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Abstract

After a classifier is trained using a machine learn-

ing algorithm and put to use in a real world sys-

tem, it often faces noise which did not appear

in the training data. Particularly, some subset
of features may be missing or may become cor-
rupted. We present two novel machine learn-

ing techniques that are robust to this type of

classification-time noise. First, we solve an ap-

proximation to the learning problem using linear

programming. We analyze the tightness of our

approximation and prove statistical risk bounds

for this approach. Second, we define the online-
learning variant of our problem, address this vari-

ant using a modified Perceptron, and obtain a
statistical learning algorithm using an online-to-

batch technique. We conclude with a set of ex-

periments that demonstrate the effectiveness of
our algorithms.

of the features that were available during the training phas
may be missing or corrupted. In this paper, we explore
the possibility of anticipating and preparing for this tygfe
classification-time noise.

The problem of corrupted and missing features occurs in
a variety of different classification settings. For example
say that our goal is to learn an automatic medical diagno-
sis system. Each instance represents a patient, eachefeatur
contains the result of a medical test performed on that pa-
tient, and the purpose of the system is to detect a certain
disease. When constructing the training set, we go to the
trouble of carefully performing every possible test on each
patient. However, when the learned classifier is eventu-
ally deployed as part of a diagnosis system, and applied
to new patients, it is highly unlikely that all of the test re-
sults will be available. Technical difficulties may prevent
certain tests from being performed. Different patients may
have different insurance policies, each covering a differe
set of tests. A patient’'s blood sample may become con-

taminated, replacing the features that correspond to blood
tests with random noise, while having no effect on other
features. We would still like our diagnosis system to make

) ) ) . accurate predictions. Alternatively, our goal may be tmtra
Supervised machine learning techniques often play a cery fingerprint recognition system that controls the lock on a
tral role in solving complex real-world classification prob o After a few days of flawless operation, a user with
lems. First, we collect a training set of labeled examplesgreasy fingers comes along and leaves an oily smudge on
and present this set to a machine learning algorithm. Theny,g fingerprint scanner panel. From then on, all of the fea-
the learning algorithm constructs a classifier, which can bg o5 measured from the area under the smudge are either
put to use as a component in a working system. The Progjstorted or cannot be extracted altogether. Ideally, the fi

cess (_)f collecting th_e '_[raining setand constructing the-cla gerprint recognition system should continue operating.
sifier is called theraining phase whereas everything that

occurs after the hypothesis has been determined is calléy/e take a worst-case approach to our problem, and assume
the classification phaseln many cases, the training phase that the set of affected features is chosen by an adversary
can be performed under sterile and controlled conditionsindividually per instance. More specifically, we assume

and care can be taken to collect a high quality training setthat each feature is assigned an a-priori importance value
In contrast, the classification phase often takes placeein thand the adversary may remove or corrupt any feature sub-
noisy and uncertain conditions of the real world, and soméet whose total value is upper-bounded by a predefined pa-
- rameter. In many natural settings, missing and damaged
Appearing inProceedings of th@5"" International Conference features are not actually chosen adversarially, but we find i

on Machine LearningHelsinki, Finland, 2008. Copyright 2008 peneficial to have our algorithm as robust as possible.
by the author(s)/owner(s).

1. Introduction
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We present two different learning algorithms for our prob-emerges as a natural one in the theoretical analysis of our
lem, each with pros and cons. The first approach formufirst, LP-based learning approach.

lates the learning problem as a linear program (LP), in a

way that closely resembles the quadratic programming for4.1. Related Work

mulation of the Support Vector Machine (Vapnik, 1998).
However, the number of constraints in this LP grows ex-
ponentially with the number of features. Using tricks from _ ) | '
convex analysis, we derive a related polynomial-size LP2 résearch topic which is entirely orthogonal to ours.
and give conditions under which it is an exact reformulation T € leaming algorithms presented in (Dietterich & Bakiri,

of the original exponential-size LP. When these conditions-99%) and (Gamble et al., 2007) try to be robust to gen-
do not hold, the polynomial-size LP still approximates the€ral additive noise that appears at classmcatlpn time, byt
exponential-size LP, and we prove an upper bound on th@ot necessarily to feature deletl_on or corruption. (Dalvi
approximation difference. Despite the fact that the distri €t @l-» 2004) presents adversarial leaming as a one-shot
tion of training examples is different from the distributio ™Wo-Player game between the classifier and an adversary,

of examples observed during the classification phase, w@nd designs a robust leaming algorithm from a Bayesian-
prove a statistical generalization bound for this approach '€&rning perspective. Our approach shares the motivation
of (Dalvi et al., 2004) but is otherwise significantly differ

