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Abstract

With the emergence of search engines and crowd-
sourcing websites, machine learning practitioners
are faced with datasets that are labeled by a large
heterogeneous set of teachers. These datasets test
the limits of our existing learning theory, which
largely assumes that data is sampled i.i.d. from a
fixed distribution. In many cases, the number of
teachers actually scales with the number of exam-
ples, with each teacher providing just a handful of
labels, precluding any statistically reliable assess-
ment of an individual teacher’s quality. In this pa-
per, we study the problem of pruning low-quality
teachers in a crowd, in order to improve the la-
bel quality of our training set. Despite the hur-
dles mentioned above, we show that this is in fact
achievable with a simple and efficient algorithm,
which does not require that each example be re-
peatedly labeled by multiple teachers. We provide
a theoretical analysis of our algorithm and back
our findings with empirical evidence.

1 Introduction
In recent years, new distributed data-collection techniques
have emerged, which harness the power of the Internet and
its vast audience. While providing large amounts of cheap
labeled data for our machine learning algorithms, these tech-
niques violate some of the fundamental assumptions of our
existing theoretical models of learning. Traditionally, we as-
sume that training examples are sampled i.i.d. from a fixed
probability distribution, while in these scenarios examples
are labeled by a heterogeneous set of teachers. Different
teachers have different levels of dedication, expertise, and
competence, and provide labels of different quality.

For example, crowdsourcing websites allow members of
the public to perform various simple labeling tasks, either
voluntarily or for pay. Galaxy Zoo is a website where visi-
tors help classify galaxies, and Stardust@home asks its vis-
itors to detect interstellar dust particles in astronomical im-
ages. Amazon.com’s Mechanical Turk is an online system
on which individuals can publish crowdsourcing tasks and
offer payments for their completion. By design, the crowd-
sourcing approach distributes the label collection task across

numerous different individuals, while providing little means
of quality control.

An even more extreme example of a multi-teacher setting
occurs when data is harvested from search engine logs, with
the intent of improving search engine results. A search en-
gine log records the links that were clicked-on by each user;
we think of each user as a teacher and of each click as a la-
bel. The number of distinct search engine users can easily
run into the millions, and clearly the clicks of some users
convey more useful information than the clicks of others. In
this example, the number of teachers actually scales with the
number of examples, and each individual teacher labels a
tiny fraction of the data.

While most of the theoretical literature on machine learn-
ing focuses on the single-teacher setting, we are faced with
the problem of learning from a crowd. A common first step
is to identify and remove low-quality teachers that provide
worthless labels. This data cleaning step is the focus of our
paper. In dealing with this task, we are faced with a number
of theoretical hurdles. First, we have no prior knowledge on
the identity or the quality of any teacher. Additionally, it is
unlikely that we have access to a large gold-set of perfectly
labeled examples, which could be used to evaluate the qual-
ity of each teacher. Even if such a set were available, we as-
sume that a typical teacher labels only a handful of examples,
far from sufficient to perform a statistically reliable estima-
tion of that teacher’s quality. More often than not, we lack
the ability to control which examples are assigned to which
teachers. This prevents us from actively probing the qual-
ity of certain teachers or using convenient repeated labeling
techniques, in which each example is labeled multiple times
and inter-judge agreement is measured. Ideally, even when
repeated labeling is possible, it should be avoided, since it in-
creases the cost per example significantly. Ultimately, all we
have to work with is the raw labeled data itself, with a single
noisy label per example. Despite these difficulties, our goal
is to detect and eliminate low-quality teachers in a principled
and effective manner, resulting in improved label quality in
our training set.

For simplicity, we focus here on binary classification and
margin-based classifiers. We address our problem with a
very simple algorithm, indirectly inspired by the most straight-
forward repeated labeling technique. Imagine for a moment
that we could collect multiple labels for each example. If
most of the teachers are reasonably good, we could elimi-
nate much of the noise in the data by taking the average or



the majority over the repeated labels of each example. Treat-
ing this aggregate label as an approximate ground-truth, we
could count the number of incorrect labels provided by each
teacher and identify those teachers that tend to make errors.
Once the low-quality teachers are identified, we can make
sure to ignore any labels they provide in the future. How-
ever, in our setting we do not have repeated labels and we
cannot generate aggregate labels, so instead we simulate ag-
gregate labels. Specifically, we train a hypothesis on the en-
tire unfiltered dataset and regard the predictions of this hypo-
thesis as the approximate ground-truth. Intuitively, fitting a
hypothesis to the entire dataset is similar to aggregating mul-
tiple labels per example. With this hypothesis playing the
role of our ground-truth, and pretending that we can reli-
ably estimate a teacher’s quality from the handful of labels it
provides, we evaluate each teacher and prune away the low-
quality ones.

We show that this simple technique effectively reduces
the noise level in our data. Specifically, we show that this
technique is effective even when the number of instances per
teacher is nowhere near enough to reliably estimate an indi-
vidual teacher’s quality. Intuitively, our technique may mis-
take some good teachers for bad teachers and remove them,
but more bad teachers are removed, and the overall noise
level decreases. In this setting, a reasonable number of false
negatives (good teachers that are removed) is easily toler-
ated, since the crowd is large and teachers are abundant.

Once the data is cleaned, the natural next step is to retrain
a classifier on the cleaned dataset. The obvious difficulty
here is that the examples in the cleaned dataset are no longer
independent. Thus, it is not clear whether or not the stan-
dard generalization analysis of our learning algorithm still
applies. Fortunately, a small modification to our basic clean-
ing procedure resolves this problem. Instead of applying our
cleaning algorithm directly to the original dataset, we first
split our data in two, and then use each half of the data to
determine which teachers should be removed from the other
half. Using this modification, any standard generalization
analysis still holds, with a small penalty in the bounds.

Our paper is organized as follows. We conclude the in-
troduction by mentioning important related work. In Sec. 2
we set the stage for our theoretical analysis, in Sec. 3 we
state our main theoretical results, and formally prove them
in Sec. 4. In Sec. 5 we empirically demonstrate the effec-
tiveness of our technique on a real dataset obtained using
Mechanical Turk. Finally, we conclude the paper in Sec. 6.

