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Abstract A common assumption in supervised machine learning is that the training exam-
ples provided to the learning algorithm are statistically identical to the instances encountered
later on, during the classification phase. This assumption is unrealistic in many real-world
situations where machine learning techniques are used. We focus on the case where features
of a binary classification problem, which were available during the training phase, are either
deleted or become corrupted during the classification phase. We prepare for the worst by
assuming that the subset of deleted and corrupted features is controlled by an adversary, and
may vary from instance to instance. We design and analyze twonovel learning algorithms
that anticipate the actions of the adversary and account forthem when training a classifier.
Our first technique formulates the learning problem as a linear program. We discuss how
the particular structure of this program can be exploited for computational efficiency and we
prove statistical bounds on the risk of the resulting classifier. Our second technique addresses
the robust learning problem by combining a modified version of the Perceptron algorithm
with an online-to-batch conversion technique, and also comes with statistical generalization
guarantees. We demonstrate the effectiveness of our approach with a set of experiments.

Keywords adversarial environment· binary classification· deleted features

1 Introduction

Supervised machine learning techniques are often used to train classifiers that are put to
work in complex real-world systems. A training set of labeled examples is collected and
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presented to a machine learning algorithm, and the learningalgorithm outputs a classifier.
The process of collecting the training set and constructingthe classifier is called thetraining
phase, while everything that occurs after the classifier is constructed is called theclassifica-
tion phase. In many cases, the training phase can be performed under sterile and controlled
conditions, and specifically, care can be taken to collect a high quality training set. In con-
trast, the classification phase often takes place in the noisy and uncertain conditions of the
real world. Specifically, features that were available during the training phase may become
missing or corrupted in the classification phase. In the worst case, the set of missing and
corrupted features may be controlled by an adversary, who may even be familiar with the
inner-workings of the classifier. In this paper, we explore the possibility of anticipating this
scenario and preparing for it in advance.

The problem of missing and corrupted features that are controlled by an adversary oc-
curs in a variety of classification problems. For example, consider the task of learning an
email spam filter. Once the training phase is complete, adversaries attempt to infiltrate the
learned filter by constructing emails with feature representations that appear to be benign.
A reasonable approach to email spam filtering should preparefor the actions of these adver-
saries.

Our setting also encompasses learning problems where features are deleted and cor-
rupted due to other, less malicious, circumstances. For example, say that our goal is to learn
an automatic medical diagnosis system. Each instance represents a patient, each feature con-
tains the result of a medical test performed on that patient,and the purpose of the system
is to detect a certain disease. When constructing the training set, we go to the trouble of
carefully performing every possible test on each patient. However, when the learned classi-
fier is eventually deployed as part of a diagnosis system, andapplied to new patients, it is
highly unlikely that all of the test results will be available. Technical difficulties may prevent
certain tests from being performed. Different patients mayhave different insurance policies,
each covering a different set of tests. A patient’s blood sample may become contaminated,
essentially replacing the corresponding features with random noise, while having no effect
on other features. We would still like our diagnosis system to make accurate predictions. In
this example, the classification-time feature corruption is not adversarial, but it is not purely
stochastic either. If a classifier is trained to tolerate adversarial noise, it will certainly be able
to handle less deliberate forms of noise.

If we do not limit the adversary’s ability to remove and modify features, our classifier
obviously stands no chance of making correct predictions. We overcome this problem by as-
signing each feature with an a-priori importance value and assuming that the adversary may
remove or corrupt any feature subset whose total value is upper-bounded by a predefined
constant.

In this paper, we present two new learning algorithms for learning with missing and
corrupted features. Both approaches attempt to learn a noise-tolerant linear threshold clas-
sifier. The first approach formulates the learning problem asa linear program (LP), in a
way that closely resembles the quadratic programming formulation of the Support Vector
Machine [20]. However, the number of constraints in this LP grows exponentially with the
number of features. Using tricks from convex analysis, we derive a related polynomial-size
LP, and give conditions under which it is an exact reformulation of the original exponential-
size LP. When these conditions do not hold, the polynomial-size LP still approximates the
exponential-size LP, and we prove an upper bound on the approximation difference. The
polynomial-size LP can be solved efficiently by exploiting certain properties of its struc-
ture. Despite the fact that the distribution of training examples is effectively different from
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the distribution of examples observed during the classification phase, we prove a statistical
generalization bound for this approach.

We show that the time complexity of our LP-based approach scales linearly with the
number of training examples. However, the running time of this approach grows quadrati-
cally with the number of features and this poses a problem when the approach is applied to
large datasets. This brings us to our second algorithm: We define an online learning prob-
lem that is closely related to the original statistical learning problem. We address this online
problem with a modified version of the online Perceptron algorithm [17], and then convert
the online algorithm into a statistical learning algorithmusing an online-to-batch conversion
technique [5]. This approach benefits from the computational efficiency of the Perceptron,
and from the generalization properties and theoretical guarantees provided by the online-
to-batch technique. Experimentally, we observe that the efficiency of our second approach
seems to come at the price of a small accuracy penalty.

Choosing an adequate regularization scheme is one of the keys to successfully learning a
linear classifier in our setting. Existing learning algorithms for linear classifiers, such as the
Support Vector Machine, often useL2 regularization to promote statistical generalization.
WhenL2 regularization is used, the learning algorithm may put a large weight on one feature
and compensate by putting a small weight on another feature.This promotes classifiers that
focus their weight on the features that contribute the most during training. For example,
in the degenerate case where one of the features actually equals the correct label, anL2

regularized learning algorithm is likely to put most of its weight on that one feature. Some
algorithms useL1 regularization to further promote sparse solutions [2]. Inthe context of our
work, sparsity actually makes a classifier more susceptibleto adversarial feature-corrupting
noise. Here, we prefer dense classifiers, which hedge their bets across as many features as
possible. Both of the algorithms presented in this paper achieve this density by using aL∞

regularization scheme. It is interesting to note that ourL∞ regularization scheme emerges
as a natural choice in the statistical analysis of our LP-based learning approach.

This paper is organized as follows. We conclude this sectionby referencing related work.
In Sec. 2 we present our LP-based learning algorithm. Section 2.1 casts the problem of
learning with feature deletion as an exponential-size LP, Sec. 2.2 presents a polynomial ap-
proximation to this program, and Sec. 2.3 describes an efficient customized LP solver that
takes advantage of the special structure of our problem. We prove statistical generalization
bounds in Sec. 2.4 and extend our discussion from the featuredeletion scenario to the fea-
ture corruption scenario in Sec. 2.5. Next, in Sec. 3, we moveon to our second algorithm,
which combines a modified Perceptron algorithm with an online-to-batch conversion tech-
nique. The modified Perceptron is presented in Sec. 3.1 and the online-to-batch technique is
discussed in Sec. 3.2. We conclude the paper with experimental results in Sec. 4 and closing
remarks in Sec. 5.

1.1 Related Work

Previous papers on “noise-robust learning” mainly deal with the problem of learning with
a noisy training set, a research topic which is entirely orthogonal to ours. The learning
algorithms presented in [8] and [9] try to be robust to general additive noise that appears
at classification time, but not specifically to adversarial feature deletion or corruption. [6]
presents adversarial learning as a one-shot two-player game between the classifier and an
adversary, and designs a robust learning algorithm from a Bayesian-learning perspective.
Our approach shares the motivation of [6] but is otherwise significantly different. The topic
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of email spam filtering, and its wider implications on learning in the face of an adversary,
has recently received special attention. Notable contributions on the intersection of spam
filtering and machine learning are [15] and [21]. In the related field of online learning, where
the training and classification phases are interlaced and cannot be distinguished, [14] proves
that the Winnow algorithm can tolerate various types of noise, both adversarial and random.

Our work is most similar to the work in [10], and its more recent enhancement in [18].
Our experiments, presented in Sec. 4, suggest that our algorithms achieve significantly bet-
ter performance, but we can also emphasize more fundamentaldifferences between the two
approaches: Our approach usesL∞ regularization to promote a dense solution, where [10]
usesL2 regularization. We allow features to have different a-priori importance levels, and
take this information into account in our algorithm and analysis, whereas [10] assume uni-
form feature values. Finally, we prove statistical generalization bounds for our algorithms
despite the change in distribution at classification time, while [10] do not discuss this topic.

This paper is a long version of the preliminary work published in [7]. In this paper,
we present a more complete and elaborate theoretical analysis of our algorithms, as well as
a significantly improved empirical study. Specifically, this paper includes complete proofs
of all theorems and new experiments using larger and more diverse datasets. The extended
scope of our experiments now includes empirical evidence that our algorithms outperform
the current state-of-the-art results of [18], and new empirical results in the feature corruption
scenario. Moreover, the novel linear programming algorithm presented in Sec. 2.3 addresses
important computational problems that were ignored in [7].