Letting m denote the size of our training set andthe  ent. In the related field of online learning, where the train-
number of features, our polynomial LP formulation usesing and classification phases are interlaced and cannot be
O(mn) variables and)(mn) sparse constraints. Depend- distinguished, (Littlestone, 1991) proves that the Winnow
ing on the dataset, this can still be rather large for off-the algorithm can tolerate various types of noise, both adver-
shelf LP solvers. We see this as a shortcoming of our firsgarial and random.

approach, which brings us to our second algorithmic ap- . .
proach. We define an online learning problem, which isOur work is most closely related to the work in (Globerson
closely related to the original statistical learning peshl & Roweis, 2006), and its more recent enhancement in (Teo

We devise a modified version of the Perceptron algorithnt &l 2008). Our motivation is the same as theirs, and the

(Rosenblatt, 1958) for this online problem, and conves thi approaches share some similarities. Our experiments, pre-
Perceptron into a statistical learning algorithm using ars€nted in Sec. 4, suggest that our algorithms achieve con-

online-to-batch conversion technique (Cesa-Bianchi.et al Siderably better performance, but we would also like to em-
2004). This approach benefits from the computational efPhasize more fundamental differences between the two ap-

ficiency of the online Perceptron, and from the generalizaProaches: We allow features to have different a-priori im-
tion properties and theoretical guarantees provided by thgortance Ieyels, and we taI§e this information into account
online-to-batch technique. Experimentally, we obsera th N 0Ur algorithm and analysis. Our approach usesreg-

the efficiency of our second approach seems to come at tHiarization to promote a dense solution, where (Globerson
price of accuracy. & Roweis, 2006) used., regularization. Our second ap-

proach, which uses online-to-batch conversion techniques
Choosing an adequate regularization scheme is one of thg entirely novel. Finally, we prove statistical generatian
keys to solving this problem successfully. Many existing bounds for our algorithms despite the change in distribbutio
machine learning algorithms, such as the Support Vectogt classification time.
Machine, usd., regularization to promote statistical gen-

eralization. WhenL, regularization is used, the learning . . .
algorithm may put a large weight on one feature and com—2' A Linear Programming Formulation

pensate by putting a small weight on another feature. Thign this section, and throughout the paper, we use lower-
promotes classifiers that focus their WEight on the featuregase bold-face letters to denote vectors, and their pmje_f

that contribute the most. For example, in the degeneratgounterparts to denote each vector's components. We also
case where one of the features actually equals the label, apse the notatiofn] as shorthand fof1, ..., n}.

L, regularized learning algorithm is likely to put most of its

weight on that one feature. Some algorithms fisgegu- 2 1 Fegture Deleting Noise

larization to further promote sparse solutions. In the con-

text of our work, sparsity actually makes a classifier moreWe first examine the case where features are missing at
susceptible to adversarial feature-corrupting noise. eHerclassification time. Lett’ C R"™ be an instance space
we prefer dense classifiers, which hedge their bets as mudid letD be a probability distribution on the product space
as possible. Both of the algorithms presented in this papef’ x {£1}. We receive a training sef = {(x;,y:)}/%4
achieve this density by usinga,, regularization scheme. sampled i.i.d. fronD, which we use to learn our classifier.

