \gamma \text{ is simple}\} \geq \const(e^{hT/T})$ for large T. \square
Appendix A: Standard proofs

Proof of Lemma 2.1. M is compact and smooth, so there is a constant $r_{\text{inj}} > 0$ s.t. for every $p \in M$, $\exp_p : \{ \vec{v} \in T_p M : \| \vec{v} \|_p \leq r_{\text{inj}} \} \to M$ is $\sqrt{2}$-bi-Lipschitz onto its image (see e.g. [Spi79], chapter 9). Fix $0 < r < r_{\text{inj}}$, and complete $\vec{n}_p := \frac{X_p}{\|X_p\|}$ to an orthonormal basis $\{ \vec{n}_p, \vec{u}_p, \vec{v}_p \}$ of $T_p M$. Then

$$J_p(x, y) := \exp_p(x\vec{u}_p + y\vec{v}_p)$$

is a C^∞ diffeomorphism from $U_r := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq r \}$ onto $S_r(p)$ for all $0 < r < r_{\text{inj}}$, proving that $S = S_r(p)$ is a C^∞ embedded disc.

We claim that $\text{dist}_M(\cdot, \cdot) \leq \text{dist}_S(\cdot, \cdot) \leq 2 \text{dist}_M(\cdot, \cdot)$. The first inequality is obvious. For the second, suppose $z_1, z_2 \in S$. There are $\vec{v}_1, \vec{v}_2 \perp X_p$ s.t. $\|\vec{v}_i\|_p \leq r$ and $z_i = \exp_p(\vec{v}_i)$. Let $\gamma(t) := \exp_p(t\vec{v}_2 + (1-t)\vec{v}_1)$, $t \in [0, 1]$. Clearly, $\gamma \subset S$, whence $\text{dist}_S(z_1, z_2) \leq \text{length}(\gamma)$. Since \exp_p has bi-Lipschitz constant $\sqrt{2}$, $\text{dist}_S(z_1, z_2) \leq \sqrt{2}\|\vec{v}_1 - \vec{v}_2\|_p \leq (\sqrt{2})^2 \text{dist}_M(z_1, z_2)$.

We bound $\angle(X_q, T_q S)$ for $q \in S$. If $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3 \setminus \{0\}$, then $|\angle(\vec{u}, \text{span}\{\vec{v}, \vec{w}\})| \geq |\sin \angle(\vec{u}, \text{span}\{\vec{v}, \vec{w}\})| \geq \frac{\|\vec{u}\|}{\|\vec{v}\| \|\vec{w}\|}$, where $\langle \vec{u}, \text{span}\{\vec{v}, \vec{w}\} \rangle$ is the signed volume of the parallelepiped with sides $\vec{u}, \vec{v}, \vec{w}$. So for every $q \in S_r(p)$,

$$|\angle(X_q, T_q S)| \geq A(p, z) := \frac{\left| \langle X_{J_p(z)}(x, y), (dJ_p)_x \frac{\partial}{\partial x}, (dJ_p)_y \frac{\partial}{\partial y} \rangle \right|}{\|X_{J_p(z)}(x, y)\| \| (dJ_p)_x \frac{\partial}{\partial x} \| \|J_p(z)\| \| (dJ_p)_y \frac{\partial}{\partial y} \| \|J_p(z)\|},$$

where $z = z(q)$ is characterized by $q = J_p(z)$. By definition $A(p, 0) = 1$, so there is an open neighborhood V_p of p and a positive number δ_p s.t. $A(q, z) > \frac{1}{2}$ on $W_p := V_p \times B_{\delta_p}(0)$.

Working in $M \times \mathbb{R}^3$, we cover $K := M \times \{0\}$ by a finite collection $\{W_p, \ldots, W_p\}$, and let r_{Leb} be a Lebesgue number. Then $A(p, z) > \frac{1}{2}$ for every $p \in M$ and $\|z\| < r_{\text{Leb}}$. The lemma follows with $r_s := \frac{1}{2} \min\{1, r_{\text{inj}}, r_{\text{Leb}}\}$. \hfill \Box

Uniform Inverse Function Theorem. Let $F : U \to V$ be a differentiable map between two open subsets of \mathbb{R}^d s.t. $\det(dF) \neq 0$ for all $x \in U$. Suppose there are K, H, β s.t. $\|dF_x\|, \| (dF_x)^{-1} \| \leq K$ and $\|dF_{x_1} - dF_{x_2}\| \leq H \|x_1 - x_2\|^\beta$ for all $x_1, x_2 \in U$. If $x \in U$, $B_{\varepsilon}(x) \subset U$, and $0 < \varepsilon < 2^{-\beta(1+1)/\beta(KH)^{-1/\beta}}$, then

(1) F^{-1} is a well-defined differentiable open map on $W := B_\varepsilon(F(x))$,
(2) $\| (dF^{-1})_{y_1} - (dF^{-1})_{y_2} \| \leq H^\beta \|y_1 - y_2\|^{\beta}$ for all $y_1, y_2 \in W$, with $H^\beta := K^\beta H$.