1.1 Related Work

To our knowledge, the literature on multi-teacher learning
discusses two main approaches: using prior information and
repeated labeling. For example, the work in [BCK+07] and
[CKW08] assumes that labeled examples are obtained from
multiple heterogeneous sources, and that we have explicit
prior knowledge on the relationships between these sources.
Repeated labeling (see [SFB+94, SPI08] and the references
therein) is the practice of having each example labeled by
multiple teachers, and then aggregating these labels in a way
that cleans noise and identifies bad teachers. As discussed
earlier, both approaches make problematic assumptions for
the setting we have in mind. A somewhat related problem

is designing machine learning algorithms that withstand spe-
cific types of label-noise, either on the training set [KL93,
Kea98], or on the test set [TGRS07, DS08]. However, these
approaches do not assume multiple teachers, and do not at-
tempt to identify bad teachers. We also note the related
work in [DFP08], which addresses the multi-teacher learn-
ing problem from a mechanism design perspective, and in-
centivises teachers to be good.

2 Setting and Notation
We focus on a binary classification setting. Let X ⊆ Rn be
an instance space and let D be a probability distribution on
X × {−1,+1}. Let pD be the marginal probability of D on
X . We assume that D is the distribution on which we are
tested after a classifier is learned.

We assume that the learning method we use belongs to
the large family of algorithms that optimize a regularized
empirical risk functional [SS02]. More specifically, given
a dataset S = {xi, yi}mi=1, we assume that the algorithm
minimizes the convex function

F̂λ(w, S) = λ‖w‖2 +
1
m

m∑
i=1

`(f(w,xi), yi) ,

where w is a vector in a reproducing kernel Hilbert space
H and λ > 0 is a regularization parameter. Additionally,
f(w,xi) = 〈w, φ(xi)〉 represents the application of the clas-
sifier w to the instance xi after applying a feature mapping
φ(·) : X → H , and ` is a loss function assumed to be con-
vex and L-Lipschitz in its first argument. Also, we assume
that the binary label predicted by the classifier w is the sign
of f(w,xi), and that supx∈X

√
〈φ(x), φ(x)〉 ≤ R for some

constant R. We restrict our discussion to classifiers that do
not include a bias term, for the purpose of simplicity.

Unlike the typical supervised learning setting, where we
assume that a training set S is sampled i.i.d. from D, here
we include a stage where the data is labeled by a set of k
teachers. As discussed in the introduction, we are interested
in a setting where both m and k are large and scale together.
Namely, as m, k →∞, we assume that m/k = Θ(1).

Formally, the labeling process proceeds as follows: we
assume that there exist k (possibly randomized) classifiers
{h1(x), . . . , hk(x)} : X → {−1,+1}, which represent the
way each teacher labels data. We also assume that we have
a distribution (q1, . . . , qk) over {1, . . . , k}. First, an unla-
beled dataset is sampled i.i.d. according to pD. For each
unlabeled instance x, we choose a teacher t ∈ {1, . . . , k}
at random, according to the distribution (q1, . . . , qk). This
results in splitting the sample into k subsets, S1, . . . , Sk.
Each instance in St is then labeled using ht. As previously
mentioned, D is the distribution on which we are ultimately
tested, and may represent either the ground-truth or the sub-
jective opinions of the tester. Notice that in the process,
as described above, we assume that each teacher’s labeling
strategy is fixed before observing any data. For simplicity,
we focus in this paper on the setting where (q1, . . . , qk) is
the uniform distribution over {1, . . . , k}, and note that our
approach can be generalized.

Equivalently, we can view the process described above
as sampling an unlabeled dataset and labeling it using h̄(x),



where h̄(x) is the random classifier defined by randomly
choosing a hypothesis from h1, . . . , hk. Taking this view,
the optimization problem corresponding to F̂λ(w, S) can be
seen as the empirical counterpart of minimizing the convex
function

Fλ(w) = λ‖w‖2 + E
[
`
(
f(w,x), h̄(x)

)]
.

Let w? denote the minimizer of Fλ(w). In general, optimiz-
ing Fλ(w) is not the same as finding the optimal classifier
with respect to D, since h̄(x) and D conditioned on x are
not necessarily the same.

Our goal is to identify and prune away low-quality teach-
ers, based on a random sample. Namely, we seek to re-
move the teachers that are deemed harmful to the learning
process. After pruning, we are left with a subset of hope-
fully high-quality teachers. This subset induces a new label-
ing distribution, namely, given an instance x, we randomly
pick a teacher from the remaining teachers, and label the in-
stance according to the selected teacher. We denote this ran-
dom classifier (whose form depends on which teachers were
pruned) as h̄T (·). Now, let et(x) = Pry∼D(yht(x) < 0|x),
and define

et = Pr(x,y)∼D(yht(x) < 0) ,

ē = Pr(x,y)∼D(yh̄(x) < 0) ,

ēT = Pr(x,y)∼D(yh̄T (x) < 0
∣∣S) .

In words, et(x) is the probability that teacher t incorrectly
labels instance x, where the correct label is drawn accord-
ing to D. et = Ex[et(x)] is the average error-rate of teacher
t over the entire instance space. Finally, ē and ēT are the
average error-rate of the entire crowd, before and after prun-
ing. Note that ēT is a random variable, as it depends on the
random sampling of S.

How can the quality of each teacher be measured? Ide-
ally, since we are tested on the distribution D, we want to
keep teachers with a low error-rate et. Unfortunately, we do
not knowD nor ht, and we cannot calculate et directly. Even
worse, there is no overlap in the instances labeled by the dif-
ferent teachers, so we cannot use, say, a voting mechanism
in order to estimate the correct label of any given instance.
Therefore, a different approach is needed.

The key idea is to evaluate a somewhat different quantity,
which is the error-rate of each teacher with respect to w?, the
optimal classifier for the labeling distribution induced by all
the teachers together. Formally, we define

εt = Pr(ht(x)f(w?,x) < 0) ,

ε̄ = Pr(h̄(x)f(w?,x) < 0) ,

ε̄T = Pr(h̄T (x)f(w?,x) < 0
∣∣S) .

The probabilities are taken with respect to pD(x) and the
randomization of h̄ and ht(x). From the definitions, it is
straightforward to verify that

ε̄ =
∑k
t=1 εt
k

, ε̄T =
∑k
t=1 1(t not pruned)εt
|{t : t not pruned}|

.