It is interesting to note that the choice of tiie, norm  We assign each feature € [n] a valuev; > 0. Infor-

Previous papers on “noise-robust learning” mainly deal
with the problem of learning with a noisy training set,
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mally, we think ofv; as the a-priorinformativenessffea-  C > 0, and solve the problem

turej, or as the importance of featujdo the classification

task. It can also represent the cost of obtaining the feature L —m

(such as the price of a medical test). Next, we define the J4'¢ ™y iz &i ®)
value ofgsubsef of features as the sum of values of the st Yiem VJ:V(n\J)<N

features in that subset, and we denbte/) = 3. ; v;. v

For instance, we frequently usé([n]) when referring to yi(b+ e wimij) > 7 D g,
> i—1vj andV([n]\ J) when referring to>~ ., ; v;. Next, Vielml & >0, |[w]e < C

we fix a noise-tolerance paramef€rin [0, V(ﬁz])] and de-

fine P = V([n]) — N. During the classification phase,
instances are generated in the following way: First, a pai
(x,y) is sampled fromD. Then, an adversary selects a
subset of featureg C [n] such that([n] \ J) < N, and
replacesr; with 0 for all j ¢ J. The adversary selects
for each instance individually, and with full knowledge of

the inner workings of our classifier. The noise-tolerance P24 risk of (w, b). More specifically, for any feasible point

rameterN essentially acts as an upper bound on the amou b - -
. o ,0, &) of Eq. (3),&; upper bounds times the indicator
of damage the adversary is allowed to inflict. We wouldng:;] cti §r)1 of th?e e(vc)angt PP ¥

like to use the training sef (which does not have miss-
ing features) to learn a binary classifier that is robusti® th

specific type of classification-time noise. . (b 4 V<o,
i " J:V(I[I;]IPJ)gNy’( +Z]€JMJI~,J) <0

The objective function of Eq. (3) is called thleampirical
hinge-lossobtained on the sampl§. Since¢; is con-
strained to be non-negative, each training example con-
tributes a non-negative amount to the total loss. Moreover,
the objective function of Eq. (3) upper bounds the empiri-

We focus on learning linear margin-based classifiers. A lin-
ear classifier is defined by a weight vectore R™ and a } ) ]
bias termb € R. Given an instance, which is sampled 10 See this, note that for a given exampie, y;), if there
from D, and a set of coordinatekleft intact by the adver-  €Xists a feature subsetsuch thatV’([»] \ J) < N and
sary, the linear classifier outputs- >, ; w;z;. The sign yi(b+ 3., wyz;) < 0then the first constraint in Eq. (3)
of b+, , w;x; constitutes the actual binary prediction, enforces;; > vV (.J)/P. The assumptiol ([n] \ J) < N
while [b+ 3" ; w;z;]| is understood as the degree of con- "W implies that/(./) > P, and thereforg, > . If such
fidence in that prediction. A classification mistake occurs? Set/ does not exist, then the second constraint in Eg. (3)
ifand only if y(b+ 3", ; wjz;) < 0, so we define theisk enforces; > 0.
of the linear classifietw, b) as The optimization problem above actually does more than
minimize an upper bound on the empirical risk. It also re-
quires the margin attained by the feature substi grow
R(w,b)= Pr ( 3J with V([n]\ J) < N (1)  with proportion toV'(J). While a true adversary would
(x:y)~D always inflict the maximal possible damage, our optimiza-
st y(b + ZjeJ wjxf) < O) ’ tion problem also prepares for the case where less damage
is inflicted, requiring the confidence of our classifier to in-
crease as less noise is introduced. We also restritd a
Since D is unknown, we cannot explicitty minimize hyper-box of radius”, which controls the complexity of
Eq. (1). Thus, we turn to the empirical estimate of Eq. (1),the learned classifier and promotes dense solutions. More-
theempirical risk defined as over, this constraint is easy to compute and makes our algo-
rithms more efficient. Although Eq. (3) is a linear program,
itis immediately noticeable that the size of its constraatit
1 & . may grow exponentially with the number of featured~or
m Z[[ Jvimion<n (b+ 2 es wimiy) < 0]]7 (2)  example, ifv; = 1forall j € [n] and if N is a positive in-
=1 B teger, then the linear program contains o@’@j constrains
per example. We deal with this problem below.