2 A Linear Programming Formulation

In this section, and throughout the paper, we use lower-casebold-face letters to denote vec-
tors, and their plain-face counterparts to denote each vector’s components. We also use the
notation[n] as shorthand for{1, . . . , n}.

2.1 Feature Deleting Noise

We first examine the case where features are missing at classification time. LetX ⊆ R
n be

an instance space and letD be a probability distribution on the product spaceX × {±1}.
We receive a training setS = {(xi, yi)}m

i=1 sampled i.i.d fromD, which we use to learn our
classifier. We assign each featurej ∈ [n] a valuevj ≥ 0. Informally, we think ofvj as the
a-priori informativenessof featurej, or as the importance of featurej to the classification
task. Next, we define the value of a subsetJ of features as the sum of values of the features
in that subset, and we denoteV (J) =

∑

j∈J vj . For instance, we frequently useV ([n])

when referring to
∑n

j=1 vj andV ([n] \ J) when referring to
∑

j 6∈J vj . Next, we fix a noise-
tolerance parameterN in [0, V ([n])] and defineP = V ([n]) − N . During the classification
phase, instances are generated in the following way: First,a pair(x, y) is sampled fromD.
Then, an adversary selects a subset of featuresJ ⊂ [n] such thatV ([n] \ J) ≤ N , and
replacesxj with 0 for all j 6∈ J . The adversary selectsJ for each instance individually, and
with full knowledge of the inner workings of our classifier. The noise-tolerance parameter
N essentially acts as an upper bound on the amount of damage theadversary is allowed to
inflict. We would like to use the training setS (which does not have missing features) to
learn a binary classifier that is robust to this specific type of classification-time noise.
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We focus on learning linear margin-based classifiers. A linear classifier is defined by
a weight vectorw ∈ R

n and a bias termb ∈ R. Given an instancex, which is sampled
from D, and a set of coordinatesJ left intact by the adversary, the linear classifier outputs
b +

∑

j∈J wjxj . The sign ofb +
∑

j∈J wjxj constitutes the actual binary prediction, while
|b+∑j∈J wjxj | is understood as the degree of confidence in that prediction.A classification
mistake occurs if and only ify(b +

∑

j∈J wjxj) ≤ 0, so we define therisk of the linear
classifier(w, b) as

R(w, b) = Pr
(x,y)∼D

(

∃J with V ([n] \ J) < N s.t. y
(

b +
∑

j∈J wjxj

)

≤ 0
)

. (1)

SinceD is unknown, we cannot explicitly minimize Eq. (1). Thus, we turn to the empirical
estimate of Eq. (1), theempirical risk, defined as

1

m

m
∑

i=1

[[

min
J : V ([n]\J)≤N

yi

(

b +
∑

j∈J wjxi,j

)

≤ 0
]]

, (2)

where[[π]] denotes the indicator function of the predicateπ. Minimizing the empirical risk
directly constitutes a difficult combinatorial optimization problem. Instead, we formulate a
linear program that closely resembles the formulation of the Support Vector Machine [20].
We choose a regularization parameterC > 0, and solve the problem

min
w,b,ξ

1
m

∑m
i=1 ξi (3)

s.t. ∀ i ∈ [m] ∀J : V ([n] \ J) ≤ N yi

(

b +
∑

j∈J wjxi,j

)

≥ V (J)
P − ξi ,

∀ i ∈ [m] ξi ≥ 0 ,

‖w‖∞ ≤ C .

The objective function of Eq. (3) is called theempirical hinge-lossobtained on the
sampleS. Sinceξi is constrained to be non-negative, each training example contributes a
non-negative amount to the total loss. Moreover, the objective function of Eq. (3) upper
bounds the empirical risk of(w, b). More specifically, for any feasible point(w, b, ξ) of
Eq. (3),ξi upper bounds the indicator function of the event

min
J : V ([n]\J)≤N

yi

(

b +
∑

j∈J wjxi,j

)

≤ 0 .

To see this, note that for a given example(xi, yi), if there exists a feature subsetJ such that
V ([n] \ J) ≤ N andyi(b +

∑

j∈J wjxj) ≤ 0 then the first constraint in Eq. (3) enforces
ξi ≥ V (J)/P . The assumptionV ([n] \ J) ≤ N now implies thatV (J) ≥ P , and therefore
ξi ≥ 1. If such a setJ does not exist, then the second constraint in Eq. (3) enforces ξi ≥ 0.

The optimization problem above actually does more than minimize an upper bound on
the empirical risk. It also requires the margin attained by the feature subsetJ to grow with
proportion toV (J). While a true adversary would always inflict the maximal possible dam-
age, our optimization problem also prepares for the case where less damage is inflicted,
requiring the confidence of our classifier to increase as lessnoise is introduced. Also, as-
suming that the margin scales with the number of features is anatural assumption to make
when we have feature redundancy, a necessary prerequisite for our approach to work in the
first place. We also restrictw to a hyper-box of radiusC, which controls the complexity of
the learned classifier and promotes robust dense solutions.Moreover, this constraint is easy
to compute and makes our algorithms more efficient. AlthoughEq. (3) is a linear program,
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it is immediately noticeable that the size of its constraintset may grow exponentially with
the number of featuresn. For example, ifvj = 1 for all j ∈ [n] and if N is a positive in-
teger, then the linear program contains over

(n
N

)

constrains per example. We deal with this
problem below.

2.2 A Polynomial Approximation

Taking inspiration from [4], we find an efficient approximateformulation of Eq. (3), which
turns out to be an exact reformulation of Eq. (3) whenvj ∈ {0, 1} for all j ∈ [n]. Specifically,
we replace Eq. (3) with

min 1
m

∑m
i=1 ξi (4)

s.t. ∀ i ∈ [m] Pλi − ∑n
j=1 αi,j + yib ≥ −ξi

∀ i ∈ [m] ∀ j ∈ [n] yiwjxi,j − vj

P ≥ λivj − αi,j ,

∀ i ∈ [m] ∀ j ∈ [n] αi,j ≥ 0 ,

∀ i ∈ [m] λi ≥ 0 and ξi ≥ 0 ,

‖w‖∞ ≤ C ,

where the minimization is overw ∈ R
n, b ∈ R, ξ ∈ R

m, λ ∈ R
m, andα1, . . . , αm, each in

R
n. The number of variables and the number of constraints in this problem are bothO(mn).

The following theorem explicitly relates the optimizationproblem in Eq. (4) with the one in
Eq. (3).

Theorem 1 Let (w⋆, b⋆, ξ⋆, λ⋆, α⋆
1, . . . , α⋆

m) be an optimal solution to Eq. (4).

(a) (w⋆, b⋆, ξ⋆) is a feasible point of Eq. (3), and therefore the value of Eq. (4) upper-bounds
the value of Eq. (3).

(b) If vj ∈ {0, 1} for all j ∈ [n], then(w⋆, b⋆, ξ⋆) is also an optimal solution to Eq. (3).
(c) If it does not hold thatvj ∈ {0, 1} for all j ∈ [n], and assuming‖xi‖ ≤ 1 for all i, then

the difference between the value of Eq. (4) and the value of Eq. (3) is at mostC.

As a first step towards proving Thm. 1, we momentarily forget about the optimization
problem at hand and focus on another question: given a specific triplet (w, b, ξ), is it a
feasible point of Eq. (3) or not? More concretely, for each training example(xi, yi), we
would like to determine if for allJ with V ([n] \ J) ≤ N it holds that

yi

(

b +
∑

j∈J wjxi,j

)

≥ V (J)
P − ξi . (5)

We can answer this question by comparing−ξi with the value of the following integer
program:

min
τ∈{0,1}n

yib +
∑n

j=1 τj

(

yiwjxi,j − vj

P

)

(6)

s.t. P ≤ ∑n
j=1 τjvj .

For example, if the value of this integer program is less than−ξi, then letτ ′ be an optimal
solution and we have thatyi(b +

∑n
j=1 τ ′jwjxi,j) < (

∑n
j=1 τ ′jvj)/P − ξi. Namely, the set

J = {j ∈ [n] : τ ′j = 1} violates Eq. (5). On the other hand, if there exists someJ with
V ([n] \ J) ≤ N that violates Eq. (5) then its indicator vector is a feasiblepoint of Eq. (6)
whose objective value is less than−ξi.
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Directly solving the integer program in Eq. (6) may be difficult, so instead we examine
the properties of the following linear relaxation:

min
τ

yib +
∑n

j=1 τj

(

yiwjxi,j − vj

P

)

(7)

s.t. ∀j ∈ [n] 0 ≤ τj ≤ 1 and P ≤∑n
j=1 τjvj .