To gain some intuition, suppose that w? has an error-rate of
zero with respect to D. Then εt directly measures the test

error-rate of teacher t, and ε̄, ε̄T represent the average test
error-rate of the crowd of teachers before and after pruning.
In this case, our goal should obviously be to make ε̄T small
compared to ε̄, by pruning away teachers with relatively high
εt. Although w? will practically never have a zero error-
rate, we will see that, under mild conditions, reducing ε̄T
still serves the purpose of reducing test error-rate.

3 Results
3.1 Relating ε̄T and Classification Error
As discussed earlier, the connection between ε̄T and the av-
erage error-rate of the teachers after pruning is trivial if w?

is a Bayes optimal classifier. However, this is not the case in
general, especially because in such a setting the given set of
teachers is already optimal, so no pruning is really needed.

On the other hand, we clearly have no hope to learn if
there is no correlation between the teachers and the test dis-
tribution, so it is realistic to assume at least some correlation.
We begin our analysis by assessing how mild our assump-
tions can be while still allowing for ε̄T to serve as a reason-
able proxy for ē. This justifies the rest of our analysis, which
focuses on discarding teachers with high εt in order to reduce
ε̄T .

To simplify the presentation, assume that the conditional
label distribution pD(y|x) with respect to D is deterministic
(namely, that the label y is a deterministic function of the in-
stance x). This assumption is not necessary, and the analysis
can be easily extended to the general case.

Theorem 1 Assuming pD(y|x) ∈ {0, 1}, it holds for any
teacher t that εt equals

Pr
(x,y)∼D

(yf(w?,x) < 0) + E(x,y) [et(x)sign(yf(w?,x))] .

Proof: For any given (x, y) sampled from D, and teacher
hypothesis ht(·), it holds that ht(x) = y with probability
1− et(x), and ht(x) 6= y with probability et(x). Therefore,

εt = E [1(ht(x)f(w?,x) < 0)]
= E [(1− et(x))1(yf(w?,x) < 0)]

+ E [et(x)1(yf(w?,x) ≥ 0)]
= Pr(yf(w?,x) < 0) + E [et(x)1(yf(w?,x) ≥ 0)]
− E [et(x)1(yf(w?,x) < 0)] .

The theorem follows after a slight simplification.

To get some feeling for what this theorem tells us, let us
examine the case where for each teacher t, et(x) ≡ et is a
constant independent of x. This holds in the important case
of a uniform noise model for each teacher: given an instance
to label, teacher t flips a coin with bias et ∈ [0, 1], and gives
either the correct label or the incorrect label depending on the
outcome of the flip. In such a scenario, we have the following
straightforward corollary:

Corollary 2 Assume that for any teacher t, et(x) ≡ et is
a constant independent of x. If Pr(sign(f(w?,x)) 6= y) <
1/2, then {εt}, ε̄, ε̄T are equivalent to {et}, ē, ēT respectively,
up to a uniform, monotonically increasing linear transforma-
tion.



Proof: Applying Thm. 1, we have that εt equals

Pr
(x,y)∼D

(yf(w?,x) < 0) + et
(
1− 2 Pr(yf(w?,x) < 0)

)
.

If Pr(yf(w?,x) < 0) < 1/2, this gives us a uniform, mono-
tonically increasing linear relation between εt and et which
does not depend on t. By averaging over all teachers or over
all remaining teachers after pruning, we get a similar relation
between ε̄, ē and ε̄T , ēT .

Thus, we see that w?, induced by learning with the ag-
gregate of all teachers, does not have to be a particularly
good classifier with respect to the test distribution D, if we
want ε̄, ε̄T to be closely related to ē, ēT . In the setting above,
an error-rate smaller than 1/2 suffices. In more general cases
of teacher labeling models, the relationship is less direct, but
Thm. 1 still implies that unless w? is highly misleading, ε̄, ε̄T
and ē, ēT are closely related. These results justify our ap-
proach, where we attempt to reduce ε̄T as a proxy to the
uncomputable ēT .

3.2 Pruning Can Help
Motivated by Thm. 1, we consider the following simple al-
gorithm to prune teachers: Train a classifier w′ on the entire
dataset and prune away any teacher for which∑

i∈St
1(ht(xi)f(w′,xi) < 0)

|St|
> T (1)

for some threshold T ∈ (0, 1), and assuming the denomina-
tor is positive. For a discussion of how T should be set, see
Subsection 3.4

This procedure essentially calculates a rough empirical
estimate of εt, and removes all teachers where this estimate
exceeds the threshold T . Note however that this estimate of
εt is not reliable or even unbiased: the fixed classifier w?

is replaced by the empirically-learned classifier w′, and the
probability in the definition of εt is replaced by empirical
averaging over a small sample.

We now focus on whether this pruning procedure can ac-
tually help at reducing ε̄T compared to ε̄t. Combined with
the insights of Subsection 3.1, this should lead to a reduction
in the average error-rate of the remaining teachers, compared
to the average error-rate of all teachers.

An interesting insight that can be gleaned from the fol-
lowing results is that the sample size m need not be much
larger than the number of teachers k. In fact, we get a mean-
ingful improvement even when m/k ≤ 1 - namely, even
when each teacher labels on average at most one instance!
However, the amount of improvement is closely related to
how ε1, . . . , εk are distributed, and is hard to express in closed
form. We also note that in the next section, a more general
“safety guarantee” is provided, which implies that for any
set of {ε1, . . . , εk}, our pruning procedure will not lead to
ε̄T being significantly larger than ε̄.

Our main technical result is the following.

Theorem 3 Assume we use the pruning procedure described
above. Also, let F : [0, 1] → [0, 1] be a cumulative distri-
bution function, such that F (a) = 1

k

∑k
t=1 1(εt ≤ a). Let

P ∼ F (·), and let N ∼ Poi(m/k) be a Poisson random

variable with parameter m/k. If we assume m/k = Θ(1)
as m, k increase, it holds that

ε̄ = EP [P ],

and with probability at least 1− δ over the training sample,

ε̄T ≤
EP,N [Pr(XP

N ≤ NT )P ] + r(m, δ)
EP,N [Pr(XP

N ≤ NT )]− r(m, δ)
, (2)

where XP
N is a binomial random variable, representing a

sum of N independent Bernoulli random variables with pa-
rameter P , and

r(m, δ) = O

(√
log(6/δ)

m

)
.

