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Abstract A common assumption in supervised machine learning is teatraining exam-
ples provided to the learning algorithm are statisticaliitical to the instances encountered
later on, during the classification phase. This assumpsiamrealistic in many real-world
situations where machine learning techniques are usedo®\s bn the case where features
of a binary classification problem, which were availableimlyithe training phase, are either
deleted or become corrupted during the classification ph&seprepare for the worst by
assuming that the subset of deleted and corrupted featucestrolled by an adversary, and
may vary from instance to instance. We design and analyzentwel learning algorithms
that anticipate the actions of the adversary and accourthémn when training a classifier.
Our first technique formulates the learning problem as alimpeogram. We discuss how
the particular structure of this program can be exploitedéonputational efficiency and we
prove statistical bounds on the risk of the resulting cfassOur second technique addresses
the robust learning problem by combining a modified versibthe Perceptron algorithm
with an online-to-batch conversion technique, and alsoesowith statistical generalization
guarantees. We demonstrate the effectiveness of our agpvath a set of experiments.

Keywords adversarial environmenbinary classification deleted features

1 Introduction

Supervised machine learning techniques are often useaitodiassifiers that are put to
work in complex real-world systems. A training set of lalilexamples is collected and
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presented to a machine learning algorithm, and the leamdgpgrithm outputs a classifier.
The process of collecting the training set and construdhieglassifier is called theaining
phase while everything that occurs after the classifier is carttrd is called thelassifica-
tion phaseIn many cases, the training phase can be performed undliée sted controlled
conditions, and specifically, care can be taken to colledgl guality training set. In con-
trast, the classification phase often takes place in the/rawid uncertain conditions of the
real world. Specifically, features that were available wigithe training phase may become
missing or corrupted in the classification phase. In the iase, the set of missing and
corrupted features may be controlled by an adversary, whoewen be familiar with the
inner-workings of the classifier. In this paper, we expldre possibility of anticipating this
scenario and preparing for it in advance.

The problem of missing and corrupted features that are altedrby an adversary oc-
curs in a variety of classification problems. For examplesiaer the task of learning an
email spam filter. Once the training phase is complete, advies attempt to infiltrate the
learned filter by constructing emails with feature représions that appear to be benign.
A reasonable approach to email spam filtering should prefpatbe actions of these adver-
saries.

Our setting also encompasses learning problems whererdsatwe deleted and cor-
rupted due to other, less malicious, circumstances. Fonpba say that our goal is to learn
an automatic medical diagnosis system. Each instanceseapeea patient, each feature con-
tains the result of a medical test performed on that patémd, the purpose of the system
is to detect a certain disease. When constructing the migiset, we go to the trouble of
carefully performing every possible test on each patientvéizer, when the learned classi-
fier is eventually deployed as part of a diagnosis systemapptled to new patients, it is
highly unlikely that all of the test results will be availablTechnical difficulties may prevent
certain tests from being performed. Different patients maye different insurance policies,
each covering a different set of tests. A patient’s bloodgammay become contaminated,
essentially replacing the corresponding features witd@eannoise, while having no effect
on other features. We would still like our diagnosis systemnake accurate predictions. In
this example, the classification-time feature corruptnat adversarial, but it is not purely
stochastic either. If a classifier is trained to toleratesssiarial noise, it will certainly be able
to handle less deliberate forms of noise.

If we do not limit the adversary’s ability to remove and mgdiéatures, our classifier
obviously stands no chance of making correct predictioressoVrcome this problem by as-
signing each feature with an a-priori importance value asdiming that the adversary may
remove or corrupt any feature subset whose total value isrippunded by a predefined
constant.

In this paper, we present two new learning algorithms forres with missing and
corrupted features. Both approaches attempt to learn a-talisrant linear threshold clas-
sifier. The first approach formulates the learning problena éisear program (LP), in a
way that closely resembles the quadratic programming ftatiom of the Support Vector
Machine [20]. However, the number of constraints in this ltBwgs exponentially with the
number of features. Using tricks from convex analysis, weévde related polynomial-size
LP, and give conditions under which it is an exact reformataof the original exponential-
size LP. When these conditions do not hold, the polynoniid-EP still approximates the
exponential-size LP, and we prove an upper bound on the gippaton difference. The
polynomial-size LP can be solved efficiently by exploitingrtain properties of its struc-
ture. Despite the fact that the distribution of training rxdes is effectively different from



the distribution of examples observed during the classifingphase, we prove a statistical
generalization bound for this approach.

We show that the time complexity of our LP-based approactesdaearly with the
number of training examples. However, the running time & #&pproach grows quadrati-
cally with the number of features and this poses a problermwine approach is applied to
large datasets. This brings us to our second algorithm: \iieedan online learning prob-
lem that is closely related to the original statistical feag problem. We address this online
problem with a modified version of the online Perceptron atgm [17], and then convert
the online algorithm into a statistical learning algorithising an online-to-batch conversion
technique [5]. This approach benefits from the computatiefiiency of the Perceptron,
and from the generalization properties and theoreticataquaes provided by the online-
to-batch technique. Experimentally, we observe that tfieieficy of our second approach
seems to come at the price of a small accuracy penalty.

Choosing an adequate regularization scheme is one of tisgd&euccessfully learning a
linear classifier in our setting. Existing learning alglnits for linear classifiers, such as the
Support Vector Machine, often ude regularization to promote statistical generalization.
WhenL, regularization is used, the learning algorithm may putgdaveight on one feature
and compensate by putting a small weight on another feafhis. promotes classifiers that
focus their weight on the features that contribute the masing training. For example,
in the degenerate case where one of the features actual@setine correct label, an,
regularized learning algorithm is likely to put most of iteight on that one feature. Some
algorithms usd.; regularization to further promote sparse solutions [2]hBcontext of our
work, sparsity actually makes a classifier more susceptiibdelversarial feature-corrupting
noise. Here, we prefer dense classifiers, which hedge te&rdeross as many features as
possible. Both of the algorithms presented in this papeieselthis density by using A
regularization scheme. It is interesting to note that buy regularization scheme emerges
as a natural choice in the statistical analysis of our LRetidsarning approach.

This paper is organized as follows. We conclude this settymeferencing related work.
In Sec. 2 we present our LP-based learning algorithm. Se&id casts the problem of
learning with feature deletion as an exponential-size lee, 8.2 presents a polynomial ap-
proximation to this program, and Sec. 2.3 describes an@fficustomized LP solver that
takes advantage of the special structure of our problem. Mieepstatistical generalization
bounds in Sec. 2.4 and extend our discussion from the fedgletéion scenario to the fea-
ture corruption scenario in Sec. 2.5. Next, in Sec. 3, we noovéo our second algorithm,
which combines a modified Perceptron algorithm with an @atm-batch conversion tech-
nique. The modified Perceptron is presented in Sec. 3.1 awhiine-to-batch technique is
discussed in Sec. 3.2. We conclude the paper with experahsults in Sec. 4 and closing
remarks in Sec. 5.

1.1 Related Work

Previous papers on “noise-robust learning” mainly deahwlie problem of learning with
a noisy training set, a research topic which is entirely agtinal to ours. The learning
algorithms presented in [8] and [9] try to be robust to gehadalitive noise that appears
at classification time, but not specifically to adversarédttire deletion or corruption. [6]
presents adversarial learning as a one-shot two-playee deatween the classifier and an
adversary, and designs a robust learning algorithm fromye&an-learning perspective.
Our approach shares the motivation of [6] but is otherwigaifitantly different. The topic



of email spam filtering, and its wider implications on leagin the face of an adversary,
has recently received special attention. Notable corttdha on the intersection of spam
filtering and machine learning are [15] and [21]. In the redfield of online learning, where
the training and classification phases are interlaced amubtde distinguished, [14] proves
that the Winnow algorithm can tolerate various types of @di®th adversarial and random.

Our work is most similar to the work in [10], and its more recenhancement in [18].
Our experiments, presented in Sec. 4, suggest that ouiithlgsrachieve significantly bet-
ter performance, but we can also emphasize more fundanwéffiégaences between the two
approaches: Our approach udes regularization to promote a dense solution, where [10]
usesL» regularization. We allow features to have different a-primportance levels, and
take this information into account in our algorithm and gse, whereas [10] assume uni-
form feature values. Finally, we prove statistical geneagion bounds for our algorithms
despite the change in distribution at classification timieile\{10] do not discuss this topic.