where[r] denotes the indicator function of the predicate
Minimizing the empirical risk directly constitutes a diftilt
combinatorial optimization problem. Instead, we formelat Taking inspiration from (Carr & Lancia, 2000), we find
a linear program that closely resembles the formulation ofan efficient approximate formulation of Eqg. (3), which
the Support Vector Machine (Vapnik, 1998). We chooseturns out to be an exact reformulation of Eq. (3) when
a margin parametey > 0 and a regularization parameter v; € {0, 1} for all j € [n]. Specifically, we replace Eq. (3)

2.2. A Polynomial Approximation
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with Lemma 1. Fix an example(x;,y;), a linear classifier

1 e (w,b), and a scalag; > 0, and letd be the value of Eq. (7)

mm 2 > i1 &i (4 with respect to these choices. (aplf> —¢; then Eq. (5)
st.Vie[m] P\ — Z?:l i +yib > —& holds. (b) In the special case where € {0,1} for all

J € [n] and whereN is an integerg > —¢; if and only if
Eqg. (5) holds. (c) There exists a minimizer of Eq. (7) with

Vie[m]Vjen] yiwzi;— 5 > Nvj —aiy,

}
viemlvienl ai; 20, at most one coordinate if0, 1).
Vie[m] \;>0and§ >0,
[Wlleo < C The proof of the lemma is straightforward but technical,

and is omitted due to lack of space. Lemma 1 tells us that
where the minimization is over € R™, b € R, ¢ € R™,  comparing the value of the linear program in Eq. (7) with
XA € R™, anday, ..., o, each inR™. The number of —& provides a sufficient condition for Eq. (5) to hold for
variables and the number of constraints in this problem aréhe example(x;,y;). Moreover, this condition becomes
both O(mn). The following theorem explicitly relates the both sufficient and necessary in the special case where
optimization problem in Eq. (4) with the one in Eq. (3). ~ v; € {0,1} forall j € [n]. We now proceed with prov-
Theorem 1. If (w*,b*, ", A", af, ..., a,) is an optimal inr? the fir'st' part of Th][nhl l;lsing clafin|1| (2) i.n I._lerrrr;a L
solution to Eq. (4), theitw*, b*, £*) is a feasible point of The remaining parts of the theorem follow similarly from

Eq. (3), and therefore the value of Eq. (4) upper-bounds th&IaImS (b) and (c) in the lemma.

value of Eq. (3). Moreover, if; € {0,1} forall j € [n],

then(w™*, b*, £*) is an optimal solution to Eq. (3). Finally, Proof of Theorem 1Let (w*,b*,&*, X", af, ..., a},) be

if it does not hold that; € {0,1} for all j € [n], and  an optimal solution to the linear program in Eq. (4). Specif-
assuming||x;|| < 1 for all 4, then the difference between ically, it holds for alli € [m] that o] and A} are non-
the value of Eq. (4) and the value of Eq. (3) is at m@gt. negative, thatP\} — Z;L:I a; ; +yib* > =&, and that

As a first step towards proving Thm. 1, we momentarily
forget about the optimization problem at hand and focus on
another question: given a specific triplat, b, £), is it a
feasible point of Eq. (3) or not? More concretely, for each
training exampléx;, y;), we would like to determine if for
all J with V([n] \ J) < N it holds that

7Y

iZ > Nvj—of

Vj € [n] Yiw; T — ij o

Therefore, it also holds that the value of the following op-
timization problem

max P — 370 i+ yib* (8)
, B 14 ) Y ot ,
vi(b+ Yjeywiwig) = T & ®) st. Vjeln] ywiz; — B > Nvj —agj,
We can answer this question by comparing; with the Vjien] a,;>0and ) >0,

value of the following integer program:
) n o, is at least-¢*. The strong duality principle of linear pro-
ref01)n yib+ 220 7 (viwswi — 1) (6)  gramming (Boyd & Vandenberghe, 2004) states that the
st. P < E;;l TjVj . value of Eq. (8) equals the value of its dual optimization

problem, which is:
For example, if the value of this integer program is less than

—¢&;, then letr’ be an optimal solution and we have that min y,;b* + Z?:l 7] (ylw]*x” — %) (9)
yz(b+2?:1 T]/-’LUJ'IZ'J‘) < (’)/ Z?:l TJ/-rUj)/P—&;. Namely, T ) "

the set/ = {j € [n] : 7/ = 1} violates Eq. (5). Onthe St Vi€[n] 0<7 <1 and P < 37, 70, .
other hand, if there exists sordewith V'([n]\ J) < N that
violates Eq. (5) then its indicator vector is a feasible poin
of EQ. (6) whose objective value is less thag,.