The O-notation hides dependencies on L,R, λ and a certain
smoothness assumption1 on the underlying distribution close
enough to the decision surface of the classifier w?, which
can be either assumed a-priori or replaced by a quantity that
can be reliably estimated from the sample.

Note that for any finite k, F (·) is a step function. How-
ever, as k → ∞ (scaling with m → ∞), we would like to
approximate the histogram of {εt} by a continuous distribu-
tion, allowing us to model various intuitive settings, such as
a setting where the histogram of the values of {ε1, . . . , εk}
has an approximately Gaussian mixture distribution. It is
not hard to show that if we consider a sequence of distribu-
tion functions (Fk(·))∞k=1, converging to the distribution of a
continuous density function p(·), in the sense that

sup
a

∣∣∣∣Fk(a)−
∫ a

0

p(x)dx
∣∣∣∣ = O

(
1
k

)
,

then we can replace expectation with respect toF (·) in Eq. (3)
with expectation with respect to p(·), up to O(1/k) terms.

The main drawback of Thm. 3 is that it cannot really
be expressed in closed form, since it intimately depends on
F (·). However, it is easily calculated numerically. By trying
out different distributions, we can gain confidence that in-
deed our pruning procedure makes ε̄T considerably smaller
than ε̄ in various scenarios.

In Fig. 1, numerical results are displayed for various dis-
tributions p(·). In all cases, we get that the pruning procedure
effectively makes ε̄f significantly smaller than ε̄, even when
m/k is very small. These examples may indicate that the
improvement, even for small m/k, is quite robust.

One important special case, corresponding to the first
row in Fig. 1, when we are able to get somewhat more ex-
plicit analytical results from Thm. 3, is when F (·) is a uni-
form distribution. Intuitively, this corresponds to a setting
where we have a uniform spectrum of teachers, ranging from
very bad to very good. In this case, we have the following
result:

1Specifically, an upper bound on the Lipschitz parameter of the
distribution function of f(w?,x) close enough to 0 - see the proof
for more details. If we use a linear kernel, this condition follows
from boundedness of pD(x).
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Figure 1: In each row, the left plot represents the distribution
density function of P as described in Thm. 3. In the right
plot, the solid line represents ε̄T as a function of the ratio
m/k, for that particular distribution of P , and the dashed
line represents ε̄ for reference. For any value of m/k, the
difference between the dashed and the solid line represents
the improvement obtained by pruning the teachers. In all
cases, the threshold is set to T = 0.25.

Theorem 4 Assume that in the setting of Thm. 3, Fk(·) con-
verges (in the sense described above) to the uniform distri-
bution on [0, 1], i.e. supa∈[0,1] |Fk(a)−a| ≤ O(1/k). Ignor-
ing r(m, δ) and other O(1/m), O(1/k) terms, it holds that
ε̄ = 1/2, whereas ε̄T is upper bounded (with arbitrarily high
probability as m, k →∞) by

EV
[

1 + bV T c/2
2 + V

]
,

where V ∈ {0, 1, . . .} is distributed according to

Pr(V = v) =
1
Z

(m
k

)v bvT c+ 1
(v + 1)!

,

and Z is a normalization term.

The upper bound on ε̄T is the expected value over V of
(1 + bV T c/2)/(2 + V ). For V = 0, this is equal to 1/2.
As V increases, it quickly becomes smaller, converging to
T/2 as V → ∞. The distribution of V depends on m/k.
As it increases, the distribution puts more weight on larger
values of V . Overall, we get that up to negligible factors,
ε̄T is less than 1/2, and gets arbitrarily close to T/2 as m/k
increases. Comparing this to ε̄ = 1/2, we see that we indeed
get a considerable reduction in the average εt by pruning.
Again, notice that m/k does not need to be large at all in
order to obtain good results - even for m/k ≈ 1 we get a
noticeable improvement. For a graphical illustration in the
case T = 0.25, see the first row of Fig. 1.

3.3 Pruning Can’t Hurt
In the previous subsection, we discussed several cases where
pruning indeed makes ε̄T considerably smaller than ε̄. The
obvious question is whether something can be guaranteed in
general, without assuming a specific distribution on {εt}? It
is not hard to see that there are cases where ε̄T cannot be
considerably smaller than ε̄. A simple example is when εt
is the same for all t. However, can we guarantee that ε̄T is
never considerably larger than ε̄?

The following theorem answers this question in the affir-
mative.

Theorem 5 In the setting of Thm. 3, it holds for any {εt}
that

ε̄T ≤ ε̄+
2r(m, δ)

EP,N [Pr(XP
N ≤ NT )]− r(m, δ)

.

Recalling the motivating examples discussed in the in-
troduction, we can safely assume that the sample size m is
large enough for the excess term in the bound to be rather
insignificant. Thus, regardless of how {εt} are distributed,
ε̄T will not be significantly larger than ε̄.

3.4 Setting the Threshold T

The corollary of Thm. 1 below answers the following ques-
tion: for arbitrary teacher noise models, how can we reli-
ably detect whether et > ē (namely, a teacher’s error-rate is
greater than average) using εt?

Corollary 6 In the setting of Thm. 1, a sufficient condition
for et > ē is

εt > Pr
(x,y)∼D

(yf(w?,x) < 0) + ē. (3)

Proof: Assume that et ≤ ē. Applying Thm. 1, we have that

εt ≤ Pr
(x,y)∼D

(yf(w?,x) < 0) + Ex[et(x)].

Our assumption that Ex[et(x)] = et ≤ ē implies that

εt ≤ Pr
(x,y)∼D

(yf(w?,x) < 0) + ē ,

and we have reached a contradiction to Eq. (3)

This simple corollary implies that if for some teacher t,
εt is larger than a certain quantity, then it is definitely worse-
than-average in terms of its error-rate.

This suggests a reasonable conservative criterion for set-
ting the threshold T in our pruning procedure: we should set
it to

Pr
(x,y)∼D

(yf(w?,x) < 0) + ē.