Proof. Track the constants in the fixed point theorem proof of the inverse function theorem (see e.g. [Sma74]). \hfill \Box

Proof of Lemma 2.2. Let $B := \{ x \in \mathbb{R}^3 : \|x\| < 1 \}$. Let \mathcal{V} be a finite open cover of M such that for every $V \in \mathcal{V}$,

(1) $V = C_V(B)$ where $C_V : B \to V$ is a C^2 diffeomorphism,
(2) C_V extends to a bi-Lipschitz C^2 map from a neighborhood of \overline{B} onto \overline{V},
(3) $(dC_V)_x \frac{\partial}{\partial x}, (dC_V)_y \frac{\partial}{\partial y} : X_{C_V(z)}$ are linearly independent for $z \in \overline{B}$.

Since M is compact and X has no zeroes, $\|X_p\|$ is bounded from below. This, together with the $C^{1+\beta}$ regularity of X, implies that $\vec{n}_p := \frac{X_p}{\|X_p\|}$ is Lipschitz on M. Apply the Gram-Schmidt procedure to $\vec{n}_{C_V(z)}, (dC_V)_x \frac{\partial}{\partial x}, (dC_V)_y \frac{\partial}{\partial y}$ for $z \in \overline{B}$. The result is a Lipschitz orthonormal frame $\vec{n}_p, \vec{u}_p, \vec{v}_p$ for $T_p M, p \in \overline{V}$.\hfill \Box
Define for every \(p \in V \) the function \(F_p(x, y, t) := \varphi^t[\exp_p(x\vec{u}_p + y\vec{v}_p)] \). \((dF_p)_0\) is non-singular for every \(p \in V \). Since \(p \mapsto \det(dF_p)_0 \) is continuous and \(V \) is compact, \(\det(dF_p)_0 \) is bounded away from zero for \(p \in V \). Since \((p, x, y, t) \mapsto \det(dF_p)_{(x,y,t)} \) is uniformly continuous on \(V \times B \), \(\exists \delta(V) > 0 \) s.t. \(\det(dF_p)_{(x,y,t)} \) is bounded away from zero on \(\{(p, x, y, t) : p \in V, x^2 + y^2 \leq \delta(V)^2, |t| \leq \delta(V)\} \).

Fix \(0 < \delta < \min\{\delta(V) : V \in \mathcal{V}\} \) s.t. \(\delta < r_{\text{cub}}/2S_0 \) where \(S_0 := 1 + \max_{p \in M} ||X_p|| \) and \(r_{\text{cub}} \) is a Lebesgue number for \(\mathcal{V} \). For every \(p \in M \), \(F_p(\{(x, y, t) : x^2 + y^2 \leq \delta^2, |t| \leq \delta\}) \subset B_{r_{\text{cub}}}(p) \), so \(\exists V \in \mathcal{V} \) s.t. \(F_p(\{(x, y, t) : x^2 + y^2 \leq \delta^2, |t| \leq \delta\}) \subset V = \text{dom}(C_V^{-1}) \). For this \(V \),

\[
G = G_{p,V} := C_V^{-1} \circ F_p : \{(x, y, t) : x^2 + y^2 \leq \delta^2, |t| \leq \delta\} \to \mathbb{R}^3
\]
is a well-defined map, with Jacobian uniformly bounded away from zero. A direct calculation shows that \(||dG(x,y,t)||, ||(dG(x,y,t))^{-1}|| \) and the \(\beta \)-Hölder norm of \(dG \) are uniformly bounded by constants that do not depend on \(p, V \).

By the uniform inverse function theorem, for every \(0 < \delta' \leq \delta \), the image \(G(\{(x, y, t) : x^2 + y^2 \leq (\delta')^2, |t| \leq \delta'\}) \) contains a ball \(B^{*} \) of some fixed radius \(\vartheta'(\delta') \) centered at \(C_V^{-1}(p) \), and \(G \) can be inverted on \(B^{*} \). So \(F_p^{-1} \) is well-defined and smooth on \(C_V(B^{*}) \). Since \(C_V \) is bi-Lipschitz, there is a constant \(\vartheta(V, \delta') \) s.t. \(C_V(B^{*}) \supset B_{\vartheta(V, \delta')}(p) \), so \(F_p^{-1} \) is well-defined and smooth on \(B_{\vartheta(V, \delta')}(p) \). The \(C^{1+\beta} \) norm of the \(F_p^{-1} \) there is uniformly bounded by a constant which only depends on \(V \). It follows that \((g, t) \mapsto \varphi^t(q) \) can be inverted with bounded \(C^{1+\beta} \) norm on \(B_{\vartheta(V, \delta')}(p) \).

Let \(K(V) \) denote a bound on the Lipschitz constant of the inverse function, and let \(\rho(V) := \delta/2K(V) \), then \((g, t) \mapsto \varphi^t(q) \) is a diffeomorphism from \(S_{\rho(V)}(p) \times [-\rho(V), \rho(V)] \) onto \(F_{B_{\rho(V)}}(p) \). Let \(\tau_f := \min\{\rho(V) : V \in \mathcal{V}\} \), then \((g, t) \mapsto \varphi^t(q) \) is a diffeomorphism from \(S_{\tau_f}(q) \times [-\tau_f, \tau_f] \) onto \(F_{B_{\tau_f}}(p) \). The lemma follows with this \(\tau_f \), and with \(\delta := \min\{\delta(V, \frac{1}{2}\tau_f) : V \in \mathcal{V}\} \).