The key result needed to analyze this relaxation is the following lemma.

Lemma 1 Fix an example(xi, yi), a linear classifier(w, b), and a scalarξi > 0, and letθ
be the value of Eq. (7) with respect to these choices.

(a) If θ ≥ −ξi then Eq. (5) holds.
(b) There exists a minimizer of Eq. (7) with at most one non-integer element.
(c) In the special case wherevj ∈ {0, 1} for all j ∈ [n] and whereN is an integer,θ ≥ −ξi

if and only if Eq. (5) holds.

The proof of Lemma 1 is rather technical and monotonous, and is therefore differed
to Appendix A. The lemma tells us that comparing the value of the linear program in
Eq. (7) with−ξi provides a sufficient condition for Eq. (5) to hold for the example(xi, yi).
Moreover, this condition becomes both sufficient and necessary in the special case where
vj ∈ {0, 1} for all j ∈ [n]. This equivalence enables us to prove Thm. 1.

Proof of Theorem 1We begin with the proof of claim (a). Let(w⋆, b⋆, ξ⋆, λ⋆, α⋆
1, . . . , α⋆

m)

be an optimal solution to the linear program in Eq. (4). Specifically, it holds for alli ∈ [m]

thatα⋆
i andλ⋆

i are non-negative, thatPλ⋆
i −∑n

j=1 α⋆
i,j + yib

⋆ ≥ −ξ⋆
i , and that

∀ j ∈ [n] yiw
⋆
j xi,j − vj

P
≥ λ⋆

i vj − α⋆
i,j .

Therefore, it also holds that the value of the following optimization problem

max
αi,λi

Pλi − ∑n
j=1 αi,j + yib

⋆ (8)

s.t. ∀ j ∈ [n] yiw
⋆
j xi,j − vj

P ≥ λivj − αi,j ,

∀ j ∈ [n] αi,j ≥ 0 and λi ≥ 0 ,

is at least−ξ⋆
i . The strong duality principle of linear programming [3] states that the value

of Eq. (8) equals the value of its dual optimization problem,which is:

min
τ

yib
⋆ +

∑n
j=1 τj

(

yiw
⋆
j xi,j − vj

P

)

(9)

s.t. ∀ j ∈ [n] 0 ≤ τj ≤ 1 and P ≤ ∑n
j=1 τjvj .

In other words, the value of Eq. (9) is also at least−ξ⋆
i . Using claim (a) of Lemma 1, we

have that
yi

(

b⋆ +
∑

j∈J w⋆
j xi,j

)

≥ V (J)
P − ξ⋆

i ,

holds for allJ with V ([n] \ J) ≤ N . The optimization problem in Eq. (4) also constrains
‖w‖∞ ≤ C andξi ≥ 0 for all i ∈ [m], thus,(w⋆, b⋆, ξ⋆) satisfies the constraints in Eq. (3).
Since Eq. (3) and Eq. (4) have the same objective function, the value of Eq. (3) is upper
bounded by the value of Eq. (4).

Claim (b) of the theorem states that ifvj ∈ {0, 1} for all j ∈ [n] then(w⋆, b⋆, ξ⋆) is an
optimum of Eq. (3). Assume the contrary, namely, assume thatthere existw′, b′, andξ′ in
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the feasible region of Eq. (3) for which
∑m

i=1 ξ′i <
∑m

i=1 ξ⋆
i . Using claim (c) of Lemma 1,

we know that the value of Eq. (9) (withw⋆
j replaced byw′

j) is at least−ξ′i for all i ∈ [m].
Once again using strong duality, we have that the value of Eq.(8) (with w⋆

j replaced byw′
j)

is at least−ξ′i for all i ∈ [m]. Moreover, letα′
i andλ′

i denote the optimizers of Eq. (8) for
all i ∈ [m]. We conclude that(w′, b′, ξ′, λ′, α′

1, . . . , α′
m) is a feasible point of Eq. (4). This

contradicts our assumption that
∑m

i=1 ξ⋆
i is minimal over the feasible set of Eq. (4).

Finally, we prove claim (c) of the theorem. Let(w′, b′, ξ′) be an optimal solution to the
exponential optimization problem in Eq. (3) and recall that(w⋆, b⋆, ξ⋆, λ⋆, α⋆

1, . . . , α⋆
m)

denotes the optimal solution to Eq. (4). We have already proven that
∑m

i=1 ξ′i ≤ ∑m
i=1 ξ⋆

i ,
and our current focus is on bounding the difference between these two sums.

Let (ξ̄, λ̄, ᾱ1, . . . , ᾱm) be the optimal solution to Eq. (4) with the additional constraints
w = w′ andb = b′. Note that Eq. (4) with these additional constraints still has a non-empty
feasible set, for instance by setting eachλ̄j to zero, settinḡαi,j so as to satisfy the second
constraint in Eq. (4), and finally settinḡξ to satisfy the first constraint in Eq. (4). These
additional constraints decrease the feasible region of Eq.(4), and therefore

∑m
i=1 ξ⋆

i ≤
∑m

i=1 ξ̄i. It now suffices to prove an upper bound on
∑m

i=1 ξ̄i −
∑m

i=1 ξ′i.
We defineI to be the set{i ∈ [m] : ξ̄i > ξ′i} and note that

m
∑

i=1

ξ̄i −
m
∑

i=1

ξ′i ≤
∑

i∈I

(ξ̄i − ξ′i) .

For everyi ∈ I, we have that0 ≤ ξ′i < ξ̄i, namely,ξ̄i is strictly greater than zero. Therefore,
we know that the first constraint in Eq. (4) is binding, and

−ξ̄i = Pλ̄i −
n
∑

j=1

ᾱi,j + yib
′ .

Recall that the objective of Eq. (4) is to minimizēξi, which is equivalent to maximizing
Pλ̄i −

∑n
j=1 ᾱi,j + yib

′ subject to the other constraints of Eq. (4). In other words,−ξ̄i

equals the value of Eq. (8) (with(w⋆, b⋆) replaced by(w′, b′)). Using strong duality, this
value equals the value of Eq. (9) (with(w⋆, b⋆) replaced by(w′, b′)). Lettingτ ′ denote the
optimal solution to Eq. (9) (with(w⋆, b⋆) replaced by(w′, b′)), we have that

−ξ̄i = yib
′ +

n
∑

j=1

τ ′j

(

yiw
′
jxi,j − vj

P

)

.

Using claim (b) of Lemma 1, we may assume, without loss of generality, thatτ ′2, . . . , τ ′
n are

all integers. We can therefore write

−ξ̄i = yib
′ +

n
∑

j=1

⌈τ ′j⌉
(

yiw
′
jxi,j − vj

P

)

− (1 − τ ′1)
(

yiw
′
1xi,1 − v1

P

)

.

As previously discussed,−ξ′i is the value of the integer program in Eq. (6), withw replaced
by w′ andb replaced byb′. Since⌈τ ′1⌉, . . . , ⌈τ ′n⌉ is contained in the feasible set of Eq. (6),
we conclude that

−ξ̄i ≥ − ξ′i − (1 − τ ′1)
(

yiw
′
1xi,1 − v1

P

)

.

Rearranging terms above, we get

ξ̄i − ξ′i ≤ (1 − τ ′1)
(

yiw
′
1xi,1 − v1

P

)

.
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Upper-bounding(1 − τ ′1) ≤ 1, yiw
′
1xi,1 ≤ C, and− v1

P ≤ 0 givesξ̄i − ξ′i ≤ C.
Overall, we have shown that

∑

i∈I ξ̄i − ξ′i ≤ mC. Recalling the beginning of our proof,
we have that

∑m
i=1 ξ⋆

i −∑m
i=1 ξ′i ≤ mC. Dividing both sides of this inequality bym con-

cludes our proof. ⊓⊔

We have established that the linear program in Eq. (4) is an adequate approximation,
and sometimes even an exact reformulation, of the exponential linear program in Eq. (3).
However, the linear program in Eq. (4) can still be very largefor practical classification
problems, as both the number of variables and number of constraints scales withmn. Nev-
ertheless, this linear program has a very special structurethat can be exploited to obtain an
efficient solution. In the next section, we show that thepractical complexity of solving this
linear program, using a customized interior-point method,is O(mn2), with storage require-
mentO(mn).

