
On the Reliability of Clustering Stability in the Large
Sample Regime

Ohad Shamir† and Naftali Tishby†‡

† School of Computer Science and Engineering
‡ Interdisciplinary Center for Neural Computation

The Hebrew University
Jerusalem 91904, Israel

{ohadsh,tishby}@cs.huji.ac.il

Abstract

Clustering stability is an increasingly popular family of methods for performing
model selection in data clustering. The basic idea is that the chosen model should
be stable under perturbation or resampling of the data. Despite being reason-
ably effective in practice, these methods are not well understood theoretically, and
present some difficulties. In particular, when the data is assumed to be sampled
from an underlying distribution, the solutions returned bythe clustering algorithm
will usually become more and more stable as the sample size increases. This raises
a potentially serious practical difficulty with these methods, because it means there
might be some hard-to-compute sample size, beyond which clustering stability es-
timators ’break down’ and become unreliable in detecting the most stable model.
In this paper, we provide a set of general sufficient conditions, which ensure the
reliability of clustering stability estimators in the large sample regime. In con-
trast to previous work, which concentrated on specific toy distributions or specific
idealized clustering frameworks, here we make no such assumptions. We then
exemplify how these conditions apply to several important families of clustering
algorithms, such as maximum likelihood clustering, certain types of kernel clus-
tering, and centroid-based clustering with any Bregman divergence. In addition,
we explicitly derive the non-trivial asymptotic behavior of these estimators, for
any framework satisfying our conditions. This may help us understand what is
considered a ’stable’ model by these estimators, at least for large enough samples.

1 Introduction

Clustering stability is an increasingly popular approach for performing model selection in data clus-
tering, such as determining the number of clusters in the data ([4],[6],[13],[8], [5]). The basic idea is
that a ’correct’ model for the data is a stable model, in the sense that perturbing the dataset in some
manner should not change the clustering too much. Suitably quantified and estimated, the amount
of instability can be compared for different models, in order to choose the most appropriate one.
In this paper, we will focus on sampling based estimators, where the perturbation is performed by
resampling the data. These estimators work by drawing and clustering different random subsets of
the data, and estimating the dissimilarity of the differentclusterings induced on the data space.

Despite being relatively successful in practice, these methods are still not well understood theo-
retically. An important and non-trivial difficulty with these methods is the following observation,
made and rigorously analyzed in [3], [2] and also pointed outin [7]. If we assume that the data is
sampled from some underlying distribution, and the clustering algorithm works by optimizing some
sort of objective function, then as the sample size increases, the algorithm will often converge to a
single solution, which is a global or local optimum with respect to the underlying distribution, no
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matter which model we choose. Therefore, for large enough samples we might get a stable solution
regardless of the chosen model. As a result, it is quite possible that there exists some sample size
(intimately related to the particular underlying data distribution and hence difficult to compute), be-
yond which stability estimators will ’break down’ and become unreliable. Namely, the estimated
amount of instability will be close to zero for any model chosen, with differences between the mod-
els depending just on random and meaningless sampling artifacts.

A possible solution to this problem was introduced in [11], where an analysis of a suitably scaled
version of the instability estimators indicated that they might actually be able to discern the stability
of different models, no matter how large is the sample and howstable the models become. However,
this was proven to hold only on a single toy example, as a proofof concept. In [12], this was extended
to any continuous distribution onRn using an ’ideal’k-means algorithm (capable of returning a
global minimizer of thek-means objective function). However, these results still do not give us
generalsufficient conditions for the reliability of clustering stability estimators in the large sample
regime.

In this paper, we present such a set of conditions, without tying ourselves to a particular cluster-
ing framework. The main condition is the existence of acentral limit theoremfor the clustering
framework, in an appropriately defined sense. We then exemplify how this is fulfilled in several
important and practical families of clustering algorithms, such as maximum likelihood clustering,
certain types of kernel clustering, and centroid-based clustering with any kind of Bregman diver-
gence. As a useful byproduct, we are able to explicitly characterize the asymptotic value to which
these stability estimators, suitably scaled, converge, for any framework satisfying our conditions. A
similar characterization was given in [12] for thek-means framework, but here the result is much
more general, and the analytical expression is simpler. We expect this to lead to useful insights on
the assumptions inherent in using clustering stability estimators for model selection.