This paper is a long version of the preliminary work publihe [7]. In this paper,
we present a more complete and elaborate theoretical éafysur algorithms, as well as
a significantly improved empirical study. Specifically,stiuaper includes complete proofs
of all theorems and new experiments using larger and moegsvdatasets. The extended
scope of our experiments now includes empirical evidenaedhr algorithms outperform
the current state-of-the-art results of [18], and new eirgiiresults in the feature corruption
scenario. Moreover, the novel linear programming algarifitesented in Sec. 2.3 addresses
important computational problems that were ignored in [7].

2 A Linear Programming For mulation

In this section, and throughout the paper, we use lower{oalskface letters to denote vec-
tors, and their plain-face counterparts to denote eaclorvecomponents. We also use the
notation[n] as shorthand fof1,...,n}.

2.1 Feature Deleting Noise

We first examine the case where features are missing atfaatisin time. Lety C R™ be

an instance space and [Btbe a probability distribution on the product spatex {+1}.
We receive a training se&t = {(x;,y;) };~; sampled i.i.d fronD, which we use to learn our
classifier. We assign each featyre [n] a valuev; > 0. Informally, we think ofv; as the
a-priori informativenes®f featurej, or as the importance of featujeo the classification
task. Next, we define the value of a subgetdf features as the sum of values of the features
in that subset, and we denotgJ) = >, ;v;. For instance, we frequently use&([n])
when referring tozg‘:1 v; andV([n]\ J) when referring td ;. ; v;. Next, we fix a noise-
tolerance parameteY in [0, V ([n])] and defineP = V([n]) — N. During the classification
phase, instances are generated in the following way: Rinsair(x, y) is sampled fronD.
Then, an adversary selects a subset of featuires [n] such thatV'([»] \ J) < N, and
replaces:; with 0 for all j ¢ J. The adversary selectsfor each instance individually, and
with full knowledge of the inner workings of our classifiehd noise-tolerance parameter
N essentially acts as an upper bound on the amount of damageltkesary is allowed to
inflict. We would like to use the training sét (which does not have missing features) to
learn a binary classifier that is robust to this specific typeassification-time noise.



We focus on learning linear margin-based classifiers. Aalir@assifier is defined by
a weight vectorw € R™ and a bias termd € R. Given an instance, which is sampled
from D, and a set of coordinatesleft intact by the adversary, the linear classifier outputs
b+3 ey wjiz;. Thesignob +3° .. ; w;z; constitutes the actual binary prediction, while
[b+3" ;¢ s wjz;| is understood as the degree of confidence in that predidiolassification
mistake occurs if and only if(b + >_ ;¢ ; wjz;) < 0, so we define theisk of the linear
classifier(w, b) as

R(w,b) = Pr D(aj with V([n]\ J) < N st y(b+ X e 5 wizj) < o) @
X,y)~

SinceD is unknown, we cannot explicitly minimize Eq. (1). Thus, wertto the empirical

estimate of Eq. (1), thempirical risk defined as

1 m
= i ) ) ) < 2

- ;[[ sovlin (bt e wimig) < o, 2
where[r] denotes the indicator function of the predicateMinimizing the empirical risk
directly constitutes a difficult combinatorial optimizati problem. Instead, we formulate a
linear program that closely resembles the formulation ef$lpport Vector Machine [20].
We choose a regularization parameter- 0, and solve the problem

min 53 g 3

S.t. VZG[m} vJ : V([n}\J)SN yi(b+2jejwjg;i,j) > T*éi s
Vie[m] & >0,
[Wleo < C .

The objective function of Eq. (3) is called trempirical hinge-losbtained on the
sampleS. Since¢; is constrained to be non-negative, each training exampi&ibates a
non-negative amount to the total loss. Moreover, the obgdunction of Eq. (3) upper
bounds the empirical risk ofw,b). More specifically, for any feasible poiriv, b, £) of
Eq. (3),&; upper bounds the indicator function of the event

J:V(fg]l{lJ)SNyi(bJr Yjeswitig) < 0.
To see this, note that for a given examfie, v, ), if there exists a feature subsgsuch that
V([n]\ J) < N andy;(b+ >, wjz;) < 0 then the first constraint in Eq. (3) enforces
& > V(J)/P. The assumptio’ ([n] \ J) < N now implies that’(J) > P, and therefore
& > 1. If such a set/ does not exist, then the second constraint in Eq. (3) ergggce 0.
The optimization problem above actually does more thanmiie an upper bound on
the empirical risk. It also requires the margin attainedhmsyfeature subset to grow with
proportion toV' (.J). While a true adversary would always inflict the maximal plolssdam-
age, our optimization problem also prepares for the casegeMess damage is inflicted,
requiring the confidence of our classifier to increase asregs is introduced. Also, as-
suming that the margin scales with the number of featureset@ral assumption to make
when we have feature redundancy, a necessary prereqoisaarfapproach to work in the
first place. We also restrigt to a hyper-box of radiu€’, which controls the complexity of
the learned classifier and promotes robust dense solutdoreover, this constraint is easy
to compute and makes our algorithms more efficient. Althoagh(3) is a linear program,



it is immediately noticeable that the size of its constraiett may grow exponentially with
the number of features. For example, ifv; = 1 for all j € [n] and if N is a positive in-
teger, then the linear program contains of/g) constrains per example. We deal with this
problem below.

2.2 A Polynomial Approximation
Taking inspiration from [4], we find an efficient approximdésemulation of Eq. (3), which

turns out to be an exact reformulation of Eq. (3) wher {0, 1} forall j € [n]. Specifically,
we replace Eq. (3) with

min =Y & (4)
st.Vie[m] P\ — Z;L:1 a; i +yib > =&
Vi€ m]VjEn] yiwmi;—F = Avj — iy,
Vie[m]Vje[n] a;; 20,
Vie[m] ;>0and§ >0,
[Wlee < C,
where the minimization isovar € R", b € R, £ € R™, X € R, anday,...,am, €achin

R™. The number of variables and the number of constraints gyttiblem are botty (mn).
The following theorem explicitly relates the optimizatiproblem in Eq. (4) with the one in

Eqg. (3).
Theorem 1 Let(w*,b*, &£, A", a7,...,a},) be an optimal solution to Eq. (4).

(@) (w*,b*,¢”)is afeasible point of Eq. (3), and therefore the value of Bjjupper-bounds
the value of Eq. (3).

(b) Ifv; € {0,1} forall j € [n], then(w™,b*, £*) is also an optimal solution to Eq. (3).

(c) Ifit does not hold that; € {0,1} for all j € [n], and assumingx;|| < 1 for all 7, then
the difference between the value of Eq. (4) and the value of3tis at mosC.

As a first step towards proving Thm. 1, we momentarily forgeid the optimization
problem at hand and focus on another question: given a spédfflet (w,b,£), is it a
feasible point of Eq. (3) or not? More concretely, for eacining example(x;, y;), we
would like to determine if for alll with V'([n] \ J) < N it holds that

yi(b‘*‘Zg‘eJ“’jxi,j) 2 @—& . (5)

We can answer this question by comparing; with the value of the following integer
program:

Jminvib o+ Sy (s = B) (6)
T s n
st. P < Z?:l TV .

For example, if the value of this integer program is less thg)) then letr’ be an optimal
solution and we have that (b + >-7_, Tjwjzi ;) < (37—, 7jv5)/P — &. Namely, the set
J={jen: TJ/- = 1} violates Eq. (5). On the other hand, if there exists sohwith

V([n] \ J) < N that violates Eq. (5) then its indicator vector is a feasfmnt of Eq. (6)

whose objective value is less thaig;.



Directly solving the integer program in Eq. (6) may be difftcgo instead we examine
the properties of the following linear relaxation:

min y;b+ 37 75 (viw;Ti; — B) ™)
st. Vjen] 0<7;<1 and P< Z;—l:1 Tjv; -

The key result needed to analyze this relaxation is theviatig lemma.

Lemmal Fix an exampléx;,y;), a linear classifie(w, b), and a scalag; > 0, and letd
be the value of Eq. (7) with respect to these choices.

(a) If 6 > —¢; then Eqg. (5) holds.

(b) There exists a minimizer of Eq. (7) with at most one noegier element.

(c) Inthe special case whetg € {0,1} for all j € [n] and whereN is an integerp > —¢;
if and only if Eq. (5) holds.

The proof of Lemma 1 is rather technical and monotonous, aritlérefore differed
to Appendix A. The lemma tells us that comparing the valuehef linear program in
Eq. (7) with—¢; provides a sufficient condition for Eq. (5) to hold for the eyde (x;, y;).
Moreover, this condition becomes both sufficient and neogss the special case where
v; € {0,1} forall j € [n]. This equivalence enables us to prove Thm. 1.