In other words, the value of Eq. (9) is also at leagt’.
Using claim (a) of Lemma 1, we have that

I_Directly s_olving the intege_r program in E_q. (6) may be d_if- Y; (b* + ZjeJ w]*-xi,j) > %@ —&
ficult, so instead we examine the properties of the following
linear relaxation: holds for allJ with V([n] \ J) < N. The optimization
" s roblem in Eqg. (4) also constraifjsv||.c < C and§; > 0
min yib+ > 5, 7 (viwjzi; — 1) 7 ?or alli e [m],qth(ui,(w*, b*, €Y) sgtis‘f‘ies the consfraints in
st. Vje[n] 0<7; <1 and P < E};l TjVj . Eq. (3). Since Eq. (3) and Eg. (4) have the same objective
function, the value of Eq. (3) is upper bounded by the value
To analyze this relaxation we require the following lemma.of EQ. (4). [
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2.3. Generalization Bounds 2.4. Feature Corrupting Noise

We now prove a generalization bound on the risk of theWe now shift our attention to the case where a subset of the

classifier learned in our framework, using PAC-Bayesianfeatures is corrupted with random noise, and show that the

techniques (McAllester, 2003). Throughout, we assumehe same LP approach used to handle missing features can
that || x|l < 1 with probability 1 over D. For simplic- also deal with corrupted features if the margin parameter

ity, we assume that the bias tetms 0, and thatv; > 0 v in Eq. (4) is sufficiently large. For simplicity, we shall

for all j. These assumptions can be relaxed at the cost aissume that all features are supported-eh 1] with zero

a somewhat more complicated analysis. Given a classifiamean. Unlike the feature deleting noise, we now assume

w, let £, (w,x,y) denote they-loss attained on the exam- that the each feature selected by the adversary is replaced

ple (x,y), defined as with noise sampled from some distribution, also supported
V() on [—1, 1] and having zero mean. The following theorem

[{ min wajxj < ﬂ , (10) relates the risk of a classifier in the above setting, to its
TV <N jeJ P expectedy-loss in the feature deletion setting, where the

where[-] again denotes the indicator function. Note thatIatter can be bounded with Thm. 2.

E[o(w,x,y)] = R(w,0), whereR is defined in Eq. (1).  Theorem 3. Lete, C, and NV be arbitrary positives, and
Theorem 2. Let S be a sample of sizev drawn i.i.d from ety be at leastC'y/Nn(1/e)/2. Assume that we solve

D. For anyd > 0, with probability at leastl — 4, it holds ~ EQ- (4) with parameters, ', N and withv; = 1 for all
for all w € R™ with |[w]||s < C that the risk associated J € [n]. Letw be the resulting linear classifier, and assume

with w is at most for simplicity that thg bias terrhis zero. Letf be arandom
L wm Bim.s) vector-valued function o', such that for everx € X,
sup {6 : KL (m 2im1 by (W, X, y5) 6) < W} ) f(x) is the instancex after the feature corruption scheme

described above. Then, usifgas defined in Eq. (10), for

where 3(m, 6,7) = In(m/d) + 325, m(4PC/(yv;)) (x,y) drawn randomly fronD, we have:

and KL is the Kullback-Leibler divergence. The above
is upper-bounded by the empiricatloss (which equals P <0) < Elr
LS £y (w,x;,9;)), plus the additional term r(y(w, f() <0) < Bl (w,xp)] +e .