Due to lack of space, the full proofs of our theorems are presented in a separate supplementary.

2 Problem Setting and Notation

We assume that objects to be clustered belong to a measurablesubsetX of Rn, which for simplicity
shall be assumed to be compact (i.e. closed and bounded). We assume there exists a distributionD
with a density functionp(·) onX , from which we sample our data. Clustering is performed on such
samples by an algorithmAk, parameterized by the number of clustersk, and in general corresponding
to the clustering model whose stability we wish to estimate.

We assume that the algorithm returns a measurable functionf
θ̂

: X 7→ Rk, f
θ̂

= (f
θ̂,1, . . . , fθ̂,k),

which is parameterized by some parameter spaceΘ to which θ̂ belongs. This function measures
the amount of ’association’ or ’dis-association’ of each instance inX to each of thek clusters. For
example, in centroid based clustering, this function can bethe distance of each instance from each of
the centroids, andΘ is a subset ofRnk, representing the concatenation of thek centroids determining
the clustering. In mixture model estimation,f

θ̂
(·) can be the probability of an instance to belong to

each of the mixture elements, andΘ represents the parameters of the mixture model. For simplicity,
we will assume unless stated otherwise thatf

θ̂
is a measure of association. To prevent ambiguity, we

assume that clusters are numbered according to some uniformcanonical ordering (such as sorting
with respect to the centroid coordinates in centroid based clustering).

In this paper, we shall assume for simplicity that the parameter spaceΘ can be framed as an open
subset of some finite dimensional Euclidean space, with the regular Euclidean norm. This is not
really essential for proving the sufficiency of our conditions. However, some of our sufficient condi-
tions become less obvious in an infinite dimensional, non-parametric settings, and might fail to hold
in some cases (see Subsec. 4.2 for further details).

Let C
θ̂,i be the ’i-th cluster’ with respect tof

θ̂
(·). Namely, the subset ofX which is most associated

with clusteri:

C
θ̂,i :=

{

x ∈ X : argmax
a∈{1,...,k}

f
θ̂,a(x) = i

}

.
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For any two clustersi 6= j, defineF
θ̂,i,j to be the boundary between the two clusters, with respect

to θ̂. Formally:

F
θ̂,i,j :=

{

x ∈ X : argmax
a∈{1,...,k}

f
θ̂,a(x) = {i, j}

}

.

f
θ̂
(·), as an output of our clustering algorithm, is a random function based on the randomness of the

sample used by the algorithm. In understanding the asymptotic behavior of this function, we will
need to use the concept of aGaussian processG(·) indexed byX . In our context, this refers to a
collection of random vectors inRk (G(x) for anyx ∈ X ), defined on the same probability space,
such that any finite subset of them has a joint multivariate Gaussian distribution. In particular,G(x)
for anyx is a Gaussian random vector inRk.

A typical clustering stability method relies on a measure of’distance’ between clusterings derived
from two independent samples. The prototypical measure we shall focus on is the mass ofD which
switches between clusters, when we compare different clusterings derived from independent sam-
ples. In order to treat all the different clustering frameworks in a unified manner, we assume that for
soft clustering, this mass is measured after assigning eachelement inX to its most likely cluster.
Formally, letS1 andS2 be two independent samples of sizem, drawn i.i.d fromD, to which we
apply the clustering algorithmAk. Assume thatAk(S1) returnsf

θ̂
(·), andAk(S2) returnsf

θ̂
′(·) for

someθ̂, θ̂
′ ∈ Θ. Then the distance between the two clusterings is defined as

dD(Ak(S1), Ak(S2)) := Pr
x∼D

(

argmax
i

f
θ̂,i(x) 6= argmax

i
f

θ̂
′

,i
(x)

)

.