2.3 Solving the Linear Program Efficiently by Exploiting itsStructure

The linear program in Eq. (4) has a special structure than should be exploited when cal-
culating the optimal solution. We turn to primal-dual interior point methods to solve our
problem. A detailed description of interior point optimization algorithms exceeds the scope
of our paper, and we refer the interested reader to [22] and [3]. In this subsection, we as-
sume a general familiarity with interior point methods, anddiscuss only the details that are
specific to our problem. We note that a customized LP solver isrequired because generic LP
solvers, even ones that exploit sparsity, do not solve our problem efficiently.

First, we put the linear program in Eq. (4) in standard form. The primal and dual formu-
lations of a standard linear program are

Primal: minimizecT p

subject toAp = b, p ≥ 0

Dual: maximizebT q

subject toAT q ≤ c
(10)

wherep is the vector of primal variables andq is the vector of dual variables. Our linear
program can be conveniently put into the dual standard form with variables

q = [qT
1 · · · q

T
m w

T b]T where ∀i ∈ [m] qi = [αi1 · · · αin ξi λi]
T .

Correspondingly, the coefficient matrixA is given by

A =











A1 −In+2

...
...

Am −In+2

B1 · · · Bm E −E











, (11)

where

Ai =





−In 1n

−1

vT −P



 , Bi = −yi

[

diag(xi)

1

]

, E =

[

In

0T
n

]

, (12)

In+2 is the(n + 2)-dimensional identity matrix,1n is then-dimensional all-ones column
vector,0n is then-dimensional all-zeros column vector, and diag(xi) is a diagonal matrix
with the vectorxi on its diagonal. We note that theAi’s are identical and have an arrow
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structure, namely, the only non-zero elements inAi are on its main diagonal, its last row,
and its last column.

The vectorsb andc are given by

b =
[

b
T
1 · · · b

T
m 0

T
n+1

]T
where ∀i ∈ [m] bi =

[

0
T
n

−1
m 0

]T
,

c =
[

c
T
1 · · · c

T
m 0

T
m(n+2) C1

T
2n

]T
where ∀i ∈ [m] ci =

[

−1
P vT 0

]T
.

In the dual standard form, the number of variables and the number of inequality con-
straints are, respectively,

Nvar = m(n + 2) + n + 1, Ncon = m(2n + 3) + 2n.

The matrixA is of sizeNvar × Ncon, and the number of non-zero elements in the matrix
A is m(5n + 5) + 2n. Therefore,A is an extremely sparse matrix. Moreover, the non-zero
elements inA form a special block structure, with many of the blocks identical.

Primal-dual interior-point methods iterate simultaneously over the variables(p,q, s),
wheres is the dual slack variable defined ass = c − AT q. They follow the simple outline:

given starting point(p,q, s), which may be infeasible, but must satisfy(p, s) > 0.
repeat:
1. Compute the primal-dual search direction(∆p, ∆q, ∆s).
2. Choose step lengthη and update:(p,q, s) := (p,q, s) + η(∆p, ∆q, ∆s).

until solution precision is reached.

In step 1, we compute the search direction by solving thenormal equation

ADA
T ∆q = r (13)

for ∆q and then obtaining(∆p, ∆s) by simple substitutions. Here,D is a diagonal matrix
with pi/si as itsi’th diagonal element. The right-hand side vectorr is generated based on the
current values of(p,q, s). The specific definition ofr varies between different interior-point
variants. Our method of exploiting the problem structure insolving the normal equation
(explained below) is independent of the right-hand side vector r, thus it applies to all variants
of primal-dual interior-point methods.

In order to solve a linear program to sufficient accuracy, thebest theoretical bound on
the number of iterations required for primal-dual interior-point methods isO(

√
Ncon) (see

for example [22]). In practice, however, the number of iterations required hardly grows with
the problem size. It is fairly safe to say that a reasonable constant, say100, would be enough
to bound the number of iterations required for most problemswe are able to solve today.
Therefore, thepractical complexity of solving our linear program is on the same orderas
the number of floating-point operations (flops) performed oneach iteration, which in our
case is dominated by the flop count for solving the normal equation (13).

The matrixADAT in Eq. (13) has ablock-arrowstructure. To see this, we partition
the diagonal matrixD into smaller diagonal matricesD1, . . . ,D2m+2, corresponding to the
blocks of columns inA (see Eq. (11)), and we have

ADA
T =













A1D1A
T
1 + Dm+1 A1D1B1

...
...

AmDmAT
m + D2m AmDmBm

B1D1A
T
1 · · · BmDmAT

m DS













(14)
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where

DS =
m
∑

i=1

BiDiBi + E(D2m+1 + D2m+2)E
T .

We solve the normal equation (13) via block elimination (see[3, Chapter 4]). We first
partition the vectorr into r1, . . . , rm, rS , and∆q into ∆q1, . . . , ∆qm, ∆qS , corresponding
to the block structure ofADAT . There are four steps in the block elimination approach:

1. Solve the followingm sets of linear equations forz1, . . . , zm

∀i ∈ [m] (AiDiA
T
i + Dm+i)zi = ri. (15)

2. Form the Schur complement matrixS

S = DS −
m
∑

i=1

BiDiA
T
i (AiDiA

T
i + Dm+i)

−1
AiDiBi. (16)

3. Solve the following linear system for∆qS

S∆qS = rS −
m
∑

i=1

BiDiA
T
i zi (17)

4. Obtain∆q1, . . . , ∆qm through substitutions

∀i ∈ [m] ∆qi = zi − (AiDiA
T
i + Dm+i)

−1∆qS . (18)

Without exploiting further structure, the overall flop count for the block elimination ap-
proach isO(mn3), with corresponding storage requirementO(mn2) (see appendix B for
details). Luckily, there is additional structure in the problem that allows further reduction in
both time and space complexities.

Recall that the matricesAi have an arrow structure. In particular, eachAi has only one
dense column. Because of this, the matricesAiDiA

T
i + Dm+i, although dense, have an

arrow-plus-rank-onestructure. More precisely,

AiDiA
T
i + Dm+i = Wi + uiu

T
i , (19)

whereWi is a sparse arrow matrix (similar in structure toAi), andui is a scaled version of
the last column inAi. With this structure, each of the linear systems in (15) can be written
as

(Wi + uiu
T
i )zi = ri .

The efficient way for solving such linear systems is to first solve two sparse linear systems

Wiz̄i = ri , Wiūi = ui , (20)

and then apply the Sherman-Woodbury-Morrison formula (see, e.g., [3, Appendix C.4.3]):

zi = z̄i − uT
i z̄i

1 + uT
i ūi

ūi . (21)

By exploiting the arrow-plus-rank-one structure as above in solving the linear systems
in Eq. (15), Eq. (16) and Eq. (18), the overall flop count for solving the normal equation
is reduced toO(mn2), with storage requirementO(mn). The details of the complexity
analysis are given in appendix B.
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2.4 Generalization Bounds

Next, we formally analyze the generalization performance of the classifier learned in our
framework. Our analysis builds on the PAC-Bayesian theorem, given in [16]. Throughout,
we assume that‖x‖∞ ≤ 1 with probability 1 overD. For simplicity, we assume that the
bias termb is 0, and thatvj > 0 for all j. These assumptions can be relaxed at the cost of a
somewhat more complicated analysis. Given a classifierw, define theγ-loss attained on the
example(x, y) as

ℓγ(w;x, y) =
[[

min
J : V ([n]\J)≤N

y
∑

j∈J

wjxj <
γV (J)

P

]]

, (22)

where[[·]] denotes the indicator function. Note thatℓ0(w;x, y) simply indicates the occur-
rence of a classification mistake on example(x, y) in our adversarial feature deletion setting.
Therefore,E[ℓ0(w;x, y)] = R(w, 0), whereR is the risk defined in Eq. (1). Overloading
our notation, we define theempiricalγ-lossattained on a sampleS as

ℓγ(w; S) =
1

m

∑m
i=1 ℓγ(w;xi, yi)

We now state the main technical theorem of this section.

Theorem 2 Let S = {(xi, yi)}m
i=1 be a sample of sizem drawn i.i.d fromD. For any

γ ≥ 0, κ > 0 and for anyδ > 0, with probability at least1 − δ, it holds for allw ∈ R
n with

‖w‖∞ ≤ C that

E[ℓγ(w;x, y)] ≤ sup
{

ǫ : KL
(

ℓγ+κ(w; S)
∥

∥

∥
ǫ
)

≤ β(m,δ,κ)
m−1

}

,

where

β(m, δ, κ) = ln
(m

δ

)

+

n
∑

j=1

ln

(

max

{

4PC

κvj
, 1

})

andKL is the Kullback-Leibler divergence. The above implies the weaker bound

E[ℓγ(w;x, y)] ≤ ℓγ+κ(w; S) +

√

2ℓγ+κ(w; S)β(m, δ, κ)

m − 1
+

2β(m, δ, κ)

m − 1
.