Proof of Lemma 2.3. We use the notation of the previous proof. Invert the function \(F_p(x, y, t) := \varphi^t[\exp_p(x\vec{u}_p + y\vec{v}_p)] \) on \(B_{\vartheta}(p) \):

\[
F_p^{-1}(z) = (x_p(z), y_p(z), t_p(z)) \quad (z \in B_{\vartheta}(p)).
\]

By the uniform inverse function theorem, the \(C^{1+\beta} \) norm of \(G^{-1} \) is bounded by some constant independent of \(p, V \). Since \(F_p^{-1} = G^{-1} \circ C_V^{-1} \), \(C_V \) is bi-Lipschitz, and \(\mathcal{V} \) is finite, \(x_p(\cdot), y_p(\cdot), t_p(\cdot) \) have uniformly bounded Lipschitz constants (independent of \(p \)), and the differentials of \(x_p, y_p, t_p \) are \(\beta \)-Hölder with uniformly bounded Hölder constants (independent of \(p \)).

Clearly \(t_p(z) := t_p(z) \) and \(q_p(z) := \exp_p[x_p(z)\vec{u}_p + y_p(z)\vec{v}_p] \) are the unique solutions for \(z = \varphi^{t_p(z)}[q_p(z)] \). Thus \(t_p, q_p \) are Lipschitz functions with Lipschitz constant bounded by some \(\delta \) independent of \(p \), and \(C^{1+\beta} \) norm bounded by some \(\delta \) independent of \(p \).

Proof of Theorem 5.6(5). The proof is motivated by [Bow78].

Say that \(R, R' \in \mathcal{R} \) are affiliated, if there are \(Z, Z' \in \mathcal{Z} \) s.t. \(R \subset Z, R' \subset Z' \), and \(Z \cap Z' \neq \emptyset \). Let \(N(R, S) := N(R)N(S) \), where

\[
N(R) := \#\{(R', v') \in \mathcal{R} \times \mathcal{A} : R' \text{ is affiliated to } R \text{ and } Z(v') \supset R'\}.
\]

This is finite, because of the local finiteness of \(\mathcal{Z} \).
Let \(x = \pi(\mathcal{R}) \) where \(R_i = R \) for infinitely many \(i < 0 \) and \(R_i = S \) for infinitely many \(i > 0 \). Let \(N := N(R, S) \), and suppose by way of contradiction that \(x \) has \(N + 1 \) different pre-images \(\mathcal{R}^{(0)}, \ldots, \mathcal{R}^{(N)} \in \Sigma^\#(\mathcal{G}) \), with \(\mathcal{R}^{(0)} = \mathcal{R} \). Write \(\mathcal{R}^{(j)} = \{ R^{(j)}_k \}_{k \in \mathbb{Z}} \). By Lemma 5.4 there are \(\nu^{(j)} \in \Sigma(\mathcal{G}) \) s.t. for every \(n \),
\[
-n[R^{(j)}_{-n}, \ldots, R^{(j)}_n] \subset Z_n(v^{(j)}_{-n}, \ldots, v^{(j)}_n) \text{ and } R^{(j)}_n \subset Z(v^{(j)}_n).
\]
For every \(j \), \(v^{(j)} \in \Sigma^\#(\mathcal{G}) \), because \(\mathcal{R}^{(j)} \in \Sigma^\#(\mathcal{G}) \) and \(\mathcal{Z} \) is locally finite. It follows that \(\pi(v^{(j)}) \in Z_n(v^{(j)}_{-n}, \ldots, v^{(j)}_n) \) for all \(n \).

Since \(x = \pi(R^{(j)}) \in -n[R^{(j)}_{-n}, \ldots, R^{(j)}_n] \subset Z_n(v^{(j)}_{-n}, \ldots, v^{(j)}_n) \). Since the diameter of \(Z_n(v^{(j)}_{-n}, \ldots, v^{(j)}_n) \) tends to zero as \(n \to \infty \) by the Hölder continuity of \(\pi \), \(\pi(v^{(j)}) = x \).

It follows that \(Z(v^{(0)}_i, \ldots, Z(v^{(N)}_i) \) all intersect (they contain \(f^i(x) = \pi(\sigma^i v^{(j)}) \)). Since \(R^{(j)}_i \subset Z(v^{(j)}) \) and \(Z(v^{(0)}_i, \ldots, Z(v^{(N)}_i) \) intersect, \(R^{(0)}_i, \ldots, R^{(N)}_i \) are affiliated for all \(i \).

In particular, if \(k, \ell > 0 \) satisfy \(R^{(0)}_{-k} = R \) and \(R^{(0)}_{-\ell} = S \) (there are infinitely many such \(k, \ell \)), then there are at most \(N = N(R)N(S) \) possibilities for the quadruple \((R^{(j)}_{-k}, Z(v^{(j)}_j); R^{(j)}_{-\ell}, Z(v^{(j)}_{-\ell})) \), \(j = 0, \ldots, N \). By the pigeonhole principle, there are \(0 \leq j_1, j_2 \leq N \) s.t. \(j_1 \neq j_2 \) and
\[
(R^{(j_1)}_{-k}, v^{(j_1)}_{-k}) = (R^{(j_2)}_{-k}, v^{(j_2)}_{-k}) \quad \text{and} \quad (R^{(j_1)}_{-\ell}, v^{(j_1)}_{-\ell}) = (R^{(j_2)}_{-\ell}, v^{(j_2)}_{-\ell}).
\]
We can also guarantee that
\[
(R^{(j_1)}_{-k}, \ldots, R^{(j_1)}_{-\ell}) \neq (R^{(j_2)}_{-k}, \ldots, R^{(j_2)}_{-\ell}).
\]
To do this fix in advance some \(m \) s.t. \((R^{(j)}_{-m}, \ldots, R^{(j)}_m) \) \(j = 0, \ldots, N \) are all different, and work with \(k, \ell > m \).