\/2 ST g (W, xs y})ﬂ(mﬁ,'y) i 26(m, 4,7) Proof. Let (x,y) be an example and let denote the fea-
m ST T e I m— m—1 ture subset which remains uncorrupted by the adversary.
Using Hoeffding’s bound and our assumption onwe

Proof sketch.The proof follows along similar lines to the have thatPr (y ngzJ w; f(x) < _7) is upper bounded

PAC-Bayesian bound for linear classifiers in (McAllester,

2003). First, define the axis-aligned béx= []/_, [w; — Egngon:rrﬁg%}e’ ‘évvthf?g??:g'%;ttfay* ¢ over the
T3, w; + 35] N [=C, C]. We use the margin concept to AN g '

upper boundE, ,)~p[lo(W,x,y)] by the expected. /,
loss overD of a classifier sampled uniformly from® N wajxj +y Y wifi(x) > yzwjxj -7 - (11)
[-C,C]". We can upper bound this expected loss us- 77 iEJ =

ing the PAC-Bayesian theorem (McAllester, 2003), where, . .
the uniform distribution oveB N [—-C, C]™ is the poste- Thus, with probability at least — ¢, Pr(y{w, f(x)) < 0)

rior classifier distribution, and the uniform distributioner is upper bounded big[(, (w, x,y)]. Otherwise, with prob-

[—C, C]™ is the prior. The bound we get is defined in terms 201 &t MOste, Pr(y(w, f(x)) < 0) < 1. -
of the average empiricdl, /, loss of a random classifier
from B, plus a complexity term dependent on the volumeWe conclude with an interesting observation. In the fea-
ratio betweenB and [—C, C]". Finally, this average loss ture corruption setting, making a correct prediction boils
can be upper bounded by the empiri¢aloss ofw by re-  down to achieving a sufficiently large margin on the uncor-
peating the technique of the first stage. The weaker bountlipted features. Let € (0,1) be a fixed ratio between
stated in the theorem follows from a lower bound on theN andn, and letn grow to infinity. Assuming a reason-
KL divergence, presented in (McAllester, 2003).  [J  able degree of feature redundancy, the ter\i ;. ; w;;
grows asd(n). On the other hand, Hoeffding’s bound tells
Itis interesting to note that., regularization emerges as us thaty >, ; w;z; grows only asO(v/N). Therefore,
the most natural one in this setting, since itinduces the modor r arbitrarily close tol and a large enough, the first
convenient type of margin for relating ttg, /. 2, ¢, loss ~ sumin Eq. (11) dominates the second. Namely, by setting
functions as described above. This lends theoretical supy = Q(+/N) in Eq. (4), our ability to withstand feature cor-
port to our choice of thé. ., norm in our algorithms. ruption matches our ability to withstand feature deletion.
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3. Solving the Problem with the Perceptron andb; ., = b;. Otherwise, the algorithm defines;, ; us-

. _ . ing the following coordinate-wise update
We now turn to our second learning algorithm, taking a

different angle on the problem. We momentarily forget
about the original statistical learning problem and indtea J € [n] wiy1; = {
define a related online prediction problem. In online learn-
ing there is no distinction between the training phase and nTic
thg classification phase, so we cannot perfegtls replicat("imdb’f1 = [bi+ yiT}j—LC’ wherer = \/¢2T7n and[?‘]ic

the classification-time noise scenario discussed above. Ifobreviates the functiamax { min{a, C'}, —C'}. This up-
stead, we assume that an adversary removes features frd#at€ is nothing more than the standard Perceptron update
every instance that is presented to the algorithm. We adWith constantlearning rate, with an added projection step
dress this online problem with a modified version of the®nto the hyper-cube of radius. The specific value of
Perceptron algorithm (Rosenblatt, 1958) and use an onlingiSed above is the value that optimizes the cumulative loss
to-batch conversion technique to convert the online algoPound below. As in the previous section, restricting the
rithm back into a statistical learning algorithm. The de-Online classifier to the hyper-cube helps us control its com-
tour through online learning gives us efficiency while the pIeX|ty,_wh|Ie promoting dense classifiers. It also comes in
online-to-batch technique provides us with the statisticah@ndy in the next stage, when we convert the online algo-

