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Abstract. The Information Bottleneck is an information theoretic framework
that finds concise representations for an ‘input’ random variable that are as rele-
vant as possible for an ‘output’ random variable. This framework hasbeen used
successfully in various supervised and unsupervised applications. However, its
learning theoretic properties and justification remained unclear as it differs from
standard learning models in several crucial aspects, primarily its explicitreliance
on the joint input-output distribution. In practice, an empirical plug-in estimate
of the underlying distribution has been used, so far without any finite sample
performance guarantees. In this paper we present several formal results that ad-
dress these difficulties. We prove several finite sample bounds, which show that
the information bottleneck can provide concise representations with good gen-
eralization, based on smaller sample sizes than needed to estimate the underly-
ing distribution. The bounds are non-uniform and adaptive to the complexity of
the specific model chosen. Based on these results, we also present a preliminary
analysis on the possibility of analyzing the information bottleneck method as a
learning algorithm in the familiar performance-complexity tradeoff framework.
In addition, we formally describe the connection between the information bottle-
neck and minimal sufficient statistics.

1 Introduction

The Information Bottleneck (IB) method, introduced in [23], is an information-theoretic
framework for extracting relevant components of an ‘input’random variableX, with
respect to an ‘output’ random variableY . This is performed by finding acompressed,
non-parametric and model-independent representationT of X, that is mostinformative
aboutY . Formally speaking, the notion of compression is quantifiedby the mutual
information betweenT andX, while the informativeness is quantified by the mutual
information betweenT andY . A scalar Lagrange multiplierβ smoothly controls the
tradeoff between these two quantities.

The method has proven to be useful for a number of important applications (see
[24, 8, 21] and references therein), but its learning theoretic justification has remained
unclear, for two main reasons: (i) The method assumes that the joint distribution of
X andY is known, and uses it explicitly. This stands in contrast to most finite-sample
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based machine learning algorithms. In practice, the empirical co-occurrence distribution
is used to calculate a plug-in estimate of the IB functional,but without explicit regu-
larization, finite-sample generalization bounds or error guarantees of any kind. More-
over, it was not clear what is left to be learned if it is assumed that this distribution is
known. (ii) IB is formally related to classical informationtheoretic problems, such as
Rate-Distortion theory and Coding with Side-Information.It is, however, unclear why
maximizing mutual information aboutY is useful for any “natural” learning theoretic
model, and in particular how it is related to classification error.

In this paper we provide rigorous answers to some of the aboveissues concerning
the IB framework. We focus on a learning theoretic analysis of this framework, where
X andY are assumed to be discrete, and the empirical distribution of p(x, y) is used as a
plug-in for the true distribution. We develop several finitesample bounds, and show that
despite this use of plug-in estimation, the IB framework canactually generalize quite
well, with realistic sample sizes that can be much smaller than the dimensionality of this
joint distribution, provided that we are looking for a reasonablysimplerepresentationT
of our data. In fact, it is exactly the reliance of the framework on explicit manipulation
of the joint distribution that allows us to derive non-uniform bounds that are adaptive
to the complexity of the specific model chosen. In addition, we present a preliminary
analysis regarding the question in which settings the information bottleneck can be seen
as a standard learning algorithm, trading off a risk-like term and a regularization term
controlling the generalization. Finally, we discuss its utility as a natural extension of the
concept of minimal sufficient statistics for discrimination.

The paper is organized as follows. In Sec. 2, we formally present the information
bottleneck framework and the notation used in the paper. We then turn to analyze its
finite sample behavior in Sec. 3. Sec. 4 discusses the characteristics of the information
bottleneck as a learning algorithm, while its relation to minimal sufficient statistics is
considered in Sec. 5. Selected proofs are presented in Sec. 6; Full proofs can be found
in [19]. We finish with a discussion in Sec. 7.

2 The Information Bottleneck Framework

In this section we explain and formally describe the basic information bottleneck (IB)
framework. This framework has several variants and extensions, both to multivariate
variables and to continuous representations (see [20, 4] for more details), but these are
not the focus of this paper.

The IB framework attempts to find a simple representation of one random variable
X through an auxiliary variableT , which is relevant to another random variableY . Let
us first exemplify how the IB method can be used for both supervised and unsupervised
learning. Consider the area of text analysis. A typical unsupervised problem can be
clustering documents based on their word-statistics in order to discover similarities and
relationships between them. In this case theX variable is taken as the document identity
(typically considered as “bags of words”) and theY as the words in the documents.
In this case, theT variable will be clusters of documents with similar word-statistics,
based, for instance, on the “the two sample problem” [13] similarity measure.
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In a typical supervised application in this domain,X can denote the words whileY
are topic-labels of the documents. HereT are clusters of words that are (approximately)
sufficient for document categorization [24]. In all the applications a variableβ allows us
to smoothly move between a low resolution - highly compressed - solution, to a solution
with higher resolution and more information aboutY . This form of dimensionality
reduction, a special case of the information bottleneck, was introduced under the name
of distributional clustering in [16], and has proven to be quite effective in analyzing
high dimensional data [2, 9].