Although w? is not known, the probability above is well ap-
proximated by Pr(x,y)∼D(yf(w′,x) < 0), where w′ is the
actual learned classifier, if m is large enough. The proof is
similar to the proof of Lemma 10 below, and we skip the
details due to lack of space. As to ē, we cannot calculate it
based on the sample, but it can be easily estimated with a
small held-out set of examples drawn from the true underly-
ing distribution D. This is not too harsh a requirement, since
we use this set just for a single validation, and it need not
scale with the complexity of the problem.



3.5 Reusing the Cleaned Dataset
After removing low-quality teachers, a natural next step is to
retrain a classifier on the cleaned data, using any learning al-
gorithm we like. If the pruning stage was successful, we ex-
pect the remaining data to be cleaner than the original data,
and the resulting classifier should be more accurate. How-
ever, the pruning was done in a data-dependent manner, and
it is not clear that we can simply reuse the training set and
still get a generalization guarantee, as if we used a fresh sam-
ple. Fortunately, we can show that by adding a small twist
to our basic algorithm, the dataset may be safely reused for
learning, and any standard generalization analysis still holds.

The twist in our algorithm is as follows: first, we ran-
domly split the sample S into two subsets S1, S2. Next, we
use our technique to detect low-quality teachers in each sub-
set independently, but stop short of actually removing any
examples from either set. The result is two sets of low-
quality teachers: B1 ⊆ {1, . . . , k} is the set of low-quality
teachers according to S1 and B2 ⊆ {1, . . . , k} is the set of
low-quality teachers according to S2. Next, we define S′1 as
the subset of S1 obtained by removing examples that are la-
beled by the teachers in B2, and we define S′2 as the subset
of S2 obtained by removing examples from teachers in B1.
Finally, we set S′ = S′1 ∪ S′2 and we train a classifier (using
any learning algorithm we like) on S′.

To state our guarantee formally, we need some additional
notation. Let h̄T1(·) to be the classifier that chooses a random
teacher t where t 6∈ B1 and then returns the label according
to ht. In other words, h̄T1(·) is the classifier induced by the
high-quality teachers according to S1. Similarly, let h̄T2(·)
be the classifier induced by the high-quality teachers accord-
ing to S2. Finally, let h̄T1∨T2(·) be the classifier that, given
any instance x, randomly chooses and returns either h̄T1(x)
or h̄T2(x) with probability 1/2. Note that if our cleaning
procedure is successful, we expect both h̄T1(·) and h̄T2(·),
hence h̄T1∨T2(·) as well, to be relatively good classifiers, in
the sense that their labeling policy is closer to the unknown
test distribution, compared to the set of all teachers before
pruning.

Theorem 7 Assume that our learning algorithm returns a
classifier from the spaceH, and has a uniform generalization
analysis, in the following sense: For any distribution D and
any m, with probability at least 1− δ over the sampling of S
from Dm, it holds that

∀h ∈ H Pr
(x,y)∼D

(h(x) 6= y) ≤ R̂(h, S) + b(|S|, δ),

where R̂(h, S) is the the empirical risk on the dataset S and
b(·, ·) is the generalization bound, a function of |S| and δ.
Then, with probability at least 1 − δ over the sampling of S
from Dm, it holds for all h ∈ H that

Pr
x

(
h(x) 6= h̄T1∨T2(x)

)
≤ R̂(h, S′1) + R̂(h, S′2)

2

+
b(|S′1|, 2(|S1|+ 1)δ) + b(|S′2|, 2(|S2|+ 1)δ)

2
.

This theorem implies that we can use S′, the cleaned dataset,
to learn a classifier h with a generalization guarantee that
bounds its expected disagreement rate with h̄T1∨T2(·).

Proof: By the definition of h̄T1∨T2 , we have that Prx(h(x) 6=
h̄T1∨T2(x)) equals

Prx(h(x) 6= h̄T1(x)) + Prx(h(x) 6= h̄T2(x))
2

.

By construction, the set B2 is independent of S1. Therefore,
S′1 can be seen as an i.i.d. sample from the distribution in-
duced by h̄T2 . The only technical subtlety is that |S′1| is a
random quantity (based on the randomness of S2 and the re-
sulting pruning procedure). However, we can take a union
bound over the |S1| + 1 possible values of |S′1|, and use the
uniform generalization assumption to get that with probabil-
ity at least 1− δ/2,

Pr
x

(h(x) 6= h̄T2(x)) ≤ R̂(h, S′1) + b(|S′1|, 2(|S1|+ 1)δ)

Applying a similar analysis on S′2 and combining the result
with a union bound, the theorem follows.

4 Proofs of Results from Sec. 3
We begin by proving Thm. 3, on which the other results are
based. First, we need a sequence of auxiliary lemmas.

Lemma 8 Let S be a sample of size m drawn i.i.d. from
some distribution onX×{−1,+1}. Let w′ = arg minw F̂λ(w, S),
and w? = arg minw Fλ(w). Then with probability of at
least 1− δ, it holds for any x ∈ X that

|f(w′,x)− f(w?,x)| ≤ g(m, δ),

where

g(m, δ) =
2R2L log(2/δ)

(
1 +

√
2m/ log (2/δ)

)
mλ

.

Proof: The proof is based on showing that ‖w′ −w?‖ con-
verges to zero with the sample size. This is provided by a
deep result in [Ste03, Prop. 33], which implies that

Pr(‖w′ −w?‖ ≥ ε) ≤ 2 exp
(
− mλ2ε2

8R2L2 + 2λRLε

)
.

Fixing a confidence parameter δ, requiring it to equal the
right-hand side, and solving for ε, we get

ε =
RL log(2/δ)

mλ

(
1 +

√
1 +

8m
log(2/δ)

)

≤ RL log(2/δ)
mλ

(
2 +

√
8m

log(2/δ)

)
,

from which it follows that with probability at least 1− δ,

‖w′−w?‖ ≤
2RL log(2/δ)

(
1 +

√
2m/ log (2/δ)

)
mλ

. (4)

If this indeed occurs, then for any x ∈ X it holds that

|〈φ(x),w′〉 − 〈φ(x),w?〉| ≤ ‖φ(x)‖‖w′ −w?‖
by the Cauchy-Schwartz inequality. From Eq. (4), the fact
that ‖φ(x)‖ ≤ R, and definition of f(·, ·), the lemma fol-
lows.



Lemma 9 Let Xp
n be a binomial random variable with pa-

rameters (n, p). Then for any T > 0 and n, the function
g(p) = Pr(Xp

n ≤ T ) is monotonically decreasing in p,
and is Lipschitz continuous with a Lipschitz parameter up-
per bounded by n.