Proof of Theorem MWe begin with the proof of claim (a). Létw™, b*, £*, A\*, a7, ..., a},)
be an optimal solution to the linear program in Eq. (4). Siueally, it holds for alli € [m]
thate; and\} are non-negative, th@t\; — 377", a7 ; + ;0" > —&7, and that

Y

* *
2 > )‘ivj_ai,j .

Vi€ yiwjz;—
Therefore, it also holds that the value of the following opgiation problem
max P\, — anl ;i j + yib* (8)
ai,/\i J !

st. Vje|n] yiwj*-xi,j — % > Nvj — a5,
Vien] a;;>0andi; >0,

is at least-¢;. The strong duality principle of linear programming [3]tsthat the value
of Eq. (8) equals the value of its dual optimization problevhich is:

min ;b + 31 7 (viwjzi; — B) 9)
st.Vjen] 0<7; <1 and P < 370 7jv; .

In other words, the value of Eq. (9) is also at leagf". Using claim (a) of Lemma 1, we
have that
w0 + Djeswimy) 2 P -6

holds for all.7 with V' ([n] \ J) < N. The optimization problem in Eg. (4) also constrains
[lwllee < Candg; > 0foralli € [m], thus,(w™,b*, £*) satisfies the constraints in Eq. (3).
Since Eq. (3) and Eqg. (4) have the same objective functienyétue of Eq. (3) is upper
bounded by the value of Eq. (4).

Claim (b) of the theorem states thatif € {0,1} for all j € [n] then(w™,b*,£*) is an
optimum of Eq. (3). Assume the contrary, namely, assumethieae existw’, b’, and¢’ in



the feasible region of Eq. (3) for which [ ; & < >, &F. Using claim (c) of Lemma 1,
we know that the value of Eq. (9) (with? replaced byw}) is at least-¢; for all i € [m].
Once again using strong duality, we have that the value of&qwith w} replaced byu;»)
is at least-¢] for all i € [m]. Moreover, leta; and\; denote the optimizers of Eq. (8) for
all i € [m]. We conclude thatw’,v’, &', X, &, ..., a},) is a feasible point of Eq. (4). This
contradicts our assumption thal;" , & is minimal over the feasible set of Eq. (4).

Finally, we prove claim (c) of the theorem. L@t’,v’, ¢') be an optimal solution to the
exponential optimization problem in Eq. (3) and recall that, b*, £*, X\* a7, ..., a5,)
denotes the optimal solution to Eq. (4). We have alreadyemdhaty ™" | &/ < S, &F,
and our current focus is on bounding the difference betweesettwo sums.

Let(§, X, a1,...,am) be the optimal solution to Eq. (4) with the additional coaitts
w = w’ andb = b'. Note that Eq. (4) with these additional constraints st la non-empty
feasible set, for instance by setting eaghto zero, settingy; ; so as to satisfy the second
constraint in Eqg. (4), and finally settingto satisfy the first constraint in Eq. (4). These
additional constraints decrease the feasible region of(&q.and therefore ", & <
>, &. It now suffices to prove an upper bound ™, & — S° &

We definer to be the sefi € [m] : & > ¢} and note that

Ya&-> 8 < > (EG—8)
1=1 1=1

iel

For everyi ¢ I, we have thab < ¢, < &;, namely; is strictly greater than zero. Therefore,
we know that the first constraint in Eq. (4) is binding, and

—& = P\ — Z a; 5+ yib/ .
j=1
Recall that the objective of Eq. (4) is to minimiZg which is equivalent to maximizing
PAi — Y j_; @ij + y;b" subject to the other constraints of Eq. (4). In other words;
equals the value of Eq. (8) (withw™, b*) replaced by(w’, v’)). Using strong duality, this
value equals the value of Eq. (9) (withv*, b*) replaced byw’,")). Letting~’ denote the
optimal solution to Eq. (9) (witliw™, b*) replaced byw’, ")), we have that

n
_ v
—&i =yt + )7 (yiw;'l'i,j - —Ij)
=1

Using claim (b) of Lemma 1, we may assume, without loss of gaitg thatr, . .., 7, are
all integers. We can therefore write

n
_ Vi v1
—& = yib' + E I(Tﬂ (yz‘w;xi,j - 7?) — (1—11) (yiwiwi,l - f)
=

As previously discussed;¢; is the value of the integer program in Eg. (6), wittreplaced
by w’ andb replaced by'. Since[r{],..., [7,,] is contained in the feasible set of Eq. (6),
we conclude that

& > & — (1-7) <yiw/1xi,1 - %)

Rearranging terms above, we get

- v
&—& < (1-m) (Z/z‘w/ﬂm — ?1)



Upper-boundingl — 7{) < 1, y,wiz; 1 < C,and—% < 0gives§; — & < C.
Overall, we have shown that, . ; &; — & < mC. Recalling the beginning of our proof,
we have thad~[", & — >, & < mC. Dividing both sides of this inequality by. con-

cludes our proof. O

We have established that the linear program in Eq. (4) is aqwate approximation,
and sometimes even an exact reformulation, of the expaldimgar program in Eq. (3).
However, the linear program in Eq. (4) can still be very lafgepractical classification
problems, as both the number of variables and number of rzontst scales withnn. Nev-
ertheless, this linear program has a very special strutiiatecan be exploited to obtain an
efficient solution. In the next section, we show that pihactical complexity of solving this
linear program, using a customized interior-point meth®d)(mn?), with storage require-
mentO(mn).

2.3 Solving the Linear Program Efficiently by Exploiting 8sructure

The linear program in Eq. (4) has a special structure thanldhze exploited when cal-
culating the optimal solution. We turn to primal-dual interpoint methods to solve our
problem. A detailed description of interior point optimizen algorithms exceeds the scope
of our paper, and we refer the interested reader to [22] ahdr{3his subsection, we as-
sume a general familiarity with interior point methods, aistuss only the details that are
specific to our problem. We note that a customized LP solvemjsired because generic LP
solvers, even ones that exploit sparsity, do not solve aallpm efficiently.

First, we put the linear program in Eg. (4) in standard forime primal and dual formu-
lations of a standard linear program are

Primal:  minimizec”p Dual: maximizeb”q (10)
subjecttoAp=b, p > 0 subjecttoATq < ¢

wherep is the vector of primal variables anglis the vector of dual variables. Our linear
program can be conveniently put into the dual standard foitt variables

T T b}T

a=[al - anw where i€ [m] q; = [ag1 - am & AT

Correspondingly, the coefficient matrix is given by

Ay _I7L+2
A= , (11)
Anm _In+2
B; --- By E-E
where
—In 17L H
diag(x; 1
A= =11, Bi:*yz[ 9 1)1}7 E:[O?] ; (12)
vI _p n

1,42 is the(n + 2)-dimensional identity matrix1,, is then-dimensional all-ones column
vector,0, is then-dimensional all-zeros column vector, and diag is a diagonal matrix
with the vectorx; on its diagonal. We note that the;’s are identical and have an arrow
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structure, namely, the only non-zero elementsijnare on its main diagonal, its last row,
and its last column.
The vectors andc are given by

T T
b= {blT N OZH] where Vi € [m] b; = [0}5 =1 o] ,
T T
c= {c{ ch Ozﬂn(n_w) Clgn] where Vi€ [m] ¢; = [%VT O} .

In the dual standard form, the number of variables and thebeurof inequality con-
straints are, respectively,

Nyar =m(n+2)+n+1, Necon = m(2n + 3) + 2n.

The matrix A is of size Nyar X Ncon, and the number of non-zero elements in the matrix
A ism(5n + 5) + 2n. Therefore A is an extremely sparse matrix. Moreover, the non-zero
elements inA form a special block structure, with many of the blocks idteait

Primal-dual interior-point methods iterate simultandpus/er the variablegp, q, s),
wheres is the dual slack variable definedss- ¢ — AT q. They follow the simple outline:

given starting point(p, q, s), which may be infeasible, but must satigfy,s) > 0.
repeat:

1. Compute the primal-dual search direct{atp, Aq, As).

2. Choose step lengthand update(p, q,s) := (p, q,s) + n(Ap, Aq, As).
until solution precision is reached.

In step 1, we compute the search direction by solvingibrenal equation
ADATAq = r (13)

for Aq and then obtainingAp, As) by simple substitutions. Her® is a diagonal matrix
with p; /s; as itsi'th diagonal element. The right-hand side veat@® generated based on the
current values ofp, q, s). The specific definition of varies between different interior-point
variants. Our method of exploiting the problem structuresatving the normal equation
(explained below) is independent of the right-hand sidéorag thus it applies to all variants
of primal-dual interior-point methods.