We note that this definition differs a little from the one usedin some previous literature on the
topic (such as [3],[11]), since it is easier to work with1. Assuming the underlying data distribution
is not unusually symmetric, our clustering algorithm will converge in probability to some fixed

optimal solutionθ0 as the sample sizem increases [3]. Therefore, botĥθ and θ̂
′

in the equation
above will converge to the sameθ0. As a result, the random variabledD(Ak(S1), Ak(S2)) will tend
to become smaller and smaller, converging in probability to0 asm → ∞. As discussed in the
introduction, if this convergence to zero behavior occurs for different model choices, then it might
ultimately become impossible to reliably distinguish between the models in terms of their stability.
This is because the distance measure as defined above will always be very close to zero, and it
is possible that relative differences in estimates of thesemeasures will depend more on random
sampling artifacts than any true underlying characteristic of the model. In this paper, we wish to
investigate when will the reliability of clustering stability estimators be maintained, despite this
convergence to zero phenomenon.

3 Sufficient Conditions for the Reliability of Clustering Stability Estimators

In this section, we will present a set of conditions on the clustering framework, and prove that
whenever these conditions are fulfilled, clustering stability estimators remain reliable in the large
sample regime, in an appropriately defined sense. These essentially consist of a consistency and
central limit condition forθ̂ (the solution returned by the algorithm based on a random sample),
plus some regularity conditions to prevent various pathologies (plausibly not the tightest possible).
These regularity conditions are usually a simple consequence of the specific clustering framework
that we are dealing with, plus the central limit condition. In the next section, we will see examples
for well known clustering frameworks which seem to satisfy these conditions in general.

To avoid making things too complex, the regularity conditions will be presented in a somewhat
informal manner, sometimes in a way which is a bit stronger than what is really needed. A fully
rigorous and precise formulation of the regularity conditions may be found in the supplementary
material to this paper.

1In previous work, the clustering distance measure was defined as the probability over apair of instances
drawn independently fromD, that this pair is in the same cluster under one clustering, and in different clusters
under the other clustering. The two definitions are very closely related andin fact inter-convertible in some
cases.
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Conditions. The following conditions shall be assumed to hold:

1. Consistency Condition:̂θ converges in probability (over drawing and clustering a sample
of sizem, m → ∞) to someθ0 ∈ Θ. Furthermore, the association of clusters to indices
{1, . . . , k} is constant in some neighborhood ofθ0.

2. Central Limit Condition:
√

m(θ̂ − θ0) converges in distribution to a multivariate zero
mean Gaussian random vectorZ.

3. Regularity Conditions:

(a) fθ(x) is Sufficiently Smooth:The functionfθ(x) is sufficiently smooth with respect
to x andθ.

(b) Limit Cluster Boundaries are Reasonably Nice:For any i, j, Fθ0,i,j is a differen-
tiable hyper-surface (not necessarily a hyperplane), witha neighborhood in which
the underlying density functionp(·) is continuous. Moreover, the gradient of cluster
association,∇(fθ0,i(·) − fθ0,j(·)), has positive magnitude everywhere onFθ0,i,j .

(c) Intersections and Edges of Cluster Boundaries are Relatively Negligible: For any
limit cluster boundaryFθ0,i,j , and small enoughǫ > 0, most of the volume in an
ǫ-neighborhood aroundFθ0,i,j is bounded away from the boundary’s edges or other
cluster boundaries.

(d) Minimal Parametric Stability: The position of each cluster boundaryF
θ̂,i,j depend

in a sufficiently smooth manner on̂θ, at least in some small neighborhood ofθ0.

We note that the conditions allow us to characterize the asymptotic Gaussian distribution of√
m(f

θ̂
(x) − fθ0

(x)) for anyx ∈ X , as formalized in the following proposition.

Proposition 1. Conditions 2 and 3a above imply that
√

m(f
θ̂
(·)− fθ0

(·)) converges in distribution
to a Gaussian processG(·) = (G1(·), . . . , Gk(·)) onRk, indexed byX , of the form

G(x) :=
( ∂

∂θ
fθ0

(x)
)⊤

Z.