In this work, we assume thatX andY take values in the finite setsX andY respec-
tively, and usex andy respectively to denote elements of these sets. The basic quantity
that is utilized in the IB framework is Shannon’s mutual information between random
variables, which for discrete variables is formally definedas:

I(X;Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log

(

p(x, y)

p(x)p(y)

)

.

Mutual information is well known to be the unique measure of informativeness, up
to a multiplicative constant, under very mild assumptions [5]. The IB functional is built
upon the relationship between minimal sufficiency and information. It captures a trade-
off between minimality of the representation ofX, achieved by minimizingI(X;T ),
and sufficiency of information onY , achieved by constraining the value ofI(Y ;T ).
The auxiliary variableT is thus determined by the minimization of the IB-Lagrangian

LIB [p(t|x)] = I(X;T ) − βI(Y ;T ) (1)

with respect to the mappingp(t|x). T is subject to the Markovian relationT −X − Y ,
andp(t|x) is subject to the obvious normalization constraints. The tradeoff parameter
β is a positive Lagrange multiplier associated with the constraint onI(Y ;T ). Formally,
T is defined over some spaceT , but the elements of this space are arbitrary - only the
probabilistic relationships betweenT andX,Y are relevant.

The solutions of this constrained optimization problem arecharacterized by the
bottleneck equations,







p(t|x) = p(t)
Z(β,x) exp(−β DKL [p(y|x)‖p(y|t)])

p(t) =
∑

x∈X p(t|x)p(x)
p(y|t) =

∑

x∈X p(y|x)p(x|t) ,

(2)

where DKL is the Kullback-Leibler divergence andZ(β, x) is a normalization function.
These equations need to be satisfied simultaneously, givenp(x, y) andβ. In [23] it is
shown that alternating iterations of these equations converge - at least locally - to a
solution for any initialp(t|x), similar to the Arimoto-Blahut algorithm in information
theory [5]. In [3] it is shown that the set of achievablep(x, y, t) distributions form a
strictly convex set in the(I(X;T ), I(Y ;T )) plane, bounded by a smooth optimal func-
tion - the information curve- similar to the rate-distortion function in source coding.
By increasing the value ofβ one can move smoothly along this curve from the trivial,
I(X;T ) = I(Y ;T ) = 0 solution at the origin, all the way to the most complex solution
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whereT captures all the relevant information fromX andI(X;T ) = H(X), H(X) de-
noting the entropy ofX. In addition, asβ is increased,I(Y ;T ) increases andT captures
more information onY . Due to the data-processing inequality,I(Y ;T ) ≤ I(X;Y ),
with equality only whenT becomes an exact sufficient statistic forY . The tradeoff in-
herent in Eq. (1) forces us to find a simple representationT of X, which preserves only
those aspects ofX which are informative, i.e. relevant, aboutY .

It should be emphasized that despite superficial similarities, IB isnot a hidden vari-
able model. In such models, we assume that the joint distribution p(x, y) can be factor-
ized using an auxiliary random variableT , forming a Markovian relationX−T −Y . In
IB, we make no generative assumption on the distribution, and the Markovian relation
is T − X − Y . Namely,T is a generic compression ofX, and the information-curve is
characterized by the joint distributionp(x, y) independently of any modeling assump-
tions.

An important observation is that the effective cardinalityof an optimalT is not
fixed and depends onβ. Whenβ ≤ 1, even a trivialT of cardinality1 will optimize
Eq. (1), since we always haveI(Y ;T ) ≤ I(X;T ). On the other hand, asβ increases,
more emphasis is put on informativeness with respect toY , and the cardinality ofT
will increase, although the cardinality of an optimalT need not exceed the cardinality
of X, as proven in [10].