Proof: If T < 1, the probability reduces to (1− p)n, which
decreases monotonically with p and with Lipschitz parame-
ter upper bounded by n. The same thing happens trivially
if T ≥ n. If n > T ≥ 1, we have by a technical but not
difficult calculation that the derivative of Pr(Xp

n ≤ T ) is

∂

∂p

bTc∑
i=0

(
n

i

)
pi(1− p)n−i


= −n

(
n− 1
bT c

)
pbTc(1− p)n−bTc−1.

For any p ∈ [0, 1], the expression above is non-positive, and
therefore Pr(Xp

n ≤ T ) decreases monotonically with p as
required. Moreover, the absolute value of this expression
constitutes an upper bound on the Lipschitz parameter of the
function:

n

(
n− 1
bT c

)
pbTc(1− p)n−bTc−1 ≤ n(p+ (1− p))n−1 = n.

To continue, we require some additional notation, which
allows us to relate the pruning procedure based on the learned
classifier, and a virtual pruning procedure based on w?. Given
an i.i.d. sample {xi}mi=1, we turn it into a labeled dataset S
using the teachers as described earlier in the paper, and learn
a classifier w′ by minimizing F̂λ(w, S). Then we define:

ε̂′t =
1
|St|

∑
i∈St

1 (ht(x)f(w′,xi) < 0) ,

ε̂t =
1
|St|

∑
i∈St

1 (ht(x)f(w?,xi) < 0) ,

ε̂t,c =
1
|St|

∑
i∈St

1 (ht(xi)f(w?,xi) < c) .

where c ∈ R is some parameter. We also define these quan-
tities to be 0 in case St = ∅.

Lemma 10 For any δ ∈ (0, 1], it holds with probability at
least 1 − δ that uniformly for all t, 1(t not pruned) is up-
per bounded by 1(ε̂t,−g(m,δ) ≤ T ), and lower bounded by
1(ε̂t,g(m,δ) ≤ T ), where g(m, δ) is defined in Lemma 8.

Moreover, if m/k = Θ(1), and f(w?,x) has a Lipschitz
continuous distribution (based on the randomness of x ac-
cording to the underlying distribution pD(x)) in a sufficiently
small neighborhood around 0, then both |Pr(ε̂t,g(m,δ)) −
Pr(ε̂t)| and |Pr(ε̂t,−g(m,δ))−Pr(ε̂t)| are at most a constant
times g(m, δ), for any m.

Proof: We have that 1(t not pruned) = 1(ε̂′t ≤ T ). By
Lemma 8, |f(w′,xi) − f(w?,xi)| ≤ g(m, δ) for all xi
holds with probability at least 1 − δ. If this indeed hap-
pens, then whenever ht(xi)f(w?,xi) < −g(m, δ) occurs,

ht(xi)f(w′,xi) < 0 occurs as well. Recalling the defini-
tion of ε̂′t and ε̂t,c above, this implies that 1(ε̂′t ≤ T ) is at
most 1(ε̂t,−g(m,δ) ≤ T ). Repeating the same argument to
get a lower bound on 1(ε̂′t ≤ T ), the first half of the lemma
follows.

To prove the second part of the lemma, it suffices to show
that Pr(ε̂t,c ≤ T ) is Lipschitz continuous as a function of c.
We begin by noticing that if f(w?,x) has a Lipschitz contin-
uous distribution, then ht(x)f(w?,x) also has a Lipschitz
continuous distribution (with some trivial measurability re-
quirements on ht(·)). As a result, 1(ht(x)f(w?,x) < c)
is a Bernoulli random variable (based on the randomness of
x), whose parameter is Lipschitz continuous in c. Now, we
examine

Pr(ε̂t,c ≤ T ) =
∞∑
n=0

Pr(|St| = n) Pr
(
ε̂t,c ≤ T

∣∣∣|St| = n
)
,

and consider how fast can the right-hand side change as we
change c. By definition of ε̂t,c, for any fixed n in the sum,
the conditional probability is simply the probability that a
Binomially distributed random variable is smaller than some
threshold, with a parameter that has a Lipschitz relation to
c (say with Lipschitz parameter l). Invoking Lemma 9, we
have that the Lipschitz parameter of this conditional proba-
bility with respect to c is at most nl. As a result, we have that
the Lipschitz parameter of the entire sum with respect to c is

∞∑
n=0

Pr(|St| = n)ln = lE[|St|] = l
m

k
.

Since we assume thatm/k = Θ(1), we get that Pr(ε̂t,c ≤ T )
is indeed Lipschitz continuous as a function of c.

Proof of Thm. 3: The assertion that ε̄ = EP [P ] is immediate
from the definitions, so all the work lies in proving Eq. (2).
By definition, we have that

ε̄T =
1
k

∑k
t=1 1(t not pruned)ε̄t

1
k

∑k
t=1 1(t not pruned)

. (5)

where we take this fraction to be 1 if all teachers are pruned.
Applying the first half of Lemma 10, we can upper bound

this expression with probability at least 1− δ by

1
k

∑k
t=1 1(ε̂t,−g(m,δ) ≤ T )εt

1
k

∑k
t=1 1(ε̂t,g(m,δ) ≤ T )

. (6)

We now apply McDiarmid’s inequality [McD89], to show
that both the numerator and the denominator are close to
their expectation with high probability. Let us focus for in-
stance on the numerator. Notice that the numerator is a func-
tion of 2m independent random variables: the m unlabeled
instances in the sample (and the label given to them by each
teacher), and the assignment of each instance to each teacher.
For any assignment of these variables, changing any one of
them can change only two of the indicator functions in the
numerator, which leads to a change of at most 2/k in the
value of the numerator (recalling that εt ∈ [0, 1]). Thus, the
numerator has a bounded differences property with parame-
ter 2/k. A similar reasoning shows that the denominator also
has a bounded differences property with the same parameter.