In order to solve a linear program to sufficient accuracy,libst theoretical bound on
the number of iterations required for primal-dual intefp@int methods i$)(v/Ncon) (S€€
for example [22]). In practice, however, the number of itieres required hardly grows with
the problem size. Itis fairly safe to say that a reasonabistamt, say 00, would be enough
to bound the number of iterations required for most problemasare able to solve today.
Therefore, thepractical complexity of solving our linear program is on the same oiaker
the number of floating-point operations (flops) performedeach iteration, which in our
case is dominated by the flop count for solving the normal ggu#13).

The matrix ADA” in Eq. (13) has alock-arrowstructure. To see this, we partition
the diagonal matriD into smaller diagonal matricd3y, . .., Da,,2, corresponding to the
blocks of columns imA (see Eg. (11)), and we have

ADAT + Dy A1D;B;

ADAT = : : (14)
AmDmAﬁ + D2m AmDmBm

:BlDl.A,%1 s BmDmA% Dg
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where .
Ds =Y B;D;B; + E(Dapmt1 + Domy2)E .
i=1
We solve the normal equation (13) via block elimination (EzeChapter 4]). We first

partition the vector intory, ..., rm,rg, andAqinto Aqy, . . ., Aam, Aqg, corresponding
to the block structure cAADA”'. There are four steps in the block elimination approach:

1. Solve the followingn sets of linear equations fas, . . ., zm,
Vie[m]  (AD;A] +Dpyi)z; = 1. (15)

2. Form the Schur complement mat8x

m
S = Ds— Y B;D;A] (A;D;A] +D,4;) 'A;D;B;. (16)

i=1

3. Solve the following linear system fakqg

m
SAqs = rs— Y BD;Alz; (17)
i=1

4. ObtainAqy, ..., Agm through substitutions
Vie[m] A = 2z — (AiD;A] +Dypy)” ' Ags. (18)

Without exploiting further structure, the overall flop cador the block elimination ap-
proach isO(mn?), with corresponding storage requirementmn?) (see appendix B for
details). Luckily, there is additional structure in the Iplem that allows further reduction in
both time and space complexities.

Recall that the matriceA; have an arrow structure. In particular, eathhas only one
dense column. Because of this, the matriﬂai)iAiT + D,,,+4, although dense, have an
arrow-plus-rank-onestructure. More precisely,

ADA] + Dpyi = W, +uu] (19)

whereW,; is a sparse arrow matrix (similar in structureAg), andu; is a scaled version of
the last column imA ;. With this structure, each of the linear systems in (15) cawhtten
as

(W, +uu) )z = r; .

The efficient way for solving such linear systems is to firstsdwo sparse linear systems
Wz, = r;, Wu; = u; , (20)
and then apply the Sherman-Woodbury-Morrison formula, (seg, [3, Appendix C.4.3]):

T
Z; = Zj — %ﬁz . (21)
By exploiting the arrow-plus-rank-one structure as abaovsdlving the linear systems
in Eq. (15), Eq. (16) and Eq. (18), the overall flop count folvew the normal equation
is reduced toO(mn?), with storage requiremern®(mn). The details of the complexity
analysis are given in appendix B.
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2.4 Generalization Bounds

Next, we formally analyze the generalization performantthe classifier learned in our
framework. Our analysis builds on the PAC-Bayesian thepgiven in [16]. Throughout,

we assume thdix||-c < 1 with probability 1 over D. For simplicity, we assume that the
bias termb is 0, and thatv; > 0 for all j. These assumptions can be relaxed at the cost of a
somewhat more complicated analysis. Given a classifjatefine they-loss attained on the
example(x, y) as

: _ ; V)
by(wix,y) = [[J:v(ﬁlfilJ)gNyjze;]wer <5 ﬂ : (22)

where[-] denotes the indicator function. Note thg{w; x,y) simply indicates the occur-
rence of a classification mistake on examfpiey) in our adversarial feature deletion setting.
Therefore E[¢y(w;x,y)] = R(w,0), whereR is the risk defined in Eq. (1). Overloading
our notation, we define thempiricaly-lossattained on a samplg as

1
by(ws ) = — 350 by(Wixi, 4i)
We now state the main technical theorem of this section.

Theorem 2 Let S = {(x;,v;)}i~; be a sample of sizex drawn i.i.d fromD. For any
~ >0,k > 0 and for anys > 0, with probability at leastt — §, it holds for allw € R™ with
[w]lee < C that

E[ly(w;x,y)] < Sup{e : KL (év—m(W;S) H 6) < M}7

m—1

where

B(m,d,k) = In (%) —|—Zln (max{ii?,l})
=1 /

andKL is the Kullback-Leibler divergence. The above implies teaker bound

2y 4k (w3 S)B(m, 6, k) 28(m, 6, k)
—+ .
m—1 m—1

E[fv(wéxa y)] < €7+,€(w;5) + \/

Plugging iny = 0, and using the weaker bound for simplicity, we get the folfayv
corollary:

Corollary 1 Under the conditions of Thm. 2, for amy > 0, it holds with probability at
leastl — ¢ that the expected risk of a’wy € R™ (with || w]|oc < C) is at most

2€K (W7 S)B(ma 67 l{) 4 Qﬂ(ma 55 K’)

m—1 m—1

(w3 S) + \/

The proof of the theorem follows along similar lines to thePBayesian bound for
linear classifiers in [16], while carefully working arouriget problems that arise from our
non-standard definition of the-loss in Eq. (22). Our proof relies on the following lemma.

Lemma?2 Letw € R", x € [-1,1]", y € {£1} andx > 0 be such that, (w;x,y) = 0.
Letw’ € R™ andx’ € [0, x] be such that for alj € [n] it holds thatjw; —wj| < “5. Then
it holds '[hawﬁ_ﬁ/(w/; x,7y) = 0.
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Proof If ¢, (w;x,y) = 0, it holds that

VN SNy Y ey > D (23)
jed

/ -
K Vj

The conditions o, y, w', andx’ imply that|yw;z; — yw'z;| < “5, and particularly

VJ:V([n]\J) <N wajmjfwa;mj < H‘gJ). (24)
jeJ jeJ

Subtracting both sides of the inequality in Eq. (24) from thaspective sides of Eq. (23)
proves the lemma. O

Proof of Thm. 2To facilitate the proof, we introduce some additional notat Given a
distributionQ over the space of linear classifiérsC, C]", define

4(Q;5) = Ewnolly(w; 5)] -
Furthermore, denote
E’Y(Q§ D) = IEEwa, (x,y)wa"/ (w;x,9)] -
Let B C R" be an axis-aligned box, defined as
K’l}j

s [max{wj ~3p —C’} , min {wj + %, CH ,

B =

n

J

and letQ be the uniform distribution oveB. For anyw’ € B and for allj € [n] it holds

that
]

2P

Combining the above inequality with Lemma 2, for any exaniglg y;) in our samples,
we have that., . (w;x;,y;) = 0 implieséwﬁm(w’;xi,yi) = 0, and that in turn implies
ly(w;x;,y;) = 0. Overall, we havel, (w; S) < £, 5(w';S) < lyix(w;S). These
inequalities also hold if we take the expectation owérsampled fromQ, namely,

/
|w; —wj| <

g'y(W;S) < &H.K/Q(Q; S) < E’Y-’:—K(W;S) . (25)
The inequalities above continue to hold if we take expeatediverS sampled i.i.d according
to D, giving
ly(w;D) < K’y+n/2(Q; D) <ALytr(w;D) . (26)
Now let P be the uniform distribution over the bgxC, C]", which defines the set of alll

possible classifiers. Using the PAC-Bayesian theorem {i€have that, with probability at
leastl — ¢,

m — 1

KL(Q||P) + In 3+
lytry2(2D) < sup{e : KL (%w/z(Q;S) e) < (Q”)né},

From this, it follows that

@7)

ly(w; D) < sup{e : KL <£7+K(W;S)H6> < W}

m— 1
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This is a straightforward consequence of Eq. (25),Eq. (26) the convexity of theKL
function.

Since Q and P are uniform,KL(Q||P) is simply the logarithm of the volume ratio
between—C, C]" and B, which is upper-bounded by

KL(Q|IP) < jz::lln (max { 45)?, 1}) .