In order to optimize Eq. (1) we need to calculate the quantitiesI(X;T ) andI(Y ;T )
for any chosenT andβ. SinceT is defined only viaX, we need to knowp(x, y) in
order to calculate these two quantities. In most applications, however,p(x, y) is un-
known. Instead, we assume that we have an i.i.d sample ofm instances drawn accord-
ing to p(x, y), and we use this sample to create a maximum-likelihood estimate of the
distribution usingp̂(x, y), the empirical distribution of the sample. Following current
practice, this empirical estimate is then plugged into the calculation ofI(X;T ) and
I(Y ;T ) instead of the true joint distribution, and Eq. (1) is optimized using this plug-in
estimate. In general, we use theˆ symbol to denote quantities calculated usingp̂(x, y)
instead ofp(x, y). Thus, instead of calculatingI(X;T ) andI(Y ;T ) precisely, we rely
on the empirical estimateŝI(X;T ) and Î(Y ;T ) respectively. In this work we inves-
tigate how much these empirical estimates can deviate from the true values when we
optimize forT - in other words, whether this plug-in practice is justified.Note that the
sample sizem is often smaller than the number of bins|X ||Y|, and thuŝp(x, y) can be
a very poor approximation top(x, y). Nevertheless, this is precisely the regime we are
interested in for many applications, text categorization to name one.

3 Finite Sample Analysis

We begin our analysis by focusing on the finite-sample behavior of the IB framework,
and in particular on the relationship betweenI(X;T ) andI(Y ;T ) that appear in Eq. (1)
and their empirical estimateŝI(X;T ) andÎ(Y ;T ).

Our first result shows that for anyfixedT defined as a random mapping ofX via
p(t|x), it is possible to determine the value of the objective function Eq. (1) within rea-
sonable accuracy based on a random sample. The proof outlineis provided in Sec. 6.1.
The full proof can be found in [19].
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Theorem 1. LetT be a given probabilistic function ofX into an arbitrary finite target
space, determined byp(t|x), and letS be a sample of sizem drawn from the joint
probability distributionp(X,Y ). For any confidence parameterδ ∈ (0, 1), it holds
with a probability of at least1 − δ over the sampleS that

|I(X;T ) − Î(X;T )| ≤ (|T | log(m) + log(|T |))
√

log(4/δ)√
2m

+
|T | − 1

m
,

and that

|I(Y ;T ) − Î(Y ;T )| ≤ (3|T | + 2) log(m)
√

log(4/δ)√
2m

+
(|Y| + 1)(|T | + 1) − 4

m
.

Note that the theorem holds for any fixedT , not just ones which optimize Eq. (1).
In particular, the theorem holds for anyT found by an IB algorithm, even ifT is not a
globally optimal solution.

The theorem shows that estimating the objective function for a certain solutionT is
much easier than estimatingp(x, y). Indeed, the bound does not depend on|X |, which
might even be countably infinite. In addition, it depends on|Y| only as a second-order
factor, since|Y| is multiplied by1/m rather than by1/

√
m. The complexity of the

bound is thus mainly controlled by|T |. By constraining|T | to be small, or by setting
β in Eq. (1) to be small enough so that the optimalT has low cardinality, a tight bound
can be achieved.

Thm. 1 provides us with a bound on a certain pre-specifiedT , where the sampleS is
not part of the process of selectingT . The next theorem is a full generalization bound,
determined by the sample when it is used as a training set by which T is selected.

In order to present the theorem compactly, we will use some extra notation. Let
x1, . . . , x|X | be some fixed ordering of the elements ofX , andy1, . . . , y|Y| be an or-
dering of the elements ofY. We use the shorthandp(T = t|x) to denote the vector
(p(t|x1), . . . , p(t|x|X |)). Similarly, we denote the vector(Ĥ(T |y1), . . . , Ĥ(T |y|Y|)) by

Ĥ(T |y) whereĤ(T |yi) is the entropy of̂p(T |yi). The vector(H(T |x1), . . . ,H(T |xX ))
is denoted byH(T |x), whereH(T |xi) is the entropy ofp(T |xi). Note thatp(T |xi) is
known as it definesT , and thus does not need to be estimated empirically.

For any real-valued vectora = (a1, . . . , an), we define the functionV (a) as fol-
lows:

V (a) = ‖a − 1

n

n
∑

j=1

aj‖2 ,

n
∑

i=1



ai −
1

n

n
∑

j=1

aj





2

. (3)

Note that1nV (a) is simply the variance of the elements ofa. In addition, we define the
real-valued functionφ as follows:

φ(x) =











0 x = 0

x log(1/x) 0 < x ≤ 1/e

1/e x > 1/e.