Now let \(A := R^{(j_1)}_m, B := R^{(j_2)}_m, a := v^{(j_1)}_m, b := v^{(j_2)}_m \). Write \(A_k = B_k =: B, A_\ell = B_\ell =: A, a_k = b_k =: b, \) and \(a_\ell = b_\ell =: a \). Choose
\[
x_A \in \{-k[A_{-k}, \ldots, A]\} \quad \text{and} \quad x_B \in \{-k[B_{-k}, \ldots, B]\}.
\]
Define two points \(z_A, z_B \) by the equations
\[
f^{-k}(z_A) := [f^{-k}(x_B), f^{-k}(x_A)] \in W^u(f^{-k}(x_B), B) \cap W^s(f^{-k}(x_A), B)
\]
\[
f^{\ell}(z_B) := [f^{\ell}(x_B), f^{\ell}(x_A)] \in W^u(f^{\ell}(x_B), A) \cap W^s(f^{\ell}(x_A), A).
\]
This makes sense, because \(f^{-k}(x_A), f^{-k}(x_B) \in B \) and \(f^{\ell}(x_A), f^{\ell}(x_B) \in A \).

One checks using the Markov property of \(\mathcal{R} \) that \(z_A \in \{-k[A_{-k}, \ldots, A]\} \), and \(z_B \in \{-k[B_{-k}, \ldots, B]\} \). Since \((A_{-k}, \ldots, A_\ell) \neq (B_{-k}, \ldots, B_\ell) \) the elements of \(\mathcal{R} \) are pairwise disjoint, \(z_A \neq z_B \). We will obtain the contradiction we are after by showing that \(z_A = z_B \).

Since \(f^{\ell}(z_A) \in A_\ell = A \subset Z(a) \) and \(f^{-k}(z_B) \in B_{-k} = B \subset Z(b) \), there are \(\alpha, \beta \in \Sigma^\#(\mathcal{G}) \) s.t. \(z_A = (\pi(\alpha))_a, z_B = (\pi(\beta))_b, \alpha_k = a, \beta_{-k} = b \). Let \(c = \{ c_i \}_{i \in \mathbb{Z}} \) where \(c_i = \beta_i \) for \(i \leq -k \), \(c_i = \alpha_i \) for \(-k < i < \ell \), and \(c_i = \alpha_i \) for \(i \geq \ell \). This belongs to \(\Sigma^\#(\mathcal{G}) \), because \(\alpha, \beta \in \Sigma^\#(\mathcal{G}) \) and \(\beta_{-k} = b = a_{-k} \) and \(a_\ell = a = \alpha_\ell \). We will show that \(z_A = (\pi(c))_a = z_B \). Write \(c_i = \Psi^{(j)}_{\alpha_i}(i \in \mathbb{Z}) \).

6 At this point the proof given in [Sar13] has a mistake. There it is claimed that \(\pi(v^{(j)}) \in Z_{-n}(v^{(j)}_{-n}, \ldots, v^{(j)}_n) \) without making the assumption that \(\mathcal{R}^{(j)} \in \Sigma^\#(\mathcal{G}) \).
By the definition of z_A, z_B and the Markov property, $f^{-k}(z_A), f^{-k}(z_B)$ both belong to $W^u(\epsilon_k(x_B), B)$. It follows that

$$W^u(\epsilon_k(x_A), B) = W^u(\epsilon_k(x_B), B) = W^u(\pi(\sigma^{-k}b), B) \subset V^u((c_i)_{i \leq -k}).$$

It follows that $f^i(z_A), f^i(z_B) \in \Psi_{x_i}([-Q_z(x_i), Q_z(x_i)])$ for all $i \leq -k$.

Similarly, $f^i(z_A), f^i(z_B)$ both belong to $W^s(f^i(x_A), A)$, whence

$$W^s(f^i(z_A), A) = W^s(f^i(z_B), A) = W^s(\pi(\sigma^i\Omega), A) \subset V^s((c_i)_{i \geq i}).$$

It follows that $f^i(z_A), f^i(z_B) \in \Psi_{x_i}([-Q_z(x_i), Q_z(x_i)])$ for all $i \geq \ell$.

For $-k < i < \ell$, $f^i(z_A), f^i(z_B) \in A_i \cup B_i \subset Z(a_i) \cup Z(b_i)$. The sets $Z(a_i), Z(b_i)$ intersect, because as we saw above

- $x = \pi(y) \in Z_k(a_k, \ldots, a_i)$, whence $f^i(x) \in Z(a_i)$,
- $x = \pi(y) \in Z_k(b_k, \ldots, b_i)$, whence $f^i(x) \in Z(b_i)$.

By the overlapping charts property of \mathcal{Z} (see §5) and since $a_i = c_i$ for $-k < i < \ell$, $Z(a_i) \cup Z(b_i) \subset \Psi_{x_i}([-Q_z(x_i), Q_z(x_i)])$ for $i = -k + 1, \ldots, \ell - 1$.