J

O

It is interesting to note thal -, regularization emerges as the most natural one in this
setting, since it induces the most convenient type of mdagirelating thel~, £, . /2, £y+x
loss functions as described above. This lends theoretigaiast to our choice of thé .
norm in our algorithms.

2.5 Feature Corrupting Noise

We now shift our attention to the case where a subset of thergsais corrupted with
random noise, and show that the the same LP approach useddie Imaissing features can
also deal with corrupted features if one can attain a reddpiarge margin. For simplicity,
we shall assume that all features are supported-anl] with zero mean. Unlike the feature
deleting noise, we now assume that each feature selectdweladversary is replaced with
noise sampled from some distribution, also supporteg-an1] and having zero mean. The
following theorem relates the risk of a classifier in the absgtting, to its expectegtloss
(defined in Eq. (22)) in the feature deletion setting. Theeexpdy-loss,E[¢~ (w;x, y)], can
then be bounded using Thm. 2.

Theorem 3 Lete, C, and N be arbitrary positives, and lef be at leastC'\/2N In(1/e).
Assume that we solve Eq. (4) with parametersV and withv; = 1 forall j € [n]. Letw
be the resulting linear classifier, and assume for simplittiat the bias term is zero. Letf
be a random vector-valued function an such that for every € X, f(x) is the instancex
after the feature corruption scheme described above. Timng¢, as defined in Eq. (22),
for (x,y) drawn randomly fronD, we have:

Pr (y(w, f(x)) <0) < E[fy(w;x,y)] +¢ .
Proof Let (x,y) be an example and let denote the feature subset that remains uncor-
rupted by the adversary. Using Hoeffding’s bound and ouaragsion on+, we have that
Pr (y > jeswifi(x) < —7) is upper bounded by. Therefore, with probability at least
1 — ¢ over the randomness ¢f it holds that
yw, f(x) =y > wizj+y > wifi(x) >y Y wiz;— . (28)
jeJ j¢J jeg

Let A denote the event that Hoeffding’s bound holds (note thatehient depends just on
the randomness of the noise, not@fy) or the features selected by the adversary). Thus,
with probability at least — ¢ over the randomness ¢f

Pr(y(w, £()) <0[4) < Pr(yX;eswie; <v[4) < Bl (wix,p)l4] -

With probability at most, A does not hold, and we have just the trivial bound
Pr(y(w, f(x)) < 0|-A) < 1. Using the law of total probability, the theorem follows. O
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We conclude with an important observation. In the featumeugdion setting, making
a correct prediction boils down to achieving a sufficiendyge margin on the uncorrupted
features. Let € (0, 1) be afixed ratio betweeN andn, and letn grow to infinity. Assuming
a reasonable degree of feature redundancy, the gérn, ; w;z; grows asd(n). On the

other hand, Hoeffding’s bound tells us thef" ;. ; w;z; grows only ag)(v'N). Therefore,
for large enough, the first sum in Eq. (28) dominates the second one. This Holds
arbitrarily close tol. Namely, for problems with enough features and a reasorieatare
redundancy assumption, our approach’s ability to withdteature corruption matches its
ability to withstand feature deletion.

3 Solving the Problem with the Perceptron

We now turn to our second learning algorithm, taking a rdficdifferent angle on the
problem. We momentarily forget about the original statetiearning problem and instead
define a related online prediction problem. In online leagnihere is no distinction be-
tween the training phase and the classification phase, samm®t perfectly replicate the
classification-time noise scenario discussed above.ddst®e assume that an adversary
removes features from every instance that is presentecetalgorithm. We address this
online problem with a modified version of the Perceptron atgm [17] and use an online-
to-batch conversion technique to convert the online aligorback into a statistical learning
algorithm. The detour through online learning gives us igfficy while the online-to-batch
technique provides us with the statistical generalizgpi@mperties we are interested in.

3.1 Perceptron with Projections onto the Cube

We start with a modified version of the well-known Perceptatgorithm [17], which ob-
serves a sequence of examp(esi,yi))?il, one example at a time, and incrementally
builds a sequencf{w;, bi)):L of linear margin-based classifiers, while constrainingrthe
to a hyper-cube. Before processing examplbe algorithm has the vecter; and the bias
termb; stored in its memory. An adversary takes the instanand reveals only a subsét

of its features to the algorithm, attempting to cause thmeralgorithm to make a prediction
mistake. In choosing;, the adversary is restricted by the constraiittn] \ J) < N. Next,
the algorithm predicts the label associated witho be

Sign<b¢ + ZjEJi wi7jxi7j>

After the prediction is made, the correct lahglis revealed and the algorithms suffers a
hinge-loss

T (®)

29
[J:V([n?\}ff)gzv P ’ (29)

E(w,byx,y) =

— y(0+ 2 e wiz))
+

whereP = V([n]) — N and[a]+ denotes the hinge functiomax{a,0}. Note that the
hinge losst (w;, b;; x4, y;) upper-bounds the indicator of a prediction mistake on theeot
example, for any choice of; made by the adversary. We choose to denote the logsdy
emphasize the close relation betweéw;, b;; x;,y;) and¢; in Eq. (3). Due to our choice
of loss function, we can assume that the adversary choosesutiset/; that inflicts the
greatest loss.
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The algorithm now uses the correct lalglto construct the paifw; 1, b;+1), which
is used to make the next prediction£lfw, b; x, y) = 0, the algorithm definess; ; = w;
andb; 1 = b;. Otherwise, the algorithm defines; ; using the following coordinate-wise
update

, [wij +yiteig] o i€
cln W; . = 1 ’
jeln] wiy1; {wi,j otherwise

andb;11 = [b; +y;7] Lo, Wherer = C/n 4+ 1/2m and[a]4c abbreviates the function
max { min{e, C'}, —C'}. This update is nothing more than the standard Perceptrdatep
with constant learning rate, with an added projection step onto the hyper-cube of radius
C'. The specific value of used above is the value that optimizes the cumulative logado
below. As in the previous section, restricting the onliressifier to the hyper-cube helps us
control its complexity, while promoting dense classifiéralso comes in handy in the next
stage, when we convert the online algorithm into a statikt&arning algorithm.

Using a rather straightforward adaptation of standarddpgran loss bounds, to the case
where the hypothesis is confined to the hyper-cube, leadstbs following theorem, which
compares the cumulative loss suffered by the algorithm thigrcumulative loss suffered by
any fixed hypothesis in the hyper-cube of radius

Theorem 4 Choose any’ > 0 and letw* € R™ andb* € R be such thaljw* ||« < C and
[b*] < C. Let((xi,yi))yil be an arbitrary sequence of examples, wii|; < 1 for all .

Assume that this sequence is presented to our modified Peneeand leté(w;, b;; x4, v;)
be as defined in Eq. (29). Then it holds tla}@tzgil &(wy, bi;x4,y;) is upper-bounded by

m

1 2(n+1
EZ&(W*7b*;Xi,yi) +C g .
i=1

m

Proof DefineA; = ||w; —w*||3+ (b —b*)? — |wir1 — w*||3 — (big-1 — b*)%. We prove the
theorem by bounding~;" ; A; from above and from below. First, we note that™ ; A; is
a telescopic sum that collapses to

m
S 4 = wi = w3+ (b1 — b2 — [[Wins1 — W3 = (b1 — 02
=1

Using the facts thai/; is the zero vectol; = 0, and||wy,+1 — w* |13 + (b1 — %)% > 0,
we obtain the upper bound

YA < W+ () < (n+1)C? . (30)
=1

Next, we lower bound each; individually. Let: be the index of a round on which a positive
loss is incurred, namelg(w;, b;; x;, v;) > 0. Letx’ be the vector defined by

. ;o fmijifjed;
vie{l,...,n} z; = {0 otherwise ’

and definew’ = w; + y;7x’ andb’ = y;7. Note thatw, ;1 ; = [w}]+¢ for all j, and that
bir1 = [b']+c. We can rewrited; as

As = (Iws = w*I* 4 (5 =6 = W' = w*|* = (o =0")%)

(I =P+ (¢ =6~ wigs = WO = (i = 67)) L (3D)
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denoting the first term on the right-hand side abovexand the second term by. Using
the definitions ofw’ andd’, o can be rewritten as

[wi = w1 ? + (b = ) = lwi + yirx’ = w*||* = (bi + yim — ) .