(4)

Note thatφ is a continuous, monotonically increasing and concave function.
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Theorem 2. LetS be a sample of sizem drawn from the joint probability distribution
p(X,Y ). For any confidence parameterδ ∈ (0, 1), it holds with a probability of at least
1 − δ over the sampleS that for all T ,

|I(X;T ) − Î(X;T )| ≤
√

C log(|Y|/δ) · V (H(T |x))

m
(5)

+
∑

t

φ

(
√

C log(|Y|/δ) · V (p(T = t|x))

m

)

,

and

|I(Y ;T ) − Î(Y ;T )| ≤

√

C log(|Y|/δ) · V (Ĥ(T |y))

m
(6)

+ 2
∑

t

φ

(
√

C log(|Y|/δ) · V (p(T = t|x))

m

)

,

whereV andφ are defined in Eq. (3) and Eq. (4), and C is a small constant.

As in Thm. 1, this theorem holds for allT , not just those optimizing Eq. (1). Also,
the bound enjoys the advantage of not being uniform over a hypothesis class of possible
T ’s, but rather depending directly on theT of interest. This is achieved by avoiding
standard uniform complexity tools (see the proof for further details).

Intuitively, these bounds tell us that the ‘smoother’T is with respect toX, the tighter
the bound. To see this, assume that for any fixedt ∈ T , p(t|x) is more or less the same
for any choice ofx. By definition, this means thatV (p(T = t|x)) is close to zero. In
a similar manner, ifH(T |x) is more or less the same for anyx, thenV (H(T |x)) is
close to zero, and so isV (Ĥ(T |y)) if Ĥ(T |y) is more or less the same for anyy. In
the extreme case, ifT is independent ofX, thenp(t|x) = p(t), H(T |x) = H(T ) and
Ĥ(T |y) = Ĥ(T ) for any choice ofx, y, and the generalization bound becomes zero.
This is not too surprising, since in this caseI(X;T ) = ˆI(X;T ) = 0 andI(Y ;T ) =
Î(Y ;T ) = 0 regardless ofp(x, y) or its empirical estimatêp(x, y).

This theorem thus suggests that generalization becomes better asT becomes less
statistically dependent onX, and so provides a more compressed probabilistic repre-
sentation ofX. This is exactly in line with empirical findings [20], and with the intuition
that ‘simpler’ models should lead to better generalization.

A looser but simpler bound on Thm. 2 can be achieved by fixing the cardinality of
T , and analyzing the bound with worst-case assumptions on thestatistical dependency
betweenX andT . The proof, which is rather technical, is omitted in this version and
may be found in [19].

Theorem 3. Under the conditions and notation of Thm. 2, we have that witha proba-
bility of at least1 − δ, for all T ,

|I(X;T ) − Î(X;T )| ≤
1
2

√

C log(|Y|/δ)(
√

|T ||X | log(m)+|X | 12 log(|T |))+ 1
e |T |√

m
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and

|I(Y ;T ) − Î(Y ;T )| ≤

√

C log(|Y|/δ)
(

√

|T ||X | log(m)+ 1
2 |Y| 12 log(|T |)

)

+ 2
e |T |

√
m

,

whereC is the same constant as in Thm. 1.

Even with this much looser bound, if|Y| is large and|T | ≪ |Y| the bound can
be quite tight, even with sample sizes which are in general insufficient to reasonably
estimate the joint distributionp(x, y). One relevant setting is in unsupervised learning,
whenY models the feature space.

In this section, we have shown that the quantities that make up the IB objective
function can be estimated reliably from a sample of a reasonable size, depending on the
characteristics ofT . In the next section we investigate the motivation for usingthese
quantities in the objective function in the first place.

4 A Learning Theoretic Perspective

The IB framework optimizes a trade-off betweenI(X;T ) andI(Y ;T ). In this section
we provide a preliminary discussion of the learning theoretic properties of this tradeoff,
investigating when mutual information provides reasonable measures for both learning
complexity and accuracy.

In an unsupervised setting, such as clustering, it is rathereasy to see howI(X;T )
andI(Y ;T ) control the complexity and granularity of the clustering bytrading between
homogeneity and resolution of the clusters; this has been discussed previously in the
literature (such as [24], [3]). Therefore, we will focus here mainly on the use of this
framework in supervised learning, where the objectives aremore well defined.

Most supervised learning algorithms are based on a tradeoffbetween two quanti-
ties: a risk term, measuring the performance of a hypothesison the sample data, and
a regularization term, which penalizes complex hypothesesand so ensures reasonable
generalization to unseen data. In the following we argue that under relevant settings it
is reasonable to considerI(Y ;T ) as a measure of risk andI(X;T ) as a regularization
term that controls generalization.