Plugging inγ = 0, and using the weaker bound for simplicity, we get the following
corollary:

Corollary 1 Under the conditions of Thm. 2, for anyκ > 0, it holds with probability at
least1 − δ that the expected risk of anyw ∈ R

n (with ‖w‖∞ ≤ C) is at most

ℓκ(w; S) +

√

2ℓκ(w; S)β(m, δ, κ)

m − 1
+

2β(m, δ, κ)

m − 1
.

The proof of the theorem follows along similar lines to the PAC-Bayesian bound for
linear classifiers in [16], while carefully working around the problems that arise from our
non-standard definition of theγ-loss in Eq. (22). Our proof relies on the following lemma.

Lemma 2 Let w ∈ R
n, x ∈ [−1, 1]n, y ∈ {±1} andκ > 0 be such thatℓκ(w;x, y) = 0.

Letw′ ∈ R
n andκ′ ∈ [0, κ] be such that for allj ∈ [n] it holds that|wj −w′

j | ≤
κ′vj

P . Then
it holds thatℓκ−κ′(w′;x, y) = 0.
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Proof If ℓκ(w;x, y) = 0, it holds that

∀J : V ([n] \ J) ≤ N y
∑

j∈J

wjxj ≥ κV (J)

P
. (23)

The conditions onx, y, w′, andκ′ imply that |ywjxj − yw′
jxj | ≤ κ′vj

P , and particularly

∀J : V ([n] \ J) ≤ N y
∑

j∈J

wjxj − y
∑

j∈J

w′
jxj ≤ κ′V (J)

P
. (24)

Subtracting both sides of the inequality in Eq. (24) from therespective sides of Eq. (23)
proves the lemma. ⊓⊔

Proof of Thm. 2To facilitate the proof, we introduce some additional notation. Given a
distributionQ over the space of linear classifiers[−C, C]n, define

ℓγ(Q; S) = E
w∼Q[ℓγ(w; S)] .

Furthermore, denote

ℓγ(Q;D) = E
w∼Q, (x,y)∼D[ℓγ(w;x, y)] .

Let B ⊆ R
n be an axis-aligned box, defined as

B =

n
∏

j=1

[

max
{

wj − κvj

2P
, −C

}

, min
{

wj +
κvj

2P
, C
}]

,

and letQ be the uniform distribution overB. For anyw′ ∈ B and for allj ∈ [n] it holds
that

|wj − w′
j | ≤ κvj

2P
.

Combining the above inequality with Lemma 2, for any example(xi, yi) in our sampleS,
we have thatℓγ+κ(w;xi, yi) = 0 implies ℓγ+κ/2(w

′;xi, yi) = 0, and that in turn implies
ℓγ(w;xi, yi) = 0. Overall, we haveℓγ(w; S) ≤ ℓγ+κ/2(w

′; S) ≤ ℓγ+κ(w; S). These
inequalities also hold if we take the expectation overw′ sampled fromQ, namely,

ℓγ(w; S) ≤ ℓγ+κ/2(Q; S) ≤ ℓγ+κ(w; S) . (25)

The inequalities above continue to hold if we take expectation overS sampled i.i.d according
to D, giving

ℓγ(w;D) ≤ ℓγ+κ/2(Q;D) ≤ ℓγ+κ(w;D) . (26)

Now letP be the uniform distribution over the box[−C, C]n, which defines the set of all
possible classifiers. Using the PAC-Bayesian theorem [16],we have that, with probability at
least1 − δ,

ℓγ+κ/2(Q;D) ≤ sup

{

ǫ : KL

(

ℓγ+κ/2(Q; S)

∥

∥

∥

∥

∥

ǫ

)

≤ KL(Q‖P) + ln m
δ

m − 1

}

,

From this, it follows that

ℓγ(w;D) ≤ sup

{

ǫ : KL

(

ℓγ+κ(w; S)

∥

∥

∥

∥

∥

ǫ

)

≤ KL(Q‖P) + ln m
δ

m − 1

}

. (27)



14

This is a straightforward consequence of Eq. (25),Eq. (26) and the convexity of theKL

function.
SinceQ andP are uniform,KL(Q‖P) is simply the logarithm of the volume ratio

between[−C, C]n andB, which is upper-bounded by

KL(Q‖P) ≤
n
∑

j=1

ln

(

max

{

4PC

κvj
, 1

})

.

⊓⊔

It is interesting to note thatL∞ regularization emerges as the most natural one in this
setting, since it induces the most convenient type of marginfor relating theℓγ , ℓγ+κ/2, ℓγ+κ

loss functions as described above. This lends theoretical support to our choice of theL∞

norm in our algorithms.

2.5 Feature Corrupting Noise

We now shift our attention to the case where a subset of the features is corrupted with
random noise, and show that the the same LP approach used to handle missing features can
also deal with corrupted features if one can attain a reasonably large margin. For simplicity,
we shall assume that all features are supported on[−1, 1] with zero mean. Unlike the feature
deleting noise, we now assume that each feature selected by the adversary is replaced with
noise sampled from some distribution, also supported on[−1, 1] and having zero mean. The
following theorem relates the risk of a classifier in the above setting, to its expectedγ-loss
(defined in Eq. (22)) in the feature deletion setting. The expectedγ-loss,E[ℓγ(w;x, y)], can
then be bounded using Thm. 2.

Theorem 3 Let ǫ, C, andN be arbitrary positives, and letγ be at leastC
√

2N ln(1/ǫ).
Assume that we solve Eq. (4) with parametersC, N and withvj = 1 for all j ∈ [n]. Letw
be the resulting linear classifier, and assume for simplicity that the bias termb is zero. Letf
be a random vector-valued function onX , such that for everyx ∈ X , f(x) is the instancex
after the feature corruption scheme described above. Then,usingℓγ as defined in Eq. (22),
for (x, y) drawn randomly fromD, we have:

Pr
(

y〈w, f(x)〉 ≤ 0
)

≤ E [ℓγ(w;x, y)] + ǫ .

Proof Let (x, y) be an example and letJ denote the feature subset that remains uncor-
rupted by the adversary. Using Hoeffding’s bound and our assumption onγ, we have that

Pr
(

y
∑

j /∈J wjfj(x) ≤ −γ)
)

is upper bounded byǫ. Therefore, with probability at least

1 − ǫ over the randomness off , it holds that

y〈w, f(x)〉 = y
∑

j∈J

wjxj + y
∑

j /∈J

wjfj(x) > y
∑

j∈J

wjxj − γ . (28)

Let A denote the event that Hoeffding’s bound holds (note that this event depends just on
the randomness of the noise, not on(x, y) or the features selected by the adversary). Thus,
with probability at least1 − ǫ over the randomness off ,

Pr
(

y〈w, f(x)〉 < 0
∣

∣

∣
A
)

≤ Pr
(

y
∑

j∈J wjxj ≤ γ
∣

∣

∣
A
)

≤ E[ℓγ(w;x, y)|A] .

With probability at mostǫ, A does not hold, and we have just the trivial bound
Pr(y〈w, f(x)〉 < 0|¬A) ≤ 1. Using the law of total probability, the theorem follows. ⊓⊔
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We conclude with an important observation. In the feature corruption setting, making
a correct prediction boils down to achieving a sufficiently large margin on the uncorrupted
features. Letr ∈ (0, 1) be a fixed ratio betweenN andn, and letn grow to infinity. Assuming
a reasonable degree of feature redundancy, the termy

∑

j∈J wjxj grows asΘ(n). On the

other hand, Hoeffding’s bound tells us thaty
∑

j 6∈J wjxj grows only asO(
√

N). Therefore,
for large enoughn, the first sum in Eq. (28) dominates the second one. This holdsfor r

arbitrarily close to1. Namely, for problems with enough features and a reasonablefeature
redundancy assumption, our approach’s ability to withstand feature corruption matches its
ability to withstand feature deletion.

3 Solving the Problem with the Perceptron

We now turn to our second learning algorithm, taking a radically different angle on the
problem. We momentarily forget about the original statistical learning problem and instead
define a related online prediction problem. In online learning there is no distinction be-
tween the training phase and the classification phase, so we cannot perfectly replicate the
classification-time noise scenario discussed above. Instead, we assume that an adversary
removes features from every instance that is presented to the algorithm. We address this
online problem with a modified version of the Perceptron algorithm [17] and use an online-
to-batch conversion technique to convert the online algorithm back into a statistical learning
algorithm. The detour through online learning gives us efficiency while the online-to-batch
technique provides us with the statistical generalizationproperties we are interested in.