In order to prove that stability doesn’t ’break down’ in the large sample regime, we have to model
how instability estimators work. The basic building block is straightforward: cluster two indepen-
dent samples and estimate the distancedD(Ak(S1), Ak(S2)) between them. SinceD is unknown,
we cannot computedD(Ak(S1), Ak(S2)) directly, since we don’t know what is the exact mass ofD
which switched between clusters. However, we can estimate it by using another sample, and cal-
culating the percentage of sample points which switched between clusters. In practice, this entire
process is repeated a number of times on different random subsets of the data, with the averaged
result returned as the estimate of instability for the modelchosen.

Our central result, stated in the theorem below, implies that these kind of estimators do not ’break
down’ in the large sample regime, in an appropriately definedsense.
Theorem 1. Define the clustering stability estimatorη̂k

m,q as follows. Given an i.i.d sample of size
at leastm(2q + 1), split it randomly intoq disjoint subsample pairs{S1

i , S2
i }q

i=1
of sizem each,

and an additional sampleS3 of sizem. Cluster all pairs{S1
i , S2

i }q
i=1

with algorithmAk, resulting
in a set of function pairs{f

θ̂i
(·), f

θ̂
′

i

(·)}q
i=1

. Return the estimate:

1

q

q
∑

i=1

1

m

∑

x∈S3

1

(

argmax
j

f
θ̂i,j

(x) 6= argmax
j

f
θ̂
′

i,j
(x)

)

.

If f
θ̂
(·) is a measure of dis-association rather than association,argmax should be replaced above

byargmin. With the set of conditions defined earlier, we have that for any ǫ > 0,

lim
m→∞

Pr
(∣

∣

∣

√
m η̂k

m,q − înstab(Ak,D)
∣

∣

∣
> ǫ

)

= o(q−1/2),

where

înstab(Ak,D) =
2√
π

∑

1≤i<j≤k

∫

Fθ0,i,j

p(x)
√

Var(Gi(x) − Gj(x))

‖∇(fθ0,i(x) − fθ0,j(x))‖ dx.
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The theorem implies that if we takeq to be large enough and see what happens to
√

m η̂k
m,q

in the large sample regime, it will return estimates which are reliably close tôinstab(Ak,D). If
înstab(Ak,D) differs for different model choices forAk, then we will be able to discern the more
’stable’ model with high probability over the sampling process, simply by comparing the value of
η̂k

m,q for each model. This is despite the fact that without scalingby the square root of the sample
size,η̂k

m,q converges to zero in probability.

The theorem gives us more than that: it explicitly characterizes to what value our clustering instabil-
ity estimator, after scaling, converges2. It should be emphasized that this value is not very dependent
on the exact form of our estimator, at least in terms of the main factors appearing there. In a nut-
shell, the asymptotic instability of a clustering model is simply the integral, across all limit cluster
boundaries, of the product of three quantities:

• The underlying probability densityp(·) along the cluster boundaries. Therefore, high den-
sity along the cluster boundaries contributes to more instability.

• The variance of the Gaussian process characterizing the asymptotic fluctuations of the ran-
dom functionf

θ̂,i(·) − f
θ̂,j(·). By definition, the association of a pointx to clusteri or

clusterj under the limit clusteringfθ0
is determined by the sign offθ0,i(x) − fθ0,j(x).

Thus, the larger are these fluctuations, the larger are the fluctuations of the cluster bound-
aries, which contributes to more instability.

• The inverse of the gradient of the fixed limit functionfθ0
(·) across the cluster boundaries.

A large gradient forfθ0,i(·)−fθ0,j(·) at the boundary points implies that its value changes
abruptly as we cross the cluster boundary. In this case, random fluctuations of̂θ around
θ0 will correspond to relatively smaller fluctuations of the cluster boundary, and this con-
tributes to less instability.