4.1 I(Y;T) as a Measure of Performance

In this section we investigate the plausibility ofI(Y ;T ) as a measure of performance or
risk in a supervised learning setting. We show that in those supervised learning settings
where IB was demonstrated to be highly effective, such as document categorization
[22], there is a strong connection between the classification error and the mutual infor-
mationI(Y ;T ), especially when the categories are uniformly spread. The discussion
here is a first step towards a full analysis of the IB classification performance in a more
general setting, which we leave for future work.

In a typical document classification task we modelX as a random variable over the
set of possible words, andY as a random variable over the set of document categories
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or classes. Each document is treated as an i.i.d. sample of words drawn fromp(x|y), in
accordance with the bag of words representation, wherey is the class of the document.
Unlike the simple supervised learning settings, where eachexample is described as a
single data point, in this case each example (document) to belabeled is described by a
sample of points (words) of variable size (usually large) and we seek the most probable
class of the whole sample (document)collectively.

IB is used in this setting to findT , a compressed representation of the words in
a document, which is as informative as possible on the categories Y . The bottleneck
equations Eq. (2) provide for each classy its conditional distribution onT , via

p̂(t|y) =
∑

x

p(t|x)p̂(x|y).

When a new documentD = {x1, . . . , xn} of sizen is to be classified, the empirical
distribution ofT givenD is

p̃(t) =

n
∑

i=1

p(t|xi)p̂(xi).

Assuming that the document is sampled according top(t|y) for some classy, the most
probable classy∗ can be selected using the maximum likelihood principle, namely
y∗ = argminy DKL [p̃(t)‖p̂(t|y)].

We now show that̂I(Y ;T ) is indeed a reasonable objective function whenever we
wish to collectively label an entire set of sampled instances.

Assume that the true class for documentD is y1, with its word distribution sampled
via p(t|y1). The probabilityαn of misclassifying this sample asy2 for somey2 6= y1

via the likelihood test decreases exponentially with the sample sizen. The rate of ex-
ponential decrease is larger if the two distributionsp(t|y1), p(t|y2) are more distinct.
Formally, by Stein’s lemma [5], if̂p(t|y1) = p(t|y1) andp̂(t|y2) = p(t|y2), then

lim
n→∞

1

n
log(αn) = DKL [p(t|y2)‖p(t|y1)]. (7)

When p̂(t|y1) and p̂(t|y2) deviate from the true conditional distributions, Stein’s
Lemma still holds up to an additive constant which depends onthe amount of deviation,
and the exponent is still controlled mainly by DKL [p(t|y2)‖p(t|y1)]. In the following we
will assume for simplicity that Eq. (7) holds exactly.

The overall probability of misclassifying a document when there are more than two
possible classes is thus upper bounded by

∑

y 6=y1

exp(−nDKL [p(t|y)‖p(t|y1)]). (8)

On the other hand, by the definition of mutual information andthe convexity of the
Kullback-Leibler divergence we have that

I(Y ;T ) = EyDKL [p(t|y)‖p(t)]

= EyDKL [p(t|y)‖Ey′p(t|y′)] (9)

≤ Ey,y′DKL [p(t|y)‖p(t|y′)],
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Hence−nI(Y ;T ) is an upper bound on the expected value of the exponent in Eq. (7),
assuming thaty1 andy2 are picked according top(y). The relationship between Eq. (9)
on the one hand, and Eq. (7), Eq. (8) on the other hand, is not direct. Nonetheless, these
equations indicate that if the examples to classify are represented by a large sample, as
in the document classification setting, higher values ofI(Y ;T ) should correspond to a
reduced probability of misclassification. For example, if DKL [p(t|y)‖p(t|y1)] is equal
for everyy 6= y1, we have that Eq. (8) is upper bounded by

(n − 1) exp
(

− nI(Y ;T )/ (|Y| − 1)
)

,

in which case the probability of misclassification is exponentially dominated byI(Y ;T ).
This is the case when categories are uniformly spread, whichhappens for many appli-
cations incidently or by design. In this case, when the bottleneck variableT captures
just a fractionα = I(Y ;T )/I(X;Y ) of the relevant information, the test (document)
size should increase only by a factor1/α in order to achieve a similar bound on the
classification error.

4.2 I(X;T) as a Regularization Term

In this subsection we discuss the role ofI(X;T ), the compression term in IB, as a reg-
ularizer when maximizingI(Y ;T ). Note that without regularization,I(Y ;T ) can be
maximized by settingT = X. However,p(x|y) cannot be estimated efficiently from a
sample of a reasonable size; therefore the formal solutionT = X cannot be used to per-
form reliable classification. Moreover, in the context of unsupervised learning, setting
T = X is generally a meaningless operation, corresponding to singleton clusters.