[wm- -+ yiTxi’j]:l:C if ] S Jl
Wy, otherwise

)

generalization properties we are interested in. rithm into a statistical learning algorithm.
. o Using a rather straightforward adaptation of standard Per-
3.1. Perceptron with Projections onto the Cube ceptron loss bounds, to the case where the hypothesis is

We start with a modified version of the well-known Per- confined to the hyper-cube, leads us to the following the-

ceptron algorithm (Rosenblatt, 1958), which observes a seqlrem_’tr\:v hlchtcr:]otrrr:pares trllet_cun:ulatlvef:oss dsgffered l]?_y tge
guence of example@(x,;,yi));il, one example at a time, algorithm wi € cumulalive 10Ss sufiered by any fixe

and incrementally builds a sequeng@v;, bi))Z":’l of lin- hypothesis in the hyper-cube of radilis
ear margin-based classifiers, while constraining them to 4 heorem 4. Choose anyC’ > 0 and letw* < R"
hyper-cube. Before processing exampldhe algorithm ~@nd v* € R be such thafjw*[ < C and [b*] <
has the vectow, and the bias term, stored in its mem- C. Let ((x;,:)),_, be an arbitrary sequence of exam-
ory. An adversary takes the instangeand reveals only Ples, with|x;[[; < 1 for all <. Assume that this se-
a subset/; of its features to the algorithm, attempting to duence is presented to our modified Perceptron, and let
cause the online algorithm to make a prediction mistakeé (Wi b, xi,y;) be as defined in Eq. (12). Then it holds
In choosingJ;, the adversary is restricted by the constraintthat - > &(wi, b, x;, y;) is upper-bounded by
V([n] \ J) < N. Next, the algorithm predicts the label
associated witk; to be I N s C [2(n+1)
—Z{(W DN X)) + —\ —
ym 4 v m
Slgn(bl + Zje.fi wiiji’j) i=1

After the prediction is made, the correct lapgls revealed ~ The next step is to convert our online algorithm into a sta-
and the algorithms suffers a hinge-lagav, b, x,y), de- tistical learning algorithm.
fined as

3.2. Converting Onlineto Batch
214¢))

L:V([rﬂ%’f,)glv —p v+ e, “’Jmi)} L (12) " 15 obtain a statistical learning algorithm, with risk guar-

antees, we assume that the sequence of examples pre-

whereP = V([n]) — N and[«] denotes the hinge func- sented to the modified Perceptron algorithm is a training

tion, max{a,0}. Note that{(w;, b;,x;,y;) upper-bounds set sampled i.i.d. from the underlying distributioh We

~ times the indicator of a prediction mistake on the currentturn to the simple averaging technique presented in (Cesa-

example, for any choice of; made by the adversary. We Bianchi et al., 2004) and define = % S, wiog and

choose to denote the loss byo emphasize the close rela- b = % S bi—1. (W, b) is called theaverage hypothesis

tion betweert(w;, b;, x;,y;) and¢; in Eq. (3). Due to our  and defines our robust classifier. We use the derivation in

choice of loss function, we can assume that the adversarfCesa-Bianchi et al., 2004) to prove that the average elassi

chooses the subsét that inflicts the greatest loss. fier provides an adequate solution to our original problem.

The algorithm now uses the correct lalpeto constructthe  Note that the loss function we use, defined in Eq. (12), is
pair (w;+1,b;+1), which is used to make the next predic- bounded and convex in its first two arguments. This al-
tion. If {(w, b, x,y) = 0, the algorithm definew, ; = w; lows us to apply (Cesa-Bianchi et al., 2004, Corollary 2) to
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the parameterN. We removed one or both of the high-
—©—LP-Based 2 value features from the test set and evaluated the classi-
I fiers. With only one feature removed both SVM and our
approach attained a test error of zero. With two features
removed, the test error of the SVM classifier jumped to
0.477 + 0.004 (over 100 random repetitions of the exper-
iment), indicating that it essentially put all of its weight
on the two perfect features. With the noise parameter set
0 10 20 30 40 500 25 50 75 100 125 150 to N = 20, our approach attained a test error of only
Num deleted Num deleted 0.22 4 0.002. This is only marginally above the best possi-

Figure 1.A comparison of our LP-based approach with the algo-Ple error rate for this setting.