In summary, $f^i(z_A), f^i(z_B) \in \Psi_{x_i}([-Q_z(x_i), Q_z(x_i)])$ for all $i \in \mathbb{Z}$. As shown in the proof of the shadowing theorem (Thm. 4.2), z must shadow z_A and z_B, whence $z_A = z_B$. \hfill \square

Remark. We take this opportunity to correct a mistake in [Sar13]. Theorem 12.8 in [Sar13] (the analogue of the statement we just proved) is stated wrongly as a bound for the number of all pre-images of $x \in \hat{\pi}[\Sigma^#(\mathcal{G})]$. But what is actually proved there (and all that is needed for the remainder of the paper) is just a bound on the number of pre-images which belong to $\Sigma^#(\mathcal{G})$ (denoted there by $\Sigma^#$).

Thus the statements of Theorems 1.3 and 1.4 in [Sar13] should be read as bounds on the number of pre-images in $\Sigma^#(\mathcal{G})$ (denoted here by $\Sigma^#(\mathcal{G})$), and not as bounds on the number of pre-images in $\Sigma^#(\mathcal{G})$ (denoted here by $\Sigma^#(\mathcal{G})$). The other results or proofs in [Sar13] are not affected by these changes, since $\Sigma \setminus \Sigma^#$ does not contain any periodic orbits, and because $\Sigma \setminus \Sigma^#$ has zero measure for every shift invariant probability measure (Poincaré’s recurrence theorem).

Proof of Lemma 5.7. Let $\psi : \Sigma_1 \to \Sigma_1$ denote the constant suspension flow, then

- For every horizontal segment $[z, w]_{[\varepsilon]}$, $|\tau| < 1 \implies \ell[(\psi(\tau)(z), \psi(\tau)(w))]_{[\varepsilon]} - 1 \leq 2\varepsilon^2|\tau|$. This uses the trivial bound $d(z, y)/d(\sigma^k(z), \sigma^k(y)) \in [e^{-1}, e]$ for $|k| \leq 1$ and the metric $d(z, y) := \exp(-\min\{|n| : x_n \neq y_n\})$.
- For every vertical segment $[z, w]_{[\varepsilon]}$, $\ell[(\psi(\tau)(z), \psi(\tau)(w))]_{[\varepsilon]} = \ell([z, w]_{[\varepsilon]})$ for all τ.

Thus for all $z, w \in \Sigma_1$, $|\tau| < 1 \implies (1 + 2\varepsilon^2|\tau|)^{-1} \leq d_\tau(\psi(\tau)(z), \psi(\tau)(w)) = d_\tau(z, w) \leq (1 + 2\varepsilon^2|\tau|)$.

Claim: d_τ is a metric on Σ_τ.

Proof. It is enough to show that d_τ is a metric. Symmetry and the triangle inequality are obvious; we show that $d_\tau(z, w) = 0 \implies z = w$.

Let $z = (x, t), w = (y, s), \tau := \frac{1}{2} - t$. If $d_\tau(z, w) = 0$, then $d_1(\psi(\tau)(z), \psi(\tau)(w)) = 0$.

Let $\gamma = (z_0, z_1, \ldots, z_n)$ be a basic path from $\psi(\tau)(z)$ to $\psi(\tau)(w)$ with length less than ε, with $\varepsilon < \frac{1}{3}$ fixed but arbitrarily small. Write $z_i = (\xi_i, t_i)$, then $\psi(\tau)(z) = (\xi_0, t_0)$ and $\psi(\tau)(w) = (\xi_n, t_n)$.

Since the lengths of the vertical segments of $\bar{\gamma}$ add up to less than ε and $t_0 = \frac{1}{2}$, $\bar{\gamma}$ does not leave $\Sigma \times [\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon]$. It follows that $|t_n - t_0| < \varepsilon$. Since ε was arbitrary, $t_n = t_0$, and $\psi^r(z), \psi^r(w)$ have the same second coordinate.

Since $\bar{\gamma}$ does not leave $\Sigma \times [\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon]$, it does not cross $\Sigma \times \{0\}$. Writing a list of the horizontal segments $((x_k, t_k), (x_{k+1}, t_{k+1}))$, we find that $x_{k+1} = x_k$. By the triangle inequality $\varepsilon > d_1(\psi^r(x, t), \psi^r(y, t)) \geq e^{-1} \sum d((x_k, x_{k+1}) \geq e^{-1}d(x_0, x_n)$. Since ε is arbitrary, $x_0 = x_n$, and $\psi^r(z), \psi^r(w)$ have the same first coordinate. Thus $\psi^r(z) = \psi^r(w)$, whence $z = w$.

Part (1): $d_r((x, t), (y, s)) \leq \text{const} [d((x, y)^\alpha + |t-s|]$, where α denotes the H"older exponent of r.

Proof. $d_r((x, t), (y, s)) = d_1((x, r(t)), (y, r(s)))$. The basic path $(x, r(\frac{t}{2})), (x, \frac{r(t)}{r(y)})$, $(y, \frac{r(s)}{r(y)})$ shows that $d_1((x, \frac{r(t)}{r(y)}), (y, \frac{r(s)}{r(y)})) \leq \frac{r(t)}{r(y)} + r(s) \leq \frac{1}{r(y)} |t-s| + \text{H"older}_r(r) d((x, y)^\alpha) + ed((x, y) \leq \text{const} d((x, y)^\alpha + |t-s|]$.