The bottleneck variableT must therefore be restricted to allow reasonable general-
ization in a supervised setting and to generate a reasonablemodel in an unsupervised
setting. In the IB frameworkI(X;T ) can be viewed as a penalty term that restricts the
complexity ofT . A more formal justification for this is given in the following theorem,
which is derived from Thm. 2. Since the proof is quite technical, it is omitted in this
version and may be found in [19].

Theorem 4. For any probability distributionp(x, y), with a probability of at least1−δ
over the draw of the sample of sizem fromp(x, y), we have that for allT ,

|I(Y ;T ) − Î(Y ;T )| ≤
√

C log(|Y|/δ)

m

(

C1 log(m)
√

|T |I(X;T )

+ C2|T |3/4(I(X;T ))1/4 + C3Î(X;T )
)

,

whereC is the same constant as in Thm. 1, andC1, C2, C3 depend only onp(x) and
p(y).

This bound is controlled byI(X;T ) and Î(X;T ), which are closely related as
Thm. 3 shows. This is not a fully empirical bound, as it depends on the unknown quan-
tity I(X;T ) and the marginal distributions ofX,Y . The bound does however illustrate
the relationship between the generalization error, as embodied in the difference between
I(Y ;T ) and Î(Y ;T ), and the mutual informationI(X;T ). This provides motivation
for the use ofI(X;T ) as a regularization term, beyond its obvious description length
interpretation or coding interpretation.
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5 Relationship with Sufficient Statistics

A fundamental issue in statistics, pattern recognition, and machine learning is the notion
of relevance. Finding the relevant components of data is implicitly behind the problems
of efficient data representation, feature selection and dimension reduction for super-
vised learning, and is the essence of most unsupervised learning problems. One of the
earliest and more principled approaches to relevance was the concept ofsufficient statis-
tics for parametric distributions, introduced by Fisher [7] as function(s) of a sample that
capture all the information about the parameter(s). Asufficient statisticis defined as
follows:

Definition 1 (Sufficient Statistic). Let Y be a parameter indexing a family of prob-
ability distributions. LetX be random variable drawn from a probability distribution
determined byY . LetT be a deterministic function ofX. T is sufficient forY if

∀x ∈ X , t ∈ T , y ∈ Y p(x|t, y) = p(x|t).

Throughout this section we assume that it suffices that the equality holds almost every-
where with respect to the probability ofy andx.

In words, the sufficiency ofT means that given the value ofT , the distribution of
X does not depend on the value ofY .

In the parametric statistics setting,Y is a random variable that parameterizes a fam-
ily of probability distributions, andX is a data point drawn fromp(x|y) wherex ∈ X
and y ∈ Y. For example, the family of probability distributions may be the set of
Bernoulli distributions with success probabilityp determined byy, with Y ⊆ [0, 1]
and some prior distributionp(y). In this case, for a giveny, p(X = 1|y) = y, and
p(X = 0|y) = 1 − y.

Y andX may be high dimensional. For instance,Y may determine the mean and
the variance of a normal distribution, or fully parameterize a multinomial distribution.
X may be a high dimensional data point. For any family of probability distributions,
we can consider a sample ofm i.i.d data points, all drawn from the same distribution
determined by a single draw ofY . In the context of sufficient statistics, this is just
a special case of a high dimensionalX which is drawn from the cross-product ofm
identical probability distributions determined by the value ofY .

Just asX andY may be high dimensional, so canT mapX to a multidimensional
space. IfX denotes an i.i.d sample, the number of dimensions inT may depend on the
size of the samplem. Specifically,T = X is always sufficient forY . To avoid trivial
sufficient statistics such as this, Lehmann and Scheffé [12] introduced the concept of
a minimal sufficient statistic, which denotes the coarsest sufficient partition ofX, as
follows:

Definition 2 (Minimal Sufficient Statistic). A sufficient statisticS is minimal if and
only if for any sufficient statisticT , there exists a deterministic functionf such that
S = f(T ) almost everywhere w.r.tX.

For instance, for an i.i.d sample of sizem of the Bernoulli distribution in the exam-
ple above,T = X is trivially a sufficient statistic, but the one-dimensional T = 1

m

∑

i xi
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wherex = (x1, . . . xm) is also sufficient. It can be shown that the latterT (and any one-
to-one function of it) is a minimal sufficient statistic.

By the Pitman-Koopman-Darmois theorem [17], sufficient statistics whose dimen-
sion does not depend on the sample size exist only for families of exponential form.
This makes the original concept of sufficiency rather restricted.