Using the facts thafw; — w* + y;7x||? = ||w; — w*[|? + 2y;7 (%', w; — w*) + 72||x||?
and(b; — b* 4 y;7)? = (b; — b*)? + 2y;7(b; — b*) + 72, we can rewritey as

—2y;7(x’ Wiy — W) — 2y;7(b; — b%) — 77 <||X/H2 + 1)

By definition,&(w;, bi; x4, y;) = V(f:]i) —yibi — yi(wi, x;) andg(w™, b*; x4, y;) > % -

yib* — y; (w*,x;). We also know thalix; |2 < [|x;]|? < 1. We use these facts to obtain the
following lower bound,

a > 27(E(wi, by xi, yi) — E(WH, 0% x5, :)) — 2770

Moving onto the second term on the right-hand side of Eq., (@4} that if|’| < C then
(' — b*)2 — (b1 — b*)? = 0. Otherwise, assuming w.l.0.g. that> 0, we have

(bit1 — ") =(C—b")? < (C—b"+ | —C)>= (¥ —b")* .

Therefore (b’ — b*)? — (b; 11 — b*)? is always non-negative. The same argument applies to

(w — w})* — (wiy1,; — w})? for all j. Overall, we have that > 0, and that

A > a > 27(E(wi, bisxi,yi) — E(WS b5 %, p0)) — 277 (32)

Recall that the above holds for all rounds on wWhi¢Ww;, b;; x,, y;) > 0. On rounds on which
&(wi, bi;%4,y;) = 0, the above holds trivially, since the left hand side equafs zvhile the
right hand side is non-positive. We conclude that Eq. (3Z)$or all:. Summing Eq. (32)
overallzini,...,m, we get

m m

DA = 2r Y (E(wibisxi,pi) — (WL DX, i) — 2mr”
=1 =1

Comparing the above to the upper bound in Eg. (30) and regimaiterms, we get

1 & I (n+1)C?
m = mi— 2tm
Plugging in the definition of proves the bound. O

We now have an online learning algorithm for our problem, &mel next step is to
convert it into a statistical learning algorithm, with akriisound.



18

3.2 Converting Online to Batch

To obtain a statistical learning algorithm, with risk guateses, we assume that the sequence
of examples presented to the modified Perceptron algorishantiaining set sampled i.i.d
from the underlying distributiorD. We turn to the simple averaging technique presented
in [5] and definew = L "™ w,;_; andb = L > b;_y. (W, ) is called theaverage
hypothesisand defines our robust classifier. We use the derivation]ito[prove that the
average classifier provides an adequate solution to ounatigroblem.

Note that the loss function we use, defined in Eg. (29), is Hedrand convex in its first
two arguments. Using [5, Corollary 2], we have that for @ny 0, with probability at least
1-— % over the random sampling &f, the average hypothesis, b) satisfies

m In(2
Epyop [, 0,%,9)] < — > &(wi,biixi,yi) + (2C + ) % ~ (33)

i=1

3~

Setting

(w*,b*) = arg(milbl)E(x,y)ND [E(w,b;x,y)] St |w|eo <C and b <C
w,

we use Hoeffding’s bound to get, for ady> 0, with probability at least — % over the
random sampling of, that

ln(%) .

%Zf(W*,b*;Xi7yi) < Exy)op [EW50%5%,9)] + (2C + ) (34)

=1
Finally, using the union bound, Eq. (33) and Eq. (34) holdudtemeously with probability
at leastl — §. Combining Eq. (33) and Eq. (34) with the inequality in Thmpives the
following corollary.

Corollary 2 For anyé > 0, with probability at leastt — § over the random sampling ¢,
our algorithm construct$w, b) such that . ,,).p [£(W,b,%,y)] is at most

. _ 2(n—|—1+ln(%))
where¢ = max .y (,\)<n (V(J)/P), and H is the set of all pairs(w,b) such that
|wlleo < C and|b| < C.

Using the fact that the hinge loss upper-bounds the indidatation of a prediction mis-
take, regardless of the adversary’s choice of the featwrevechave that the expected hinge
loss upper-boundR (w, b).

4 Experiments

In this section, we experimentally investigate the efficatypur two proposed algorithms
in the face of feature-deleting and feature-corruptingeasiries. We use LP when referring
to our linear programming based approach and O2B when ijeiw our online-to-batch
based approach. We compare the performance of these higentith the performances of
the following two algorithms:
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Fig. 1 Results of the synthetic experiment based on feature redegdgor each value olN, we report
average results over th@-fold cross validation, as well as standard deviation. Efefigure displays the
results for the feature deletion scenario, whereas théfimgyre displays the results for the feature corruption
scenario.

SVM - A linear L, support vector machine (using SV [12]), which is trained with-
out regard to feature deletion/corruption in the test skis @lgorithm allows us to study
the effect an adversary might have on a generic learningittigothat is not tailored to
this setting.

TGRS - The robust learning algorithm presented in [10]. Cetaty, we implemented
the efficient version of this algorithm, using a stochastadgent-descent algorithm, as
described in [18]. As far as we know, this algorithm représéme current state-of-the-
art for the setting considered in this paper.

In all of our experiments, we simulated the adversary by djhgehoosing the most
valuable features for each example, until the limifois reached. Specifically, the adversary
sorts the features in descending orderyay;z;/v;, and considers them one by one. He
chooses to remove/corrupt featyré yw;x; > 0, and the noise limitV is still respected
after the removal. These chosen features are then eitHaceebwith zeros, or replaced with
random Gaussian noise with the same mean and variance asgginaldeature.

4.1 lllustrative Synthetic Experiments

We begin with two illustrative synthetic experiments, whigre meant to cleanly demon-
strate the importance of robust classification when onecisdavith missing and corrupted
features. The first experiment is as follows: We generatgdthstic dataset af000 linearly
separable instancesk?’ and added label noise by flipping each label with probability
Then, we added two copies of the actual label as additiomaifes to each instance, for a
total of 22 features. We randomly split the data into equally sizechingi and test sets, and
trained an SVM classifier on the training set. Wewget 1 for j € [20] andva; = v22 = 10,
expressing our prior knowledge that the last two featuresrare valuable. Using these fea-
ture values, we applied our LP-based algorithm with diffiénealues of the parametey.
We removed one or both of the high-value features from thesttsand evaluated the clas-
sifiers. With only one feature removed both SVM and our apgrastained a test error of
zero. With two features removed, the test error of the SVMsifaer jumped t©.477+0.004
(over 100 random repetitions of the experiment), indicating thatsgentially put all of its
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weight on the two perfect features. With the noise paransgtetoN = 20, our approach
attained a test error of only.22 + 0.002. This is only marginally above the best possible
error rate for this setting.

Our second synthetic experiment focused on the way our approtilizes feature re-
dundancy. The datasets for this experiment was createdlas$oWe started by creating a
linearly separable samplgu;, y;)}2%}, where eachy, is a column vector ifrR?. This was
done by sampling points from a standard Gaussian distoibuti R", choosing a random
hyperplane iR™ and using it to label the points, and finally removing pointege distance
from the hyperplane was less tharNext, we generated a random matiof size40 x 3
and setx; = Au;, for all i. The result is a set of instanceshi® with a large amount of
feature redundancy. Formally, aByfeatures out of the0 suffice to linearly separate the
sample, with probabilityt. We then added random Gaussian noise to each feature, where
the noise distribution used for featufjewas N'(0,0.155). In other words, the magnitude
of noise increased with the feature index, making the qualitthe various features less
homogeneous.

We trained classifiers using the LP algorithm, the TGRS digor, and the SVM al-
gorithm, on10 random train-test splits, with different values of the ofgarameterv.
Parameter tuning, using logarithmic grid search, was dasedbon a held-out validation set
taken from the training data. We simulated the adversaty thi¢ appropriate level a¥ for
each classifier, and the results of this experiment arealisglin Fig. 1.