3.1 Perceptron with Projections onto the Cube

We start with a modified version of the well-known Perceptronalgorithm [17], which ob-
serves a sequence of examples

(

(xi, yi)
)m

i=1
, one example at a time, and incrementally

builds a sequence
(

(wi, bi)
)m

i=1
of linear margin-based classifiers, while constraining them

to a hyper-cube. Before processing examplei, the algorithm has the vectorwi and the bias
termbi stored in its memory. An adversary takes the instancexi and reveals only a subsetJi

of its features to the algorithm, attempting to cause the online algorithm to make a prediction
mistake. In choosingJi, the adversary is restricted by the constraintV ([n] \ J) ≤ N . Next,
the algorithm predicts the label associated withxi to be

sign
(

bi +
∑

j∈Ji
wi,jxi,j

)

.

After the prediction is made, the correct labelyi is revealed and the algorithms suffers a
hinge-loss

ξ(w, b;x, y) =

[

max
J : V ([n]\J)≤N

V (J)

P
− y

(

b +
∑

j∈J wjxj

)

]

+

, (29)

whereP = V ([n]) − N and [α]+ denotes the hinge function,max{α, 0}. Note that the
hinge lossξ(wi, bi;xi, yi) upper-bounds the indicator of a prediction mistake on the current
example, for any choice ofJi made by the adversary. We choose to denote the loss byξ to
emphasize the close relation betweenξ(wi, bi;xi, yi) andξi in Eq. (3). Due to our choice
of loss function, we can assume that the adversary chooses the subsetJi that inflicts the
greatest loss.
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The algorithm now uses the correct labelyi to construct the pair(wi+1, bi+1), which
is used to make the next prediction. Ifξ(w, b;x, y) = 0, the algorithm defineswi+1 = wi

andbi+1 = bi. Otherwise, the algorithm defineswi+1 using the following coordinate-wise
update

j ∈ [n] wi+1,j =

{

[

wi,j + yiτxi,j

]

±C
if j ∈ Ji

wi,j otherwise
,

andbi+1 = [bi + yiτ ]±C , whereτ = C
√

n + 1/2m and [α]±C abbreviates the function
max

{

min{α, C},−C
}

. This update is nothing more than the standard Perceptron update
with constant learning rateτ , with an added projection step onto the hyper-cube of radius
C. The specific value ofτ used above is the value that optimizes the cumulative loss bound
below. As in the previous section, restricting the online classifier to the hyper-cube helps us
control its complexity, while promoting dense classifiers.It also comes in handy in the next
stage, when we convert the online algorithm into a statistical learning algorithm.

Using a rather straightforward adaptation of standard Perceptron loss bounds, to the case
where the hypothesis is confined to the hyper-cube, leads us to the following theorem, which
compares the cumulative loss suffered by the algorithm withthe cumulative loss suffered by
any fixed hypothesis in the hyper-cube of radiusC.

Theorem 4 Choose anyC > 0 and letw⋆ ∈ R
n andb⋆ ∈ R be such that‖w⋆‖∞ ≤ C and

|b⋆| ≤ C. Let
(

(xi, yi)
)m

i=1
be an arbitrary sequence of examples, with‖xi‖1 ≤ 1 for all i.

Assume that this sequence is presented to our modified Perceptron, and letξ(wi, bi;xi, yi)

be as defined in Eq. (29). Then it holds that1
m

∑m
i=1 ξ(wi, bi;xi, yi) is upper-bounded by

1

m

m
∑

i=1

ξ(w⋆, b⋆;xi, yi) + C

√

2(n + 1)

m
.

Proof Define∆i = ‖wi−w⋆‖2
2 +(bi−b⋆)2−‖wi+1−w⋆‖2

2− (bi+1−b⋆)2. We prove the
theorem by bounding

∑m
i=1 ∆i from above and from below. First, we note that

∑m
i=1 ∆i is

a telescopic sum that collapses to

m
∑

i=1

∆i = ‖w1 − w
⋆‖2

2 + (b1 − b⋆)2 − ‖wm+1 − w
⋆‖2

2 − (bm+1 − b⋆)2 .

Using the facts thatw1 is the zero vector,b1 = 0, and‖wm+1 −w⋆‖2
2 +(bm+1 − b⋆)2 ≥ 0,

we obtain the upper bound

m
∑

i=1

∆i ≤ ‖w⋆‖2
2 + (b⋆)2 ≤ (n + 1)C2 . (30)

Next, we lower bound each∆i individually. Leti be the index of a round on which a positive
loss is incurred, namely,ξ(wi, bi;xi, yi) > 0. Let x′ be the vector defined by

∀j ∈ {1, . . . , n} x′
j =

{

xi,j if j ∈ Ji

0 otherwise
,

and definew′ = wi + yiτx
′ andb′ = yiτ . Note thatwi+1,j = [w′

j ]±C for all j, and that
bi+1 = [b′]±C . We can rewrite∆i as

∆i =
(

‖wi − w
⋆‖2 + (bi − b⋆)2 − ‖w′ − w

⋆‖2 − (b′ − b⋆)2
)

+
(

‖w′ − w
⋆‖2 + (b′ − b⋆)2 − ‖wi+1 − w

⋆‖2 − (bi+1 − b⋆)2
)

, (31)
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denoting the first term on the right-hand side above byα and the second term byβ. Using
the definitions ofw′ andb′, α can be rewritten as

‖wi − w
⋆‖2 + (bi − b⋆)2 − ‖wi + yiτx

′ − w
⋆‖2 − (bi + yiτ − b⋆)2 .

Using the facts that‖wi − w⋆ + yiτx
′‖2 = ‖wi − w⋆‖2 + 2yiτ〈x′,wi − w⋆〉 + τ2‖x′‖2

and(bi − b⋆ + yiτ)2 = (bi − b⋆)2 + 2yiτ(bi − b⋆) + τ2, we can rewriteα as

−2yiτ〈x′,wi − w
′〉 − 2yiτ(bi − b⋆) − τ2

(

‖x′‖2 + 1
)

.

By definition,ξ(wi, bi;xi, yi) =
V (Ji)

P − yibi − yi〈wi,xi〉 andξ(w⋆, b⋆;xi, yi) ≥ V (Ji)
P −

yib
⋆ − yi〈w⋆,xi〉. We also know that‖xi‖2

2 ≤ ‖xi‖2
1 ≤ 1. We use these facts to obtain the

following lower bound,

α ≥ 2τ
(

ξ(wi, bi;xi, yi) − ξ(w⋆, b⋆;xi, yi)
)

− 2τ2 .

Moving onto the second term on the right-hand side of Eq. (31), note that if|b′| ≤ C then
(b′ − b⋆)2 − (bi+1 − b⋆)2 = 0. Otherwise, assuming w.l.o.g. thatb′ ≥ 0, we have

(bi+1 − b⋆)2 = (C − b⋆)2 < (C − b⋆ + |b′ − C|)2 = (b′ − b⋆)2 .

Therefore,(b′ − b⋆)2 − (bi+1 − b⋆)2 is always non-negative. The same argument applies to
(w′

j − w⋆
j )2 − (wi+1,j − w⋆

j )2 for all j. Overall, we have thatβ ≥ 0, and that

∆i ≥ α ≥ 2τ
(

ξ(wi, bi;xi, yi) − ξ(w⋆, b⋆;xi, yi)
)

− 2τ2 . (32)

Recall that the above holds for all rounds on whichξ(wi, bi;xi, yi) > 0. On rounds on which
ξ(wi, bi;xi, yi) = 0, the above holds trivially, since the left hand side equals zero while the
right hand side is non-positive. We conclude that Eq. (32) holds for all i. Summing Eq. (32)
over alli in 1, . . . , m, we get

m
∑

i=1

∆i ≥ 2τ
m
∑

i=1

(

ξ(wi, bi;xi, yi) − ξ(w⋆, b⋆;xi, yi)
)

− 2mτ2 .

Comparing the above to the upper bound in Eq. (30) and rearranging terms, we get

1

m

m
∑

i=1

ξ(wi, bi;xi, yi) ≤ 1

m

m
∑

i=1

ξ(w⋆, b⋆;xi, yi) ≤ (n + 1)C2

2τm
+ τ .

Plugging in the definition ofτ proves the bound. ⊓⊔

We now have an online learning algorithm for our problem, andthe next step is to
convert it into a statistical learning algorithm, with a risk bound.
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3.2 Converting Online to Batch

To obtain a statistical learning algorithm, with risk guarantees, we assume that the sequence
of examples presented to the modified Perceptron algorithm is a training set sampled i.i.d
from the underlying distributionD. We turn to the simple averaging technique presented
in [5] and definew̄ = 1

m

∑m
i=1 wi−1 and b̄ = 1

m

∑m
i=1 bi−1. (w̄, b̄) is called theaverage

hypothesis, and defines our robust classifier. We use the derivation in [5] to prove that the
average classifier provides an adequate solution to our original problem.