Kullback and Leibler [11] related sufficiency to Shannon’s information theory, show-
ing that sufficiency is equivalent to preserving mutual information on the parameter,
while minimal sufficient statistics minimize the mutual information with the sample
due to the data-processing inequality [5].

The IB framework allows us to naturally extend this concept of relevance to any
joint distribution ofX andY , not necessarily ones of exponential form, in a construc-
tive computational manner. In this framework, built on Kullback’s information theoretic
characterization of sufficiency [11], one can find compact representationsT of a sample
X that maximize mutual information about the parameter variableY , corresponding to
sufficiency forY , and minimizeI(X;T ), corresponding to the minimality of the statis-
tic. However, unlike the original concepts of sufficient statistic and minimal sufficient
statistic, the IB framework provides a soft tradeoff between these two objectives.

It can easily be seen that asβ grows to infinity, ifT is not restricted thenI(Y ;T )
converges toI(X;Y ) andT converges to a minimal sufficient statistic. The following
theorem formalizes this insight. Similar formulations of this theorem can be gleaned
from [11] and [5]. The full proof is presented for completeness in [19].

Theorem 5. Let X be a sample drawn according to a distribution determined by the
random variableY . The set of solutions to

min
T

I(X;T ) s.t. I(Y ;T ) = max
T ′

I(Y ;T ′)

is exactly the set of minimal sufficient statistics forY based on the sampleX.

The IB framework thus provides a natural generalization of the concept of a suf-
ficient statistic, where by settingβ to lower values, different degrees of approximate
minimal sufficient statistics can be found, characterized by the fraction of mutual in-
formation they maintain on theY . Furthermore, such approximate minimal sufficient
statistics exist for any joint distributionp(X,Y ) in a continuous hierarchy that is fully
captured by the set of optimal IB solutions for all values ofβ. These solutions lie on the
information curve of the distribution.

6 Proofs

6.1 Proof of Thm. 1

LetS be a sample of sizem, and letT be a probabilistic function ofX into an arbitrary
finite target space, defined byp(t|x) for all x ∈ X andt ∈ T .

To prove the theorem, we bound the deviations of the information estimations from
their expectation:|Î(X;T ) − E(Î(X;T ))| and|Î(Y ;T ) − E(Î(Y ;T ))|, and then use
a bound on the expected bias of entropy estimation.
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To bound the deviation of the information estimates, we use McDiarmid’s inequality
[14], in a manner similar to [1]. For this we must bound the change in value of each of
the entropy estimates when a single instance inS is arbitrarily changed. A useful and
easily proven inequality in that regard is the following: for any naturalm and for any
a ∈ [0, 1 − 1/m] and∆ ≤ 1/m,

∣

∣

∣(a + ∆) log(a + ∆) − a log (a)
∣

∣

∣ ≤ log(m)

m
. (10)

With this inequality, a careful application of McDiarmid’sinequality leads to the
following lemma. The proof of the lemma can be found in [19].

Lemma 1. For anyδ1 > 0, with probability of at least1− δ1 over the sample, we have
that

|Î(X;T ) − E[Î(X;T )] ≤ (|T | log(m) + log(|T |))
√

log(2/δ1)√
2m

. (11)

Similarly, with a probability of at least1 − δ2,

|Î(Y ;T ) − E[Î(Y ;T )]| ≤ (3|T | + 2) log(m)
√

log(2/δ2)√
2m

. (12)

Lemma 1 provides bounds on the deviation of theÎ(X;T ), Î(Y ;T ) from their
expected values. In order to relate these to the true values of the mutual information
I(X;T ) andI(Y ;T ), we use the following bias bound from [15].

Lemma 2 (Paninski, 2003).For a random variableX, with the plug-in estimatêH(·)
on its entropy, based on an i.i.d sample of sizem, we have that

|E[Ĥ(X) − H(X)]| ≤ log

(

1 +
|X | − 1

m

)

≤ |X | − 1

m
.

From this lemma, we have that the quantities|E[H(T )−H(T )]|, |E[H(Y ) − H(Y )]|,
and |E[H(Y, T ) − H(Y, T )]| are upper bounded by(|T | − 1)/m, (|Y| − 1)/m and
(|Y||T | − 1)/m respectively. Combining these with Eq. (11) and Eq. (12), and setting
δ1 = δ2 = δ/2, we get the bounds in Thm. 1.