It is readily seen that our LP algorithm produces a classifiersiderably more robust
than SVM. SVM put a significant portion of its weight on a smalimber of highly in-
formative features, and did not take full advantage of ttauiee redundancy of the data.
Compared to the TGRS algorithm, we achieve similar resultheé feature deletion sce-
nario, and superior results in the feature corruption stena

4.2 Main Experimental Results

Our main set of experiments were conducted using the fatigywublicly available datasets:

br east : The Breast Cancer Wisconsin (Diagnostic) Dataset fromU@érepository
[1]. This dataset specifies characteristics of cell nueled the goal is to characterize a
tumor as either malignant or benign. The datasets cont&@sistances, of which 357
are benign and 212 are malignant, with 10 features each.

spam: The Spambase Dataset from the UCI repository [1], whichiaare-mails (de-
scribed mostly by word counts) classified as either spam erspam. The dataset con-
tains 4601 instances, with 57 features each.

usps : The training set of the USPS dataset of handwritten didit$, fwhich contains
9298 images, each assigned one of ten possible labels. Bage iis represented by a
16 x 16 gray-scale pixel-map, for a total of 256 features. Sinceabdgorithms are de-
signed to deal with binary classification problems, we carséd a binary dataset from
each pair of labels, for a total ¢t;') = 45 different problems.

mi st : The MNIST dataset of handwritten digits [13], which con&i70,000 images.
Each image is represented by @& x 26 gray-scale pixel-map, for a total of 784 fea-
tures. As with the previous dataset, we used this datasetrtergtet5 different binary
classification problems.
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We deliberately chose datasets of various sizes and witbrelift levels of feature redun-
dancy. As a rule of thumb, it should be expected that highedisional datasets, those con-
taining many features, will have more feature redundanbysT even if the same fraction
of features is deleted or corrupted, better results areatggde®n high-dimensional datasets.
This intuition is substantiated in the results reportedbwelWe tested both feature deletion
and feature corruption scenarios with all datasets.

The summary of our empirical results is as follows. Our atpars significantly outper-
form SVM in all but one experiment, which involved featurercption with thebr east
dataset. In this one case, all of the tested algorithms peegd equally well. On thbr east
andspamdatasets, where feature redundancy is not especially thigiperformance of our
algorithms is indistinguishable from the state-of-theT®BRS algorithm. In other words,
the moderate level of feature redundancy in these datasaitsd little room to improve over
the TGRS classifier. However, on theps andmi st datasets, where feature redundancy
is higher, our algorithms significantly outperform TGRS otlofeature deletion and feature
corruption scenarios. In the remainder of this section, resgnt these results in detail.

An important decision we had to make when conducting theper@ments is how to
choose the value; associated with each feature. Recall that these valuessepirthe im-
portance of the respective features to our classificatioblpm, and that the adversary uses
these values to determine how much damage he is allowed iw.iffthe simplistic choice
of setting all of these values tois unsuitable for some of the datasets considered here. For
example, when our features represent pixels in an imagegptimer pixels are much less in-
formative than the features in the center of the image. Wd adeuristic, based on mutual
information, to set these values. Formally, we:seto be

v; = %I?ea[é(-[([[Xj >cY)

where(X;,Y) are random variables jointly distributed according to théarm distribution
over the se{(z; j,v;)}i~1, and whereZ is set such tha} v; = n. Roughly speaking,
our heuristic calculates the information contained in thémal linear threshold function
applied to each individual feature.

On some datasets, such sggsam, we observe that most of the features are equally
important, and setting; using this heuristic is not different than setting= 1 for all j. On
other datasets, such ami st , settingv; = 1 for all j enables the adversary to completely
devastate our classifiers, as well as the classifiers traisied SVM and TGRS, even with
small values ofV. It is reasonable to assume that prior knowledge on the irapoe of each
feature could be used to make important features less ditdedgp malicious corruption. In
the image recognition example given above, we could coabBiwuse a more fault tolerant
sensor on the important pixels. In our formulation of theriéay problem, the varying
importance of different features is precisely captured imyrmn-uniform choice ob;.

We tested robustness to both feature deletion and featureption on ten different
train-test splits. We performed parameter tuning over aritigmic grid of candidate param-
eters, using a held-out validation set taken from the tngirdata. The first dataset tested
was the relatively smabr east dataset, with the results displayed in Fig. 2. In the feature
deletion scenario, all noise-robust algorithms performprapimately the same, and better
than the standard SVM. Once more, this shows the importaitodostness to feature dele-
tion at test time. In the feature corruption scenario, harethe results are noisy, without
a significant difference in the performance of the algorghithis should not come as too
much of a surprise, due to the low dimension of this datasehis setting, it is very difficult
to overcome random Gaussian noise even when it is applieda#l number of features.
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Test Error
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N

Fig. 2 Results of thebr east dataset, for different values @¥, with standard error. The left figure dis-
plays the results for the feature deletion scenario, wisettearight figure displays the results for the feature
corruption scenario.

Test Error
Test Error

Fig. 3 Averaged results ovei0 train-test splits of the pamdataset, for different values @f, with standard
error. The left figure displays the results for the featurketiten scenario, whereas the right figure displays
the results for the feature corruption scenario.

In the largerspamdataset, the results are better thantiheast dataset (see Fig. 3). In
both the feature deletion and feature corruption scenatinalgorithm outperforms SVM,
but still achieve approximately the same accuracy as TGRS.

For the digit datasetsisps andmi st , we performed an all-pairs experiment, namely,
we tested the performance of the algorithms on the binassifleation problem defined by
every possible digit pair (45 pairs in all). We present therage results over all digit pairs
for both feature deletion and feature corruption in Fig. 4 &ig. 6. We also present the
results for each individual digit pair in the feature dedetscenario in Fig. 5 and Fig. 7. In
all cases considered, our proposed algorithm clearly aetlibetter results than both SVM
and TGRS.

5 Discussion

We presented two learning algorithms that anticipate adwel feature deletion and feature
corruption at classification time. A common idea behind gorithms is that they simu-
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Fig. 4 Averaged results oval0 train-test splits on thesps dataset for different values @¥, with standard
error. The results displayed here are averaged over allgibpdiirs. The left figure displays the results for
the feature deletion scenario, whereas the right figurdalisghe results for the feature corruption scenario.
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Fig. 5 Averaged results ovel0 train-test splits on theisps dataset in the feature deletion scenario, for
different values of/V, with standard error. Plot in row i and column j representsifastion results on a
dataset composed of digits i and j.
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Fig. 6 Averaged results ovdi0 train-test splits on themi st dataset for different values @¥, with standard
error. The results displayed here are averaged over allgibpdiirs. The left figure displays the results for
the feature deletion scenario, whereas the right figurdalisghe results for the feature corruption scenario.
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late the actions of the adversary on the training data, aed.ssregularization to promote
classifier density. Both algorithms come with statistiésit bounds, despite the fact that the
algorithms encounter different distributions at traintirge and at classification time. Our
experiments demonstrate a significant improvement over a¥¢idss the board, and a sig-
nificant improvement over the current state-of-the-afégue on problems with sufficient
feature redundancy.

Our two algorithms come with similar theoretical guarastaad perform comparably
well in practice. The LP approach seems to have better acgwihen features are deleted,
while the O2B algorithm performs better in the feature cptian scenario. A main techni-
cal difference between the two algorithms is their use of w®mour interior point solu-
tion keeps the entire linear program in memory while therastio-batch algorithm streams
through the data and has a constant-size memory footponteXample, applying our im-
plementation of the interior point LP solver to the MNIST akst required a server with
a 16GB memory. Additionally, the online-to-batch solutisrsimpler and easier to imple-
ment. These advantages make the online-to-batch approateapractical solution. On
the other hand, in the feature deletion scenario, the LPoagprseems to be more accurate.

This work focuses on static adversaries, which do not evaha improve with time.
An interesting extension of this work would be to deal wittaptive adversaries, which
corrupt features one by one over time. Our online-to-bapgr@ach could serve as a useful
starting-point for this research direction, as it uses dmerearning algorithm as its main
building block. Although time is not an explicit componeniur model, our algorithms can
still be useful when the adversary adapts. Concretely,idenshe spam filtering example
described in the introduction, and assume that the spamonerpts features one by one.
After enough time goes by and enough features become penthadamaged, our only
option is to design new features and to retrain a new classiffés is inevitable in any
“arms-race” with an adversary. However, a robust classsieble to survive for a longer
period of time before it must be replaced. By deliberatelgidieg our bets across many
features, we are able to slow down the arms-race cycle andemgrselves more time to
respond to new attacks.

On a more general note, our work seems to have an interestim@ydwith a recent
trend in machine learning research, which is to developsgpelassifiers supported on a
small subset of the features. In our setting, we are intedeistthe exact opposite, and the
efficacy of using thel. .. norm is clearly demonstrated in our theory and in our emairic
evaluation. The trade-off between robustness and sparsitydes fertile ground for future
research.