For example, if for some model choice, the probability density p(x) is exactly zero at the boundaries,
thenînstab(Ak,D) equals zero. Namely, the clustering stability estimator asymptotically considers
a model with zero density at the boundaries as the most stablepossible. Also, ask increases,
integration is performed over a larger area, and as a result we might get more instability, a fact which
has been noted empirically [8]. It should be emphasized thatthe three quantities described above
are not independent, and it is possible that a change in one quantity will be offset by a reciprocal
change in another quantity. Thus, an exact analysis is non-trivial, and the observations above should
be viewed as preliminary.

4 When do the Conditions Hold?

In this section, we investigate when does the set of conditions from subsection 3 hold. Recall that
these conditions can be divided into3 parts: a consistency condition, a central limit condition,and
some regularity conditions to ensure that the framework is well behaved.

The most basic requirement for the problem we are dealing with to be meaningful at all is consis-
tency. Namely, we assume that as the sample size increases toinfinity, the clustering returned by
the algorithm will converge to some limit clustering, and the distance between independent clus-
terings converge to zero in probability. If this does not happen, the problem of clustering stability
potentially ’breaking down’ in the large sample regime is irrelevant.

On the other hand, the central limit condition is the most non-trivial, and cannot simply be assumed
to hold. Therefore, the focus of this subsection will be on exemplifying clustering frameworks where
the central limit condition holds. As to the other regularity conditions, they are relatively mild, and
are mostly a simple consequence of the specific clustering framework that we are considering, plus
the central limit condition. Due to lack of space, we will notfurther discuss them here.

We will present three theorems, which demonstrate that the central limit condition holds on some
important families of clustering frameworks. These families do not cover all interesting clustering

2It is reassuring to note that the formula for̂instab(Ak,D) can be shown to be a strict generalization of the
one appearing in [12], which applied tok-means only, after taking care of the slightly different definition of
dD(Ak(S1), Ak(S2)) there.
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algorithms, but should be sufficient evidence that clustering stability provably does not ’break down’
in many situations.

A convenient framework in which to derive such central limitresults is the statistical theory ofZ-
estimators. Intuitively, a Z-estimator is any statistical estimator,which works by trying to zero a
function or a set of functions based on a sample. For example,suppose thatm instances are drawn
i.i.d from some distribution onR. Then the sample mean can be seen as a Z-estimator: given a
samplex1, . . . , xm, it returns a valuêθ which zeros the functionΨm(θ) =

∑m
i=1

(θ − xi). A more
general and relevant example is when one attempts to find the ’maximum likelihood’ parameters of a
probabilistic model, by searching for a solution which zeroes the derivative of the likelihood function
on the data. For a full formal treatment of Z-estimators, see[14]. Proving central limit theorems for
Z-estimators is a well studied topic. Therefore, if we manage to define our clustering algorithms as
Z-estimators, we can apply known results on such estimatorsto get central limit theorems.

4.1 Bregman Divergence Clustering

The first case we shall consider is centroid clustering basedon Bregman divergences. This family of
clustering algorithms has received growing attention in the past few years (see for example [1] and
references therein). The idea is to perform centroid-basedclustering (where clusters are represented
by centroids, and each data instance is associated with its ’nearest’ centroid), but instead of using
just the regular squared Euclidean distance, we use any kindof Bregman divergence. A Bregman
divergencedΥ(·, ·) between two vectors inRn is defined as

dΥ(x,y) := Υ(x) − Υ(y) − 〈x − y,∇Υ(y)〉,
whereΥ(·) is any differentiable, strictly convex real function defined on a closed convex set in
Rn. A large variety of distances and divergence measures are Bregman divergences. These include
squared Euclidean distance, Mahalanobis distances, information theoretic divergences such asKL-
divergence andI-divergence, and quite a few others (see [1] for further details).