6.2 Proof of Thm. 2

The idea of the proof is as follows. We bound the quantities|I(X;T ) − Î(X;T )| and
|I(Y ;T ) − Î(Y ;T )| with deterministic bounds that depend on the empirical distribu-
tion and on the true underlying distribution. These bounds are factorized, in the sense
that quantities that depend on the empirical sample are separated from quantities that
depend on the characteristics ofT . Quantities of the first type can be bounded by con-
centration of measure theorems, while quantities of the second type can be left depen-
dent on theT we choose.

The deterministic bounds are summarized in the following lemma. The proof of this
lemma is purely technical, and may be found in [19].



13

Lemma 3. The following two inequalities hold:

|I(X;T ) − Î(X;T )| ≤
∑

t

‖p(x) − p̂(x)‖ · φ
(

√

V (p(T = t|x))
)

(13)

+ ‖p(x) − p̂(x)‖ ·
√

V (H(T |x)),

|I(Y ;T ) − Î(Y ;T )| ≤
∑

t

‖p(x) − p̂(x)‖ · φ
(

√

V (p(T = t|x))
)

) (14)

+
∑

y

p(y)
∑

t

φ
(

‖p̂(x|y) − p(x|y)‖ ·
√

V (p(T = t|x))
)

+ ‖p(y) − p̂(y)‖ ·
√

V (Ĥ(T |y)).

In order to transform the bounds in Eq. (13) and Eq. (14) to bounds that do not de-
pend onp(x), we can use concentration of measure arguments onL2 norms of random
vectors, such as the following one based on an argument in section 4.1 of [6]: Letρ be
a distribution vector of arbitrary (possible countably infinite) cardinality, and let̂ρ be
an empirical estimation ofρ based on a sample of sizem. Then with a probability of at
least1 − δ over the samples,

‖ρ − ρ̂‖2 ≤ 2 +
√

2 log(1/δ)√
m

. (15)

We apply this concentration bound to‖p(x) − p̂(x)‖, ‖p(y) − p̂(y)‖, and to
‖p̂(x|y) − p(x|y)‖ for anyy in Eq. (13) and Eq. (14). To make sure the bounds hold
simultaneously over these|Y| + 2 quantities, we replaceδ in Eq. (15) byδ/(|Y| + 2).
Note that the union bound is taken with respect to the marginal distributions ofp̂(x),
p̂(y) and p̂(x|y), which do not depend on theT chosen. Thus, the following bounds
hold with a probability of1 − δ, for all T :

|I(X;T ) − Î(X;T )| ≤ (2 +
√

2 log ((|Y| + 2)/δ))

√

V (H(T |x))

m

+
∑

t

φ

(

(2 +
√

2 log ((|Y| + 2)/δ))

√

V (p(T = t|x))

m

)

,

|I(Y ;T ) − Î(Y ;T )| ≤ (2 +
√

2 log ((|Y| + 2)/δ))

√

V (Ĥ(T |y))

m

+ 2
∑

t

φ

(

(2 +
√

2 log ((|Y| + 2)/δ))

√

V (p(T = t|x))

m

)

.

To get the bounds in Thm. 2, we note that

2 +
√

2 log ((|Y| + 2)/δ) ≤
√

C log(|Y|/δ)
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whereC is a small constant.
It is interesting to note that these bounds still hold in certain cases even ifX is

infinite. Specifically, suppose that for allt ∈ T , p(t|x) is some constantct for all but a
finite number of elements ofX . If the definition ofV (·) is replaced with

V (p(T = t|x)) =
∑

x

(p(T = t|x) − ct)
2,

ThenV (p(T = t|x)) is finite and the proof above remains valid. Therefore, underthese
restrictive assumptions the bound is valid and meaningful even thoughX is infinite.

7 Discussion

In this paper we analyzed the information bottleneck framework from a learning theo-
retic perspective. This framework has been used successfully for finding efficient rel-
evant data representations in various applications, but this is its first rigorous learning
theoretic analysis. Despite the fact that the information bottleneck is all about manipu-
lating the joint input-output distribution, we show that itcan generalize quite well based
on plug-in empirical estimates, even with sample sizes muchsmaller than needed for
reliable estimation of the joint distribution. In fact, it is exactly the reliance on the joint
distribution that allows us to derive non-uniform and adaptive bounds.

Moreover, these bounds allow us to view the information bottleneck framework
in the more familiar learning theoretic setting of a performance-complexity tradeoff.
In particular, we provided a preliminary analysis of the role of mutual information as
both a complexity regularization term and as a bound on the classification error for
common supervised applications, such as document classification. This is the first step
in providing a theoretical justification for many applications of interest, including a
characterization of the learning scenarios for which this method is best suited. Finally,
we showed how this framework extends the classical statistical concept of minimal
sufficient statistics.
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