Applying McDiarmid’s inequality separately on each, and
using a union bound, we get that with probability at least
1− 2δ, Eq. (6) is upper bounded by

1
k

∑k
t=1 Pr(ε̂t,−g(m,δ) ≤ T )εt + 2

√
log(1/δ)m/k2

1
k

∑k
t=1 Pr(ε̂t,g(m,δ) ≤ T )− 2

√
log(1/δ)m/k2

. (7)

Now, applying the second half of Lemma 10, we can upper
bound this by

1
k

∑k
t=1 Pr(ε̂t ≤ T )εt + r(m, δ)

1
k

∑k
t=1 Pr(ε̂t ≤ T )− r(m, δ)

, (8)

where r(m, δ) is the same as in the theorem statement. Now,
we reduce Pr(ε̂t ≤ T ) to an expression involving standard
probability distributions. We start by noticing that

Pr(ε̂t ≤ T ) =
∞∑
n=0

Pr(|St| = n) Pr
(
ε̂t ≤ T

∣∣∣|St| = n
)
.

By definition of ε̂t, the conditional probability in each sum
is simply Pr(Xεt

n ), the probability that a binomial random
variable with parameters (εt, n) is at most T . Therefore, we
can reduce the expression above to

∞∑
n=0

Pr(|St| = n) Pr(Xεt
n ≤ T ).

The distribution of Pr(|St| = n) is the distribution of the
number of instances assigned to teacher i. Its expected value
is m/k. As m increases and with k scaling accordingly, we
have that this distribution converges to a Poisson distribution,
N ∼ Poi(m/k). An explicit bound on the rate of conver-
gence is given by Le Cam’s inequality (e.g. proposition 2.8
in [RP07]), which implies that

∑
n |Pr(|St| = n|)−Pr(N =

n)| ≤ m/k2. Therefore, we have that∣∣∣∣∣
∞∑
n=0

|Pr(|St| = n) Pr(Xεt
n ≤ T )

−
∞∑
n=0

|Pr(N = n) Pr(Xεt
n ≤ T )

∣∣∣∣∣ ≤ m

k2
.

Applying this on Eq. (8), absorbing the m/k2 = O(1/m)
term into r(m, δ), and substituting δ/3 for δ, to have the
result hold with overall probability 1− δ, we get Eq. (2).

In the proof of the theorem (to be exact, as part of prov-
ing the second half of Lemma 10), we made a smoothness
assumption which essentially allowed us to upper bound

1
k

k∑
t=1

(
Pr(ε̂t,−g(m,δ) ≤ T )− Pr(ε̂t ≤ T )

)
(9)

and

1
k

k∑
t=1

(
Pr(ε̂t ≤ T )− Pr(ε̂t,g(m,δ) ≤ T )

)
.

We now show that these quantities, if we wish, can actu-
ally be estimated empirically, without making any a-priori

assumptions. We focus on Eq. (9), as the reasoning for the
other expression is similar.

The semi-empirical counterpart of Eq. (9), based on the
sample but using the non-empirical w?, is

1
k

k∑
t=1

(
1

(
1
|St|

∑
i∈St

1(ht(x)f(w?,xi) < −g(m, δ)) ≤ T

)

−1

(
1
|St|

∑
i∈St

1(ht(x)f(w?,xi) < 0) ≤ T

))
. (10)

By McDiarmid’s inequality, this is larger than its expectation
(Eq. (9)) by at most 2

√
log(1/δ)m/k2 with probability at

least 1 − δ over the training set (the reasoning is similar to
our use of McDiarmid’s inequality earlier). Since we already
assume that the inequality in Lemma 8 holds, we have that
Eq. (10) is at most

1
k

k∑
t=1

(
1

(
1
|St|

∑
i∈St

1(ht(x)f(w′,xi) < −2g(m, δ)) ≤ T

)

−1

(
1
|St|

∑
i∈St

1(ht(x)f(w′,xi) < g(m, δ)) ≤ T

))
,

where we have replaced w? by the actual learned classifier
w′. This expression can be evaluated based on the training
data, and we therefore get a high-probability empirical esti-
mate of Eq. (9).

Proof of Thm. 4: The assertion that ε̄ = 1/2 is immediate
from Thm. 3 and the way we define F (·). Also from Thm. 3,
we have that

ε̄T ≤
EN

[∫ 1

p=0
Pr(Xp

N ≤ NT )p dp
]

+ r(m, δ)

EN
[∫ 1

p=0
Pr(Xp

N ≤ NT ) dp
]
− r(m, δ)

. (11)

Let us start by analyzing the numerator in Eq. (11). By defi-
nition of a Binomial distribution, we have that∫ 1

p=0

Pr(Xp
N ≤ NT )p dp

=
bNTc∑
i=0

(
N

i

)∫ 1

p=0

pi+1(1− p)N−i dp.

It turns out that the integral in the expression above is the
so-called Euler Beta function [AS72], with parameters i +
2, N − i+ 1. Using well known results on this function, we
have that the expression above is equal to

bNTc∑
i=0

(
N

i

)
Γ(i+ 2)Γ(N − i+ 1)

Γ(N + 3)
,

where Γ(·) is the Gamma function. Since Γ(n) = (n − 1)!
for any positive integer n, the expression above is equal in
turn to
bNTc∑
i=0

N !
i!(N − i)!

(i+ 1)!(N − i)!
(N + 2)!

=
bNTc∑
i=0

i+ 1
(N + 1)(N + 2)

=
(bNT c+ 1)(bNT c+ 2)

2(N + 1)(N + 2)
.



Therefore, the numerator in Eq. (11) is equal (up to the r(m, δ)
term) to

∞∑
n=0

Pr(N = n)
(bnT c+ 1)(bnT c+ 2)

2(n+ 1)(n+ 2)
(12)

Applying the same kind of analysis on the denominator in
Eq. (11), we get that it is equal (up to the r(m, δ) term) to

∞∑
n=0

Pr(N = n)
bnT c+ 1
n+ 1

. (13)

Substituting Eq. (12) and Eq. (13) into Eq. (11), using the
fact that Pr(N = n) = exp(−m/k)(m/k)n/n!, and simpli-
fying, proves the theorem.