Note that the loss function we use, defined in Eq. (29), is bounded and convex in its first
two arguments. Using [5, Corollary 2], we have that for anyδ > 0, with probability at least
1 − δ

2 over the random sampling ofS, the average hypothesis(w̄, b̄) satisfies

E(x,y)∼D

[

ξ(w̄, b̄,x, y)
]

≤ 1

m

m
∑

i=1

ξ(wi, bi;xi, yi) + (2C + φ)

√

ln( 2
δ )

2m
. (33)

Setting

(w⋆, b⋆) = arg min
(w,b)

E(x,y)∼D [ξ(w, b;x, y)] s.t. ‖w‖∞ ≤ C and |b| ≤ C ,

we use Hoeffding’s bound to get, for anyδ > 0, with probability at least1 − δ
2 over the

random sampling ofS, that

1

m

m
∑

i=1

ξ(w⋆, b⋆;xi, yi) ≤ E(x,y)∼D

[

ξ(w⋆, b⋆;x, y)
]

+ (2C + φ)

√

ln( 2
δ )

2m
. (34)

Finally, using the union bound, Eq. (33) and Eq. (34) hold simultaneously with probability
at least1 − δ. Combining Eq. (33) and Eq. (34) with the inequality in Thm. 4proves the
following corollary.

Corollary 2 For anyδ > 0, with probability at least1 − δ over the random sampling ofS,
our algorithm constructs(w̄, b̄) such thatE(x,y)∼D

[

ξ(w̄, b̄,x, y)
]

is at most

min
(w,b)∈H

E [ξ(w, b;x, y)] + (3C + φ)

√

2(n + 1 + ln( 2
δ ))

m
,

whereφ = maxJ:V ([n]\J)≤N

(

V (J)/P
)

, and H is the set of all pairs(w, b) such that
‖w‖∞ ≤ C and |b| ≤ C.

Using the fact that the hinge loss upper-bounds the indicator function of a prediction mis-
take, regardless of the adversary’s choice of the feature set, we have that the expected hinge
loss upper-boundsR(w̄, b̄).

4 Experiments

In this section, we experimentally investigate the efficacyof our two proposed algorithms
in the face of feature-deleting and feature-corrupting adversaries. We use LP when referring
to our linear programming based approach and O2B when referring to our online-to-batch
based approach. We compare the performance of these algorithms with the performances of
the following two algorithms:
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Fig. 1 Results of the synthetic experiment based on feature redundancy. For each value ofN , we report
average results over the10-fold cross validation, as well as standard deviation. The left figure displays the
results for the feature deletion scenario, whereas the right figure displays the results for the feature corruption
scenario.

SVM - A linearL2 support vector machine (using SVMlight [12]), which is trained with-
out regard to feature deletion/corruption in the test set. This algorithm allows us to study
the effect an adversary might have on a generic learning algorithm that is not tailored to
this setting.

TGRS - The robust learning algorithm presented in [10]. Concretely, we implemented
the efficient version of this algorithm, using a stochastic gradient-descent algorithm, as
described in [18]. As far as we know, this algorithm represents the current state-of-the-
art for the setting considered in this paper.

In all of our experiments, we simulated the adversary by greedily choosing the most
valuable features for each example, until the limit ofN is reached. Specifically, the adversary
sorts the features in descending order byywjxj/vj , and considers them one by one. He
chooses to remove/corrupt featurej if ywjxj > 0, and the noise limitN is still respected
after the removal. These chosen features are then either replaced with zeros, or replaced with
random Gaussian noise with the same mean and variance as the original feature.

4.1 Illustrative Synthetic Experiments

We begin with two illustrative synthetic experiments, which are meant to cleanly demon-
strate the importance of robust classification when one is faced with missing and corrupted
features. The first experiment is as follows: We generated a synthetic dataset of1000 linearly
separable instances inR20 and added label noise by flipping each label with probability0.2.
Then, we added two copies of the actual label as additional features to each instance, for a
total of22 features. We randomly split the data into equally sized training and test sets, and
trained an SVM classifier on the training set. We setvj = 1 for j ∈ [20] andv21 = v22 = 10,
expressing our prior knowledge that the last two features are more valuable. Using these fea-
ture values, we applied our LP-based algorithm with different values of the parameterN .
We removed one or both of the high-value features from the test set and evaluated the clas-
sifiers. With only one feature removed both SVM and our approach attained a test error of
zero. With two features removed, the test error of the SVM classifier jumped to0.477±0.004

(over100 random repetitions of the experiment), indicating that it essentially put all of its
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weight on the two perfect features. With the noise parameterset toN = 20, our approach
attained a test error of only0.22 ± 0.002. This is only marginally above the best possible
error rate for this setting.

Our second synthetic experiment focused on the way our approach utilizes feature re-
dundancy. The datasets for this experiment was created as follows: We started by creating a
linearly separable sample{(ui, yi)}200

i=1, where eachui is a column vector inR3. This was
done by sampling points from a standard Gaussian distribution in R

n, choosing a random
hyperplane inRn and using it to label the points, and finally removing points whose distance
from the hyperplane was less than1. Next, we generated a random matrixA of size40 × 3

and setxi = Aui for all i. The result is a set of instances inR
40 with a large amount of

feature redundancy. Formally, any3 features out of the40 suffice to linearly separate the
sample, with probability1. We then added random Gaussian noise to each feature, where
the noise distribution used for featurej wasN (0, 0.15j). In other words, the magnitude
of noise increased with the feature index, making the quality of the various features less
homogeneous.

We trained classifiers using the LP algorithm, the TGRS algorithm, and the SVM al-
gorithm, on10 random train-test splits, with different values of the noise parameterN .
Parameter tuning, using logarithmic grid search, was done based on a held-out validation set
taken from the training data. We simulated the adversary with the appropriate level ofN for
each classifier, and the results of this experiment are displayed in Fig. 1.

It is readily seen that our LP algorithm produces a classifierconsiderably more robust
than SVM. SVM put a significant portion of its weight on a smallnumber of highly in-
formative features, and did not take full advantage of the feature redundancy of the data.
Compared to the TGRS algorithm, we achieve similar results in the feature deletion sce-
nario, and superior results in the feature corruption scenario.

4.2 Main Experimental Results

Our main set of experiments were conducted using the following publicly available datasets:

breast : The Breast Cancer Wisconsin (Diagnostic) Dataset from theUCI repository
[1]. This dataset specifies characteristics of cell nuclei,and the goal is to characterize a
tumor as either malignant or benign. The datasets contains 569 instances, of which 357
are benign and 212 are malignant, with 10 features each.

spam : The Spambase Dataset from the UCI repository [1], which contain e-mails (de-
scribed mostly by word counts) classified as either spam or non-spam. The dataset con-
tains 4601 instances, with 57 features each.

usps : The training set of the USPS dataset of handwritten digits [11], which contains
9298 images, each assigned one of ten possible labels. Each image is represented by a
16 × 16 gray-scale pixel-map, for a total of 256 features. Since ouralgorithms are de-
signed to deal with binary classification problems, we constructed a binary dataset from
each pair of labels, for a total of

(10
2

)

= 45 different problems.

mnist : The MNIST dataset of handwritten digits [13], which contains 70,000 images.
Each image is represented by a26 × 26 gray-scale pixel-map, for a total of 784 fea-
tures. As with the previous dataset, we used this dataset to generate45 different binary
classification problems.
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We deliberately chose datasets of various sizes and with different levels of feature redun-
dancy. As a rule of thumb, it should be expected that high-dimensional datasets, those con-
taining many features, will have more feature redundancy. Thus, even if the same fraction
of features is deleted or corrupted, better results are expected on high-dimensional datasets.
This intuition is substantiated in the results reported below. We tested both feature deletion
and feature corruption scenarios with all datasets.

The summary of our empirical results is as follows. Our algorithms significantly outper-
form SVM in all but one experiment, which involved feature corruption with thebreast
dataset. In this one case, all of the tested algorithms performed equally well. On thebreast
andspam datasets, where feature redundancy is not especially high,the performance of our
algorithms is indistinguishable from the state-of-the-art TGRS algorithm. In other words,
the moderate level of feature redundancy in these datasets leaves little room to improve over
the TGRS classifier. However, on theusps andmnist datasets, where feature redundancy
is higher, our algorithms significantly outperform TGRS in both feature deletion and feature
corruption scenarios. In the remainder of this section, we present these results in detail.