Part (2): Let α denote the H"older exponent of r. There is a constant C_2 which only depends on r s.t. for all $z = (x, t), w = (y, s)$ in Σ_r:

(a) If $|\frac{r(t)}{r(y)} - \frac{r(s)}{r(y)}| \leq \frac{1}{2}$, then $d((x, y) \leq C_{2} d_r(z, w)$ and $|s-t| \leq C_{2} d_r(z, w)^\alpha$.

(b) If $|\frac{r(t)}{r(y)} - \frac{r(s)}{r(y)}| > \frac{1}{2}$, then $d((r(x), y) \leq C_{2} d_r(z, w)$ and $|s-r(x)|, s \leq C_{2} d_r(z, w)$.

Proof. These estimates are trivial when $d_r(z, w)$ is bounded away from zero, so it is enough to prove part (2) for z, w s.t. $d_r(z, w) < \varepsilon_0$, with ε_0 a positive constant that will be chosen later.

Suppose $|\frac{r(t)}{r(y)} - \frac{r(s)}{r(y)}| \leq \frac{1}{2}$ and let $\tau := \frac{1}{2} - \frac{r(t)}{r(y)}$ (a number in $(-\frac{1}{2}, \frac{1}{2})$), then

$$d_r(z, w) = d_1((\vartheta_{r}(z), \vartheta_{r}(w)) \geq (1 + 2e^2 |\tau|)^{-1} d_1(\psi^r(\vartheta_{r}(z), \psi^r(\vartheta_{r}(w)))$$

$$\geq (1 + 2e^2)^{-1} d_1((x, \frac{1}{2}), (y, \frac{1}{2} + \delta)), \text{ where } \delta := \frac{r(s)}{r(y)} - \frac{r(t)}{r(y)}.$$

Notice that $(\frac{1}{2}, \frac{1}{2} + \delta) \in \Sigma_1$, because $|\delta| < \frac{1}{2}$.

Suppose $\varepsilon_0 (1 + 2e^2) < \frac{1}{4}$, then $d_1((\frac{1}{2}, \frac{1}{2} + \delta)) < \frac{1}{4}$. The basic paths whose lengths are normed $d_1((x, 1), (\frac{1}{2} + \delta))$ are not long enough to leave $\Sigma \times [\frac{1}{2} - \frac{1}{4}, \frac{1}{2}]$, and they cannot cross $\Sigma \times \{0\}$. For such paths the lengths of the vertical segments add up to at least δ, and the lengths of the horizontal segments add up to at least $e^{-1}d((x, y))$. Since $d_1((x, \frac{1}{2}), (y, \frac{1}{2} + \delta)) \leq (1 + 2e^2)d_r(z, w)$,

$$d((x, y) \leq e(1 + 2e^2) d_r(z, w) \text{ and } |\delta| \leq (1 + 2e^2) d_r(z, w).$$

In particular, $d((x, y) \leq \text{const} d_r(z, w)$, and $|s-t| = |r(x) - r(\frac{1}{2})| + \text{sup}(r)|\delta| + |r(x) - r(\frac{1}{2})| \leq (1 + 2e^2) \text{sup}(r) d_r(z, w) + \text{H"older}_r(r) d((x, y)^\alpha \leq \text{const} d_r(z, w)^\alpha$, where the last inequality uses our estimate for $d((x, y)$ and the finite diameter of d_r.

This proves part (a) when $|\frac{r(t)}{r(y)} - \frac{r(s)}{r(y)}| < \frac{1}{2}$. If $|\frac{r(t)}{r(y)} - \frac{r(s)}{r(y)}| = \frac{1}{2}$, repeat the previous argument with $\varpi := 0.49 - \frac{r(t)}{r(y)}$.

For part (b), suppose $|\frac{r(t)}{r(y)} - \frac{r(s)}{r(y)}| > \frac{1}{2}$, and let $\tau := \frac{r(x) - r(y)}{r(y)} + \frac{1}{2}$. Now $\psi^r(\vartheta_{r}(z)) = (\varphi(x), \frac{1}{2})$ and $\psi^r(\vartheta_{r}(w)) = (\varphi(y), \frac{1}{2} + \delta')$, where $\delta' := 1 - (\frac{r(t)}{r(y)} - \frac{r(s)}{r(y)})$. As before

$$d((x, y) \leq e(1 + 2e^2) d_r(z, w) \text{ and } |\delta'| \leq (1 + 2e^2) d_r(z, w).$$

Using $s \leq r(y)\delta', |r(x) - t| \leq r(\delta')$, we see that $s, |t-r(x)| < (1+2e^2) \text{sup}(r) d_r(z, w)$.
PART (3). There are constants $C_3 > 0, 0 < \kappa < 1$ which only depend on r s.t. for all $z, w \in \Sigma_r$ and $|\tau| < 1$, $d_r(\sigma^\tau_r(z), \sigma^\tau_r(w)) \leq C_3d_r(z, w)^\kappa$.