rithm of (Globerson & Roweis, 2006) (GR) and with SVM on | 15ying the lead of (Globerson & Roweis, 2006),
SPAM (left) and MNIST (right), with random noise. we conducted experiments using the SPAM and MNIST
datasets. The SPAM dataset, taken from the UCI reposi-
relate the risk of w, b) with the cumulative online loss suf- tory, is a collection of spam and non-spam e-mails. Spam
fered by the Perceptron. It also allows us to apply Hoeffd-can be detected by different word combinations, so we ex-
ing’s bound to relate the expected loss of any fixed classifiepect considerable feature redundancy in this dataset. The
(w*, b*) with its empirical loss on the training set. Com- MNIST dataset is a collection of pixel-maps of handwritten
bining both bounds results in the following corollary. digits. Again, following (Globerson & Roweis, 2006), we
Corollary 1. For anys > 0, with probability at leastt — & focused on the binary problem of distinguishing the digit

over the random sampling &, our algorithm constructs from the digit7. Adjacent pixels often contain redundant
(i 1) Such thate [g(w,g x,y)] is at most information, making MNIST well-suited for our needs.
) X, Y )~ s Uy 4y

Test Error

On each dataset, we performtypes of experiments. The
\/Q(n 14 1n(§)) first type follows exactly the protocol used in (Globerson

min  E[{(w,b,x,y)] + (3C+¢)

(wib)EH ) & Roweis, 2006). Namely, the algorithm is trained with a

small training set ob0 instances, and its performance is
where¢ = ymax .y )\ 7)<n (V(J)/P), and 7 is the  tested in the face alindomfeature-deleting noise, which
set of all pairs(w, b) such that|w||., < C and|b] < C. uniformly deletesN non-zero features from each test in-
stance, for various choices &f. Notice that this setting
Using the fact that the hinge loss upper-boundsnes the  deviates from the adversarial setting considered so fdr, an
indicator function of a prediction mistake, regardlesshef t  the reason for conducting this experiment is to compare our
adversary’s choice of the feature set, we have that the exesults to those reported in (Globerson & Roweis, 2006).

m

pected hinge loss upper-boungR (w, b). A validation set is used for parameter tuning. We did not
test our online-to-batch algorithm within this setting)c
4. Experiments and Conclusions it has little advantage with such a small training set. The

results are presented in Fig. 1, and show test error as a
We compare the performance of our two algorithms (LP-function of the number of deleted features. Compared to
based and online-to-batch) with that of a lindar SVM  its competitors, our algorithm has a clear and substantial
(Joachims, 1998) and with the results reported in (Globeradvantage.
son & Roweis, 2006). We used the GLPK package
(htt p: // www. gnu. or g/ sof t war e/ gl pk) to solve
the LP formulation of our LP-based algorithm.

The second type of experiment simulates more closely the
adversarial setting discussed throughout the paper. Using
10-fold cross-validation, we corrupted each test instance
We begin with a highly illustrative sanity check. We gener-using a greedy adversary, which deletes the most valuable
ated a synthetic datasetif00 linearly separable instances features of each instance until either the lidNitis reached

in R** and added label noise by flipping each label withor all useful features are deleted,/9 of the training set
probability 0.2. Then, we added two copies of the actual was used for parameter tuning. Due to computational con-
label as additional features to each instance, for a totadiderations when running our LP-based algorithm, we per-
of 22 features. We randomly split the data into equally formed a variant of bagging by randomly splitting the train-
sized training and test sets, and trained an SVM classiing set into chunks, training on each chunk individually,
fier on the training set. We set = 1 for j € [20] and  and finally averaging the resulting weight vectors. In con-
vg1 = vag = 10, expressing our prior knowledge that the trast, our online-to-batch algorithm trained on the entire
last two features are more valuable. Using these featurgaining set at once, and so did the SVM algorithm. We
values, we applied our technique with different values of
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Figure 2.Experiments on SPAM with'j € J,v; = 1 (left) and withv; set with a mutual information heuristic (center). Experiments
on MNIST withv; set with a mutual information heuristic (right).
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