In the framework that we consider, the goal of clustering is to find a set of centroids inRn, such
that the average divergence between each instance and its closest centroid is minimized. Namely,
given a samplex1, . . . ,xm, we seek a set ofk centroidsc1, . . . , ck which minimizes the objective
function

1

m

m
∑

i=1

min
j

dΥ(xi, cj). (1)

The parameter spaceΘ of possible clusterings can be thought of as a subset ofRnk, such that any
θ ∈ Θ is simply the concatenation of thek centroids inRn, by some canonical ordering. We will
use the notationθ = (θ1, . . . ,θk), so thatθi ∈ Rn is the centroid corresponding to thei-th cluster.

We assume that our clustering algorithm attempts to minimize Eq. (1). For concreteness, the algo-
rithm may use an iterative scheme similar tok-means, as in [1]: in each step, points are assigned
to the nearest centroid (with respect to the Bregman divergence used), and the centers are updated
so as to minimize the average divergence between them and theinstances in the cluster.We will not
need to assume that a globally optimal solution is found: convergence in probability to a locally
optimal solution (with respect to the underlying distribution, as the sample size increases to infinity)
will suffice.

The first step will be to cast our clustering algorithm as a Z-estimator, using a generalization of an
idea from [9]. For this, define for anyi ∈ {1, . . . , k} the following function fromΘ × Rn to Rn:

∆i(θ,x) :=

{

θi − x x ∈ Cθ,i

0 otherwise

Furthermore, assumingx1, . . . ,xm is a sample drawn i.i.d fromD, define the random mapΨm(·) =
(Ψ1

m(·), . . . ,Ψk
m(·)) and the deterministic mapΨ(θ) = (Ψ1(θ), . . . ,Ψk(θ)) as

Ψi
m(θ) :=

1

m

m
∑

j=1

∆i(θ,xj) , Ψi(θ) :=

∫

X

∆i(θ,x)p(x)dx.
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The key insight is that given an empirical sample of sizem, our Bregman Clustering algorithm
always returns a solution of̂θ such thatΨm(θ̂) = 0. This is a consequence of the fact, proven as
Proposition 1 in [1], that the optimum location for a centroid in any Bregman Clustering framework
lies at the center of mass of its cluster, and our algorithm indeed returns a set of centroids which
fulfill this condition. It can be easily verified that such a solution zerosΨm(·). Thus, our algorithm
can indeed be viewed as a Z-estimator, and it is possible to prove a central limit behavior.

Theorem 2. LetAk be a centroid-based clustering algorithm using any Bregmandivergence, which
returns a solution̂θ such thatΨm(θ̂) = 0. Asm → ∞, assume that̂θ converges in probability to a
fixedθ0 ∈ Θ, such thatΨ(θ0) = 0, andΨ(·) has a non-singular derivative atθ0 with a continuous
inverse. Then

√
m(θ̂ − θ0) converges in distribution to a zero mean Gaussian random vector.

We note that the form of the derivative ofΨ(·) at θ0 depends on the specific clustering algorithm
that we are considering. For example, an explicit calculation for thek-means framework has been
carried out in [9], and the analysis can be generalized to other frameworks.

4.2 Kernel Clustering

The second example we shall examine is kernel clustering. Inparticular, we will focus on the kernel
k-means algorithm [10]. Recall that kernelk-means can be seen as implicitly transforming our data
points into a high or even infinite dimensional reproducing kernel Hilbert spaceH, and performing
regulark-means in that space: points are assigned to their nearest centroids inH (with respect to
the norm induced by the inner product), and the centroids areupdated to represent the mean of the
points in each cluster. These operations are performed via akernel function, which corresponds to
the inner product operation inH.

In this case, we can think ofΘ asHk, whereH is the reproducing kernel Hilbert space associated
with the kernel. Thus, each element inΘ represent a set ofk centroids inH. Kernel k-means
always returns a solution where the centroids are at the center of mass of their respective clusters.
Thus, to cast this algorithm as a Z-estimator, we can simply reuse the functionsΨ,Ψm defined in
Subsec. 4.1, only this time these are functions fromHk to Hk. Formally, letφ : X 7→ H be the
feature map from the data space to the reproducing kernel Hilbert space induced by the kernel, and
define∆i(θ,x),Ψm(θ),Ψ(θ) exactly as in Subsec. 4.1, replacingx everywhere withφ(x).