Proof of Thm. 5: The main step consist of showing that

EP,N [Pr(XP
N ≤ NT )P ]

EP,N [Pr(XP
N ≤ NT )]

≤ EP [P ] = ε̄. (14)

For that, we use a result from the correlation inequalities lit-
erature, which can be traced back to Chebyshev (see thm. 43
in [HLP88]): Given two real functions f(·), g(·) on [0, 1],
one monotonically increasing and the other monotonically
decreasing, it holds that E[f(P )g(P )] ≤ E[f(P )]E[g(P )]
for any random variableP on [0, 1]. In our case, by Lemma 9,
we have that for any specific P ′ > P and any N ,

Pr(XP ′

N ≤ NT ) ≤ Pr(XP
N ≤ NT ),

so

EN [Pr(XP ′

N ≤ NT )] ≤ EN [Pr(XP
N ≤ NT )].

Applying Chebyshev’s result, we get

EP
[
EN

[
Pr(XP

N ≤ NT )
]
P
]

(15)

≤ EP,N
[
Pr(XP

N ≤ NT )
]
EP [P ] ,

from which Eq. (14) follows. Applying Eq. (14) on Eq. (2)
in Thm. 3 and simplifying, the theorem follows.

5 Experiments
We tested our data-pruning approach on a large dataset, la-
beled using Amazon.com’s Mechanical Turk. We first cre-
ated an unlabeled set of over 8K examples, where each ex-
ample included a search engine query (e.g. “doggy treats”)
and an Internet URL (e.g. “www.doggydelightz.com”), and
the task was to determine if the query-URL pair is a rele-
vant match or not. Each example was labeled by 15 different
teachers, for a total of over 120K labels in the entire data-
set. Other than requiring 15 labels from different teachers
for each example, we had no control over the assignment of
examples to teachers. A total of 375 individual teachers con-
tributed labels to our dataset. A few of these teachers labeled
thousands of examples, while others labeled only a handful.

We derived two additional datasets from the original data-
set, with the goal of making the data resemble our theoretical
framework as much as possible (since the data was already
labeled, we could not follow the theoretical framework ver-
batim). We set a parameter µ and simulated a situation where
each teacher labels at most µ examples. If teacher t labeled

µ =∞ µ = 200 µ = 50

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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0.35

1 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0
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0.2
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Figure 2: (Top) Distribution of teacher quality in each data-
set. (Middle) Noise level in the data after pruning low-
quality teachers, as a function of T , averaged over 1000 ran-
domized repetitions of the experiment, with standard devi-
ation. (Bottom) Noise level as a function of the fraction of
unpruned examples. When µ = 200, a typical teacher la-
bels 14 examples, when µ = 50 a typical teacher labels 4
examples.

mt examples and mt > µ, we partitioned those examples
into dmt/µe sets and considered each set as an independent
teacher. We created such datasets for µ = 200 and µ = 50.
For uniformity, we refer to the original dataset as µ =∞. As
mentioned above, the original dataset has 375 unique teach-
ers. With µ = 200 we have 881 teachers, and with µ = 50
we have 2509 teachers.

The 15 labels collected for each example were used to de-
fine the ground-truth labeling of our dataset, which we used
to evaluate the performance of our algorithm. Specifically,
we took the majority over the 15 labels of each example, and
defined that as the correct label. These correct labels were
calculated once and were fixed across all of our experiments.
Clearly, these majority labels were hidden from our algo-
rithm, which was given only one label per example, chosen
at random from the available 15. In other words, our algo-
rithm was applied to a random 15th of the data, and as a
consequence, most teachers contribute roughly µ/15 labels.

Having established a ground-truth labeling, we can cal-
culate the fraction of incorrect labels provided by each teacher
(irrespective of the number of labels provided by the teacher).
A histogram of these values is given for each of our three
datasets in the top row of Fig. 2. These histograms demon-
strate the very high variability in teacher quality. We believe
that teachers that correctly labeled close to 0.5 of the data
are actually automated scripts that spam Mechanical Turk
and assign random labels. The noise across the entire dataset
is 0.35.

As mentioned above, we randomly chose one label per
example and trained a well-tuned linear SVM using this data.
We then compared the labels provided by each teacher with
the predictions of the SVM classifier to obtain an estimate



of teacher quality. We examined what happens when we re-
move all teachers whose empirical error-rate exceeds T , for
all values of T between 0 and 1. With T = 1 no data is re-
moved, and with T = 0 all of the data is removed. For each
value of T , we used the majority labels to determine the noise
level in the data that remains after pruning. We repeated this
randomized experiment 1000 times for each of our datasets.
The results are presented in the bottom two rows of Fig. 2.
These two rows convey the same data in two different ways:
The middle row shows noise level as a function of T , while
the bottom row shows noise level as a function of the fraction
of examples remaining after pruning.

The figures show a steady decline in noise level as T de-
creases from 1 to 0, and as the dataset size decreases. Clearly,
we now face a tradeoff between data quantity and quality.
The best results were obtained on the µ =∞ dataset, where
removing half of the dataset reduces the noise level from
0.35 to 0.27. The quality of the results deteriorates slightly
when we move to the µ = 200 dataset. Keep in mind that
with µ = 200, each teacher contributes roughly µ/15 = 14
labels. The quality of our results deteriorates more signifi-
cantly on the µ = 50 dataset, where a typical teacher con-
tributes around 4 labels. However, even with so few labels
per teacher, the positive effects of our technique are still ap-
parent.

6 Conclusions and Future Research

In this paper, we considered the problem of identifying low-
quality teachers in a large heterogeneous crowd. Our theoret-
ical approach was inspired by the real-world experiences of
machine learning practitioners that collect data using crowd-
sourcing websites and search engine logs. With the right
noise-filtering tools, the practical value of these seemingly
chaotic sources of data increases significantly.

Despite the fact that the crowd is large and that each
teacher labels only a handful of examples, we presented a
simple data cleaning algorithm that does not require any prior
knowledge and does not resort to the expensive practice of
repeated labeling. Moreover, we showed that the cleaned
data can be safely reused for the actual learning process.

There are many opportunities for future research. One
possible direction is to design and analyze additional tech-
niques such as ours. For example, we could try to directly
estimate the effect a teacher has on a classifier by removing
the teacher’s examples, retraining, and measuring the change
in the classifier. If the change is significant, this may indicate
that the teacher should be removed. Also, it would be highly
beneficial to design learning algorithms that are specifically
tailored to datasets that are labeled by crowds, rather than
adding a teacher-pruning preprocessing step to an existing
algorithm. Overall, we believe that learning from crowds
poses many novel, relevant, and interesting theoretical chal-
lenges.
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