Proof. We will only discuss the case $\tau > 0$. The case $\tau < 0$ can be handled similarly, or deduced from the following symmetry: Let $\Sigma := \{ \vec{x} : \vec{x} \in \Sigma \}$ where $\vec{x}_i := x_{-i}$, and let $\bar{r}(\vec{x}) := r(\bar{\sigma}\vec{x})$ (a function on $\hat{\Sigma}$). Then $\Theta(\vec{x}, t) = (\bar{\sigma}\vec{x}, r(\vec{x}) - t)$ is a bi-Lipschitz map from Σ_r to $\bar{\Sigma}_r$, and $\Theta \circ \sigma^\tau_r = \sigma^\tau_r \circ \Theta$. This symmetry reflects the representation of the flow σ^τ_r with respect to the Poincaré section $\Sigma \times \{0\}$.

We will construct a constant C_3' s.t. for all $z, w \in \Sigma_r$, if $0 < \tau < \frac{1}{2} \inf(r)$, then $d_r(\sigma^\tau_r(z), \sigma^\tau_r(w)) \leq C_3'd_r(z, w)^\kappa$. Part (3) follows with $\kappa := \alpha N$, $C_3 := (C_3')\frac{1}{\inf(r)}$, $N := [1/\min(1, \frac{1}{2}\inf(r))]$.

We will also limit ourselves to the case when $C_2d_r(z, w) < \frac{1}{2} \inf(r)$; part (3) is trivial when $d_r(z, w)$ is bounded away from zero.

Let $z := (x, t), w := (y, s)$. Since $\tau > 0$, $\sigma^\tau_r(z) = (\sigma\sigma^\tau_r(x), \sigma\sigma^\tau_r(y))$ and $\sigma^\tau_r(w) = (\sigma\sigma^\tau_r(y), \eta\sigma\sigma^\tau_r(y))$ where $0 \leq \varepsilon, \eta < 1$ and $m, n \geq 0$. Notice that $m, n \in \{0, 1\}$, (because $0 < \tau < \frac{1}{2} \inf(r)$, so $\sigma^\tau_r(z), \sigma^\tau_r(w)$ cannot cross $\Sigma \times \{0\}$ twice).

Case 1: $\frac{1}{r(x)} - \frac{1}{r(y)} \leq \frac{1}{2}$ and $m = n$. In this case,

$$d_r(\sigma^\tau_r(z), \sigma^\tau_r(w)) = d_1((\sigma\sigma^\tau_r(x), \varepsilon), (\sigma\sigma^\tau_r(y), \eta))$$

$$\leq d_1((\sigma\sigma^\tau_r(x), \varepsilon), (\sigma\sigma^\tau_r(y), \varepsilon)) + d_1((\sigma\sigma^\tau_r(y), \varepsilon), (\sigma\sigma^\tau_r(y), \eta))$$

$$\leq c_1d_1(x, y) + |\varepsilon - \eta| \leq c_2d_r(z, w) + |\varepsilon - \eta|, \text{ by part (2)(a).}$$

Since $m = n, |\varepsilon - \eta| = \left| \frac{t + \tau - r_m(y)}{r(\sigma\sigma^\tau_r(x))} - \frac{s + \tau - r_m(y)}{r(\sigma\sigma^\tau_r(y))} \right| \leq \frac{1}{\inf(r)}[I_1 + I_2 + I_3]$, where:

- $I_1 = |\tau(\sigma\sigma^\tau_r(y)) - \tau(\sigma\sigma^\tau_r(y))| \leq \tau(\sigma\sigma^\tau_r(y)) - \tau(\sigma\sigma^\tau_r(y)) \leq \sup(r)\epsilon^\alpha C^2 \text{H"{o}l}_\alpha(r) + c_2d_r(z, w)^\kappa$ by part (2)(a).
- $I_2 = \tau(\sigma\sigma^\tau_r(x)) - \tau(\sigma\sigma^\tau_r(y)) \leq \epsilon^\alpha C^2 \text{inf}(r)\text{H"{o}l}_\alpha(r)d_r(z, w)^\kappa$ (because $m \leq 1$).
- $I_3 = |r_m(z) - r_m(y)r(\sigma\sigma^\tau_r(y))| \leq |r_m(z) - r_m(y)||r(\sigma\sigma^\tau_r(y)) + r_m(y)|$. Since $|r(\sigma\sigma^\tau_r(y)) - r(\sigma\sigma^\tau_r(y))| \leq \text{const H"{o}l}_\alpha(r)d_r(z, w)^\kappa$ (because $m \leq 1$).

Thus $|\varepsilon - \eta| \leq \text{const } d_r(z, w)^\kappa$, where the constant only depends on r. It follows that $d_r(\sigma^\tau_r(z), \sigma^\tau_r(w)) \leq \text{const } d_r(z, w)^\kappa$ where the constant only depends on r.