Acknowledgements We thank the anonymous reviewers of this paper for helpful contsrend suggestions.
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A Proof of Lemma 1

We prove claim (a) by proving its counter-positive, namelg, assume that there exists a feature suliset
with V' ([n] \ J) < N for which Eq. (5) does not hold, and we prove that —¢;. Setrj’. =1foralljeJ

andr} = 0forall j € ([n]\ J). We now have that,
0= yibJrZ 75 (yiwjzi,j - ﬁ) <&,
j=1

where the first inequality follows from the fact that the \adtry , . . ., 7/,) is a feasible point of Eq. (7), and
the second inequality follows from the assumption thaiolates Eq. (5) and frorﬁyz1 Tho; =V (J).

Moving on to claim (b), letr be a minimizer of Eq. (7) and let be the number of7elements ofin
(0,1). If s < 1 then there is nothing to prove, so we assume ¢hat2. We prove claim (b) by showing we
can find another minimizer of Eq. (7), which we denoterdywith at mosts — 1 elements in(0, 1).

First, we deal with some very simple casesrjfe (0,1) andw;z; ; = 0, then setr]f = 1, and set
the remaining elements af’ equal to the respective elementsiin The new vectorr’ clearly satisfies the
constraints of Eq. (7), while obtaining an objective fuontless than or equal to that ®f We conclude that
7'/ is a minimizer of Eq. (7) with at most — 1 non-integer elements. 1b;x; ; # 0 butv; = 0 then define

7_{ o 1if YiW;Ti j <0
J 0 otherwise ’

and set the remaining elementsidfequal to the respective elementsrinAgain, we have found a minimizer
of Eq. (7) with at most — 1 non-integer elements. Having dealt with these simple castsie can now
assume thaw;x; ; # 0 and that bub; > 0.

If s > 2, assume without loss of generality tliat< 71 < 1 and0 < 72 < 1. Using our assumption
thatv; > 0 andve > 0, we assume without loss of generality that

YiWiTi1 o YiWaTi2

v1 v2

(35)

We deal with two separate cases. First;ifi-(tav2 /v1) < 1thendefine| = 71+ (m2v2/v1), 75 = 0,
andrj’. =7j;forallj € {3,...,n}. We now have than:1 r]/.yj = Z;L:l Tjvj, soT’ is a feasible point
of Eg. (7). On the other hand, using the assumption in Eq. (88)also have thatrova /v1)y;wizi1 <
Toy;wax; 2, and therefore

n n
. Lwsxs < us A
ylZTijxw s yzzTJwﬂCw -
Jj=1 Jj=1

Once again, using the fact thel ™, 7/v; = > 7_; 7;v;, we conclude that

n
j=1"j

vj

yib+ 327 7] (yz‘wﬂi,j - %) S yb+ T (yz‘wjl"z',j - 7&) ;

and thereforer’ is a minimizer of Eq. (7) with at most— 1 elements in(0, 1).

The second case is where + (2v2/v1) > 1. Inthis case, set] = 1,75 = 72 — (1 — 71)v1/v2,
and once agaimj’. =rjforallj € {3,...,n}. Ourassumptions imply that > 7/ > 0, and by definition
we have} 7, TJ/-'UJ‘ = >_7_y 7jv;. Thereforer” is a feasible point of Eqg. (7). We can rewrite

v

n n
!
Yi ) Tjwimig = yi y Tjwwi + ((1 = T)yawizi — - (1= Tl)yiw21’i,2> .
j=1 j=1

Using Eq. (35), we know that the term in brackets above is pasitive. We conclude that the value of the
objective function obtained by’ is smaller or equal to the value obtained-tyAgain, we conclude that’
is a minimizer of Eq. (7) with only — 1 elements in(0, 1). This concludes the proof of claim (b).

Finally, we turn to proving claim (c). We assume thgt € {0,1} for all j € [n] and thatN is an
integer. One direction of the claim follows from claim (a, we focus on the other direction, namely, we
assume that Eq. (5) holds for allwith V'([n] \ J) < N, and we proveéd > —¢;. As we have just shown,
there exists a minimizer of Eq. (7), which we now denotethythat has at most one element (i, 1).

If all of the elements ofr are integers therr is also a solution to Eq. (6). As we have previously seen,
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checking that the value of Eq. (6) upper bourd is equivalent to verifying that Eq. (5) holds for allwith
V([n] \ J) < N. Therefore, we assume without loss of generality that 7; < 1, and thatr; € {0,1}
forall j € {2,...,n}. [t must be the case that

v1
P

v

Yiw1Ti1 — 0, (36)
since otherwise we could decrease the objective functiombreasingr;, without violating any of the
constraints in Eg. (7). That would be in contradiction to agsumption that attains a global minimum.
Now definer] = 0 andr] = 7; forall j € {2,...,n}. We know thay>’"_; 7;v; > P and we assumed
that P is an integer. Therefore,

> P

n
> Tivs
Jj=1

Now note that the left-hand side above equal§_, 7/v;, and thereforer’ is a feasible point of Eq. (7).
Using Eg. (36), we have that

yib+ 371 7 (yiwjxi,j - vTﬁ) S yib+ 37T (yiwﬂ’i,j - %) ;

and 7’ is a minimizer of Eq. (7) whose elements all have value§tni}. If 6 < —y;b — &; then define
J={j:7;=1} and

Yib+> ey (yiwju’vz‘,j - %) = yb+ 20 7] (yiwjxi,j - %) =0< —& .
Rearranging terms above gives

yi(b“‘ZjeJ"U.ﬁxi,j) < @_fi .

This concludes our proof.

B Flop Countsfor Solving the Normal Equation

In this appendix we give detailed analysis of the flop countsblving the normal equation (13). We first go
through the four steps of the block-elimination approach:

1. We solve the linear equations (15) using thetor-solveapproach (e.g., [3, Appendix C.2]). First we
conduct the Cholesky factorization

AD;AT + D, = L, LT
whereL; is a lower-triangular matrix. Then we do forward and backwardstitutions (the solve step):
L;Z; = ry, LTz, = 7.

Let f be the flop count for the factorization ardbe the flop count for the solve step (two substitutions).
The total flop count for this step i (f + s).

2. To form the Schur complement in (16), we first compute the nest(ia; D; A7 +D,,+;) "1 A;D;B;
by solving a linear system like (15) for each column&fD,;B;. Since the factord; have been pre-
computed in step 1, we only need+ 1 solve steps, which lead to a flop count(ef + 1)s for each.
Multiplication by the sparse matriB;D; AT (which has the same sparsity Ag") takes5(n + 1)2
flops. Together with then matrix additions, each with a coét + 1)2, the total flop count for forming
the matrixS is m((n + 1)s + 6(n + 1)2).

3. Forming the right-hand side vector in (17) takes(n + 1) flops. The Cholesky factorization Sftakes
(1/3)(n +1)3 flops, and the two triangular solves takg: + 1)? flops. So the dominant flop count for
this step ism(n + 1) + (1/3)(n + 1)3.

4. In the substitution step, we first compute the second tertheright-hand side of the equation (18). For
eachi, this takess flops using a solve step with pre-computed factbys The vector subtraction takes
(n + 2) flops for each. The total flop count for this step ia(s + n + 2).
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The overall flop count for the block elimination approach isnitwated by
m (f 4 (n+3)s+6(n+1)%) + (1/3)(n +1)%. 37

Now let’s take a closer look at the flop courfteinds for solving the linear systems in (15). The matrices
AiDiAZ.T + D,,,4; are all dense with size + 2 by n + 2. Without exploiting further structure, we have
the factorization cosf = (1/3)(n + 2)3, and the solve step costs= 2(n + 2)2 (see, e.g., [19]). Thus
the overall flop count in (37) is dominated §y/3)m(n + 2)3, or O(mn?). The corresponding storage
requirement would b& (mn?).

By further exploiting the arrow-plus-rank-one structuirestead of solving the dense linear systems
in (15) directly, we solve the two sparse linear systems in §2@ then use the rank-one update formula (21).
To solve the two sparse linear systems, we need one faciorizep and two solve steps. Cholesky factor
of W, has the same sparsity as the lower triangular paWaf(no fill-in), and it only cost3(n + 2) flops
to compute. Each solve step co8ts + 2) flops. The rank-one update in (21) also cdgts + 2) flops. The
corresponding values fgf ands in (37) aref = 3(n + 2) ands = 18(n + 2). Therefore, the dominating
terms in the complexity analysis2gm (n+2)2+(1/3)(n+1)3, or simplyO(mn?) (under the assumption
m > n). Itis easy to check that, by only storing the sparse matiWgsand vectoras; instead of the dense
matricesAiDZ-AiT + Dy, the storage cost is reduced@mn).