Following the framework of this paper, we will assume in the theorem below thatΘ (and hence
H) is a subset of a finite dimensional Euclidean space, corresponding for example to polynomial
kernels. We note however that the tools we use allow us to prove, in some cases, a similar theorem
for infinite dimensionalH as well. Unfortunately, these tools are not applicable in some important
infinite-dimensional kernel clustering frameworks, such as those employing universal kernels (see
the full proof for further details). Once again, we do not need to assume that the algorithm returns a
globally optimal solution, only that it consistently converges to some local optimum.

Theorem 3. Let Ak be a finite dimensional kernelk-means clustering algorithm, which returns a
solution θ̂ such thatΨm(θ̂) = 0. Assume that asm → ∞, θ̂ converges in probability to a fixed
θ0 ∈ Θ, such thatΨ(θ0) = 0, andΨ(·) has a non-singular derivative atθ0 with a continuous
inverse. Then

√
m(θ̂ − θ0) converges in distribution to a zero mean Gaussian random vector.

4.3 Maximum Likelihood Clustering

The next theorem treats estimators which are based on a statistical modeling of the clusters, and
attempt to maximize the log-likelihood of the data given themodel. Namely, we assume thatΘ is
a parametric family of distributions, and attempt to maximize

∑m
i=1

log(q(x|θ̂))/m, whereq(x|θ̂)

is the probability of the observationx given the model̂θ. In this case, we assume thatf
θ̂
(x)

corresponds to a vector in thek-simplex, so thatf
θ̂,i(x) is the probability thatx belongs to cluster

i. Θ is the parameter space of the distributional family that we are considering. For example,Θ can
encode the mean, covariance matrix and relative weight of each component in a Gaussian mixture
model. The asymptotic normality of maximum likelihood estimators is a classical and well-known
result. Here we present a variant (not the strongest possible), which emphasizes the fact that the
returned solution need not be globally optimal, as long as consistency is maintained and a locally
optimal solution is returned.
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Theorem 4. LetAk be a statistical model estimator, based on a parametric family of distributionsΘ,
whereΘ is an open subset of some Euclidean space. Given an i.i.d samplex1, . . . ,xm, the algorithm
returns a solution̂θ ∈ Θ which locally maximizes the log-likelihood function with respect to the
sample. Assume that asm → ∞, θ̂ converges in probability to a fixed local maximizerθ0 ∈ Θ of the
log-likelihood function with respect to the underlying distributionD, namely

∫

X
log(q(x|θ̂))p(x)dx.

Assume that the latter is twice differentiable with respectto θ̂ at some neighborhood ofθ0, with a
non-singular second derivative atθ0. Then

√
m(θ̂ − θ0) converges in distribution to a zero mean

multivariate Gaussian random variable.

5 Conclusions and Future Work

In this paper, we investigated the reliability of clustering stability estimators in the large sample
regime. We provided a set of sufficient conditions, revolving around a central limit requirement,
which ensure that these estimators do not ’break down’ even for arbitrarily large samples, and char-
acterized their asymptotic behavior. In contrast to previous work, the results are general and do
not assume a particular clustering framework or distribution. We also discussed several families of
well-known clustering algorithms, for which the main central limit requirement holds in general.
These include maximum likelihood clustering, certain types of kernel clustering, and centroid-based
clustering with any Bregman divergence.

Although the central limit approach proved to be a convenient framework, it remains an open ques-
tion how far it is from beingnecessaryfor stability estimators not to ’break down’ in the large sample
regime. This question is relevant because a central limit requirement might be too strong to hold
over all useful clustering frameworks. In addition, we still need to better understand the meaning
of the asymptotic value of clustering instability as given in Thm. 1, beyond extreme cases such as
zero density along cluster boundaries. Hopefully, this will also help to understand the behavior of
clustering stability on small samples.

Acknowledgements: The authors wish to thank Yonatan Harpaz for help with the proof of Thm. 1.
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