Case 2: $\frac{1}{r(x)} - \frac{1}{r(y)} \leq \frac{1}{2}$ and $m \neq n$. We can assume that $n = m + 1$, thus

$$d_r(\sigma^\tau_r(z), \sigma^\tau_r(w)) = d_1((\sigma\sigma^\tau_r(x), \varepsilon), (\sigma\sigma^\tau_r(y), \eta))$$

$$\leq d_1((\sigma\sigma^\tau_r(x), \varepsilon), (\sigma\sigma^\tau_r(y), \varepsilon)) + d_1((\sigma\sigma^\tau_r(y), \varepsilon), (\sigma\sigma^\tau_r(y), \eta))$$

$$\leq e^2C_2d_r(z, w) + |\varepsilon - \eta|, \text{ by part (2)(a).}$$

In our scenario, $t + \tau - r_{m+1}(x)$ is negative, and $s + \tau - r_{m+1}(y)$ is non-negative. The distance between these two numbers is bounded by $|t-s| + |r_{m+1}(x) - r_{m+1}(y)|$, whence by const $d_r(z, w)^\kappa$. So $|t + \tau - r_{m+1}(x)|, |s + \tau - r_{m+1}(y)| \leq \text{const } d_r(z, w)^\kappa$.

Since $1 - \varepsilon = \left| \frac{t + \tau - r_m(y)}{r(\sigma\sigma^\tau_r(x))} - \frac{s + \tau - r_m(y)}{r(\sigma\sigma^\tau_r(y))} \right| = \frac{s + \tau - r_m(y)}{r(\sigma\sigma^\tau_r(y))}$, and the denominators are at least $\inf(r)$, there is a constant which only depends on r s.t. $1 - \varepsilon, \eta < \text{const } d_r(z, w)^\kappa$.

It follows that $d_r(\sigma^\tau_r(z), \sigma^\tau_r(w)) \leq \text{const } d_r(z, w)^\kappa$.

SYMBOLIC DYNAMICS FOR FLOWS 45
Case 3: $\frac{r}{r(z)} - \frac{s}{r(y)} > \frac{1}{2}$ and $m = n$. We have
\[
d_r(\sigma^r_z(z), \sigma^r_w(w)) = d_1((\sigma^m(x), \varepsilon), (\sigma^m(y), \eta)) \\
\leq d_1((\sigma^m(x), \varepsilon), (\sigma^{m+1}(x), \eta)) + d_1((\sigma^{m+1}(x), \eta), (\sigma^m(y), \eta)) \\
\leq 1 - \varepsilon + \eta + \varepsilon^2 C_2 d_r(z, w), \text{ by part (2)(b), and since } m \leq 1.
\]
Because $t + \tau - r_{m+1}(x) < 0 \leq s + \tau - r_m(y)$, it follows by part (2)(b) that
\[
|t + \tau - r_{m+1}(x)|, |s + \tau - r_m(y)| \leq |t - s - r_{m+1}(x) - r_m(y)| \\
\leq |t - r(x)| + s + |r_m(\sigma(x)) - r_m(y)| \leq 2C_2d_r(z, w) + \text{const } d_r(z, w)^{\alpha}.
\]
As in case 2, this means that $d_r(\sigma^r_z(z), \sigma^r_w(w)) < \text{const } d_r(z, w)^{\alpha}$.

Case 4: $\frac{r}{r(z)} - \frac{s}{r(y)} > \frac{1}{2}$ and $m \neq n$. Recall that $C_2d_r(z, w), \tau < \frac{1}{2} \inf(r)$. By part (2)(b), $s \leq \frac{1}{2} \inf(r)$, whence $s + \tau < \inf(r)$. Necessarily, $n = 0, m = 1, m = n + 1$.
\[
d_r(\sigma^r_z(z), \sigma^r_w(w)) = d_1((\sigma^{n+1}(x), \varepsilon), (\sigma^{n}(y), \eta)) \\
\leq d_1((\sigma^{n+1}(x), \varepsilon), (\sigma^{n+1}(x), \eta)) + d_1((\sigma^{n+1}(x), \eta), (\sigma^{n}(y), \eta)) \\
\leq |\varepsilon - \eta| + ed(\sigma(x), y) \quad (\because n = 0) \\
\leq |\varepsilon - \eta| + eC_2d_r(z, w), \text{ by part (2)(b).}
\]

We have $|\varepsilon - \eta| = \frac{\tau + n - r(x)}{\tau + r(x)} - \frac{n + \tau}{\tau + n} \leq \frac{1}{\inf(r)} [I_1 + I_2]$, where by part (2)(b)
\[\triangleright I_1 := |t - r(x)|r(y) - sr(\sigma x)| \leq 2 \sup(r)C_2d_r(z, w),\]
\[\triangleright I_2 := \tau|\sigma x| - r(y) \leq \frac{1}{\inf(r)} \text{Hö}(r)C_2^2d_r(z, w)\ast.
\]
It follows that $d_r(\sigma^r_z(z), \sigma^r_w(w)) \leq \text{const } d_r(z, w)^{\alpha}$ where the constant only depends on r. This completes the proof of part (3).

9. Acknowledgements

The authors thank Anatole Katok, François Ledrappier and Federico Rodriguez-Hertz for useful and inspiring discussions. Special thanks go to Dmitry Dolgopyat for showing us a proof that weak mixing ⇒ mixing in Theorem 7.1, Giovanni Forni for suggesting the application to Reeb flows, and Edriss Titi for giving us an elementary proof that $C^{1+\varepsilon}$ vector fields generate flows with $C^{1+\varepsilon}$ time t maps.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND AT COLLEGE PARK, COLLEGE PARK, MD 20740, USA

E-mail address: yurilima@gmail.com

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, THE WEIZMANN INSTITUTE OF SCIENCE, POB 26, REHOVOT, ISRAEL

E-mail address: omsarig@gmail.com