An important decision we had to make when conducting these experiments is how to
choose the valuevi associated with each feature. Recall that these values represent the im-
portance of the respective features to our classification problem, and that the adversary uses
these values to determine how much damage he is allowed to inflict. The simplistic choice
of setting all of these values to1 is unsuitable for some of the datasets considered here. For
example, when our features represent pixels in an image, thecorner pixels are much less in-
formative than the features in the center of the image. We used a heuristic, based on mutual
information, to set these values. Formally, we setvj to be

vj = 1
Z max

c∈R

I
(

[[Xj > c]]; Y
)

,

where(Xj , Y ) are random variables jointly distributed according to the uniform distribution
over the set{(xi,j , yi)}m

i=1, and whereZ is set such that
∑

vj = n. Roughly speaking,
our heuristic calculates the information contained in the optimal linear threshold function
applied to each individual feature.

On some datasets, such asspam , we observe that most of the features are equally
important, and settingvj using this heuristic is not different than settingvj = 1 for all j. On
other datasets, such asmnist , settingvj = 1 for all j enables the adversary to completely
devastate our classifiers, as well as the classifiers trainedusing SVM and TGRS, even with
small values ofN . It is reasonable to assume that prior knowledge on the importance of each
feature could be used to make important features less susceptible to malicious corruption. In
the image recognition example given above, we could conceivably use a more fault tolerant
sensor on the important pixels. In our formulation of the learning problem, the varying
importance of different features is precisely captured by our non-uniform choice ofvj .

We tested robustness to both feature deletion and feature corruption on ten different
train-test splits. We performed parameter tuning over a logarithmic grid of candidate param-
eters, using a held-out validation set taken from the training data. The first dataset tested
was the relatively smallbreast dataset, with the results displayed in Fig. 2. In the feature
deletion scenario, all noise-robust algorithms perform approximately the same, and better
than the standard SVM. Once more, this shows the importance of robustness to feature dele-
tion at test time. In the feature corruption scenario, however, the results are noisy, without
a significant difference in the performance of the algorithms. This should not come as too
much of a surprise, due to the low dimension of this dataset. In this setting, it is very difficult
to overcome random Gaussian noise even when it is applied to asmall number of features.
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Fig. 2 Results of thebreast dataset, for different values ofN , with standard error. The left figure dis-
plays the results for the feature deletion scenario, whereas the right figure displays the results for the feature
corruption scenario.
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Fig. 3 Averaged results over10 train-test splits of thespam dataset, for different values ofN , with standard
error. The left figure displays the results for the feature deletion scenario, whereas the right figure displays
the results for the feature corruption scenario.

In the largerspam dataset, the results are better than thebreast dataset (see Fig. 3). In
both the feature deletion and feature corruption scenario,our algorithm outperforms SVM,
but still achieve approximately the same accuracy as TGRS.

For the digit datasets,usps andmnist , we performed an all-pairs experiment, namely,
we tested the performance of the algorithms on the binary classification problem defined by
every possible digit pair (45 pairs in all). We present the average results over all digit pairs
for both feature deletion and feature corruption in Fig. 4 and Fig. 6. We also present the
results for each individual digit pair in the feature deletion scenario in Fig. 5 and Fig. 7. In
all cases considered, our proposed algorithm clearly achieved better results than both SVM
and TGRS.

5 Discussion

We presented two learning algorithms that anticipate adversarial feature deletion and feature
corruption at classification time. A common idea behind bothalgorithms is that they simu-
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Fig. 4 Averaged results over10 train-test splits on theusps dataset for different values ofN , with standard
error. The results displayed here are averaged over all 45 digit pairs. The left figure displays the results for
the feature deletion scenario, whereas the right figure displays the results for the feature corruption scenario.
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Fig. 5 Averaged results over10 train-test splits on theusps dataset in the feature deletion scenario, for
different values ofN , with standard error. Plot in row i and column j represent classification results on a
dataset composed of digits i and j.
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Fig. 6 Averaged results over10 train-test splits on themnist dataset for different values ofN , with standard
error. The results displayed here are averaged over all 45 digit pairs. The left figure displays the results for
the feature deletion scenario, whereas the right figure displays the results for the feature corruption scenario.
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Fig. 7 Averaged results over10 train-test splits on themnist dataset in the feature deletion scenario, for
different values ofN , with standard error. Plot in row i and column j represent classification results on a
dataset composed of digits i and j.
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late the actions of the adversary on the training data, and useL∞ regularization to promote
classifier density. Both algorithms come with statistical risk bounds, despite the fact that the
algorithms encounter different distributions at trainingtime and at classification time. Our
experiments demonstrate a significant improvement over SVMacross the board, and a sig-
nificant improvement over the current state-of-the-art technique on problems with sufficient
feature redundancy.

Our two algorithms come with similar theoretical guarantees and perform comparably
well in practice. The LP approach seems to have better accuracy when features are deleted,
while the O2B algorithm performs better in the feature corruption scenario. A main techni-
cal difference between the two algorithms is their use of memory: our interior point solu-
tion keeps the entire linear program in memory while the online-to-batch algorithm streams
through the data and has a constant-size memory footprint. For example, applying our im-
plementation of the interior point LP solver to the MNIST dataset required a server with
a 16GB memory. Additionally, the online-to-batch solutionis simpler and easier to imple-
ment. These advantages make the online-to-batch approach amore practical solution. On
the other hand, in the feature deletion scenario, the LP approach seems to be more accurate.

This work focuses on static adversaries, which do not evolveand improve with time.
An interesting extension of this work would be to deal with adaptive adversaries, which
corrupt features one by one over time. Our online-to-batch approach could serve as a useful
starting-point for this research direction, as it uses an online learning algorithm as its main
building block. Although time is not an explicit component in our model, our algorithms can
still be useful when the adversary adapts. Concretely, consider the spam filtering example
described in the introduction, and assume that the spammer corrupts features one by one.
After enough time goes by and enough features become permanently damaged, our only
option is to design new features and to retrain a new classifier. This is inevitable in any
“arms-race” with an adversary. However, a robust classifieris able to survive for a longer
period of time before it must be replaced. By deliberately hedging our bets across many
features, we are able to slow down the arms-race cycle and to give ourselves more time to
respond to new attacks.

On a more general note, our work seems to have an interesting duality with a recent
trend in machine learning research, which is to develop sparse classifiers supported on a
small subset of the features. In our setting, we are interested in the exact opposite, and the
efficacy of using theL∞ norm is clearly demonstrated in our theory and in our empirical
evaluation. The trade-off between robustness and sparsityprovides fertile ground for future
research.

Acknowledgements We thank the anonymous reviewers of this paper for helpful comments and suggestions.
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A Proof of Lemma 1

We prove claim (a) by proving its counter-positive, namely, we assume that there exists a feature subsetJ
with V ([n] \ J) ≤ N for which Eq. (5) does not hold, and we prove thatθ < −ξi. Setτ ′

j = 1 for all j ∈ J

andτ ′

j = 0 for all j ∈ ([n] \ J). We now have that,

θ ≤ yib +

n
∑

j=1

τ ′

j

(

yiwjxi,j −
vj

P

)

< −ξi ,

where the first inequality follows from the fact that the vector (τ ′

1, . . . , τ ′
n) is a feasible point of Eq. (7), and

the second inequality follows from the assumption thatJ violates Eq. (5) and from
∑n

j=1 τ ′

jvj = V (J).
Moving on to claim (b), letτ be a minimizer of Eq. (7) and lets be the number of elements ofτ in

(0, 1). If s ≤ 1 then there is nothing to prove, so we assume thats ≥ 2. We prove claim (b) by showing we
can find another minimizer of Eq. (7), which we denote byτ ′, with at mosts − 1 elements in(0, 1).

First, we deal with some very simple cases. Ifτj ∈ (0, 1) andwjxi,j = 0, then setτ ′

j = 1, and set
the remaining elements ofτ ′ equal to the respective elements inτ . The new vectorτ ′ clearly satisfies the
constraints of Eq. (7), while obtaining an objective function less than or equal to that ofτ . We conclude that
τ ′ is a minimizer of Eq. (7) with at mosts − 1 non-integer elements. Ifwjxi,j 6= 0 butvj = 0 then define

τ ′

j =

{

1 if yiwjxi,j < 0
0 otherwise

,

and set the remaining elements ofτ ′ equal to the respective elements inτ . Again, we have found a minimizer
of Eq. (7) with at mosts − 1 non-integer elements. Having dealt with these simple cases first, we can now
assume thatwjxi,j 6= 0 and that butvj > 0.

If s ≥ 2, assume without loss of generality that0 < τ1 < 1 and0 < τ2 < 1. Using our assumption
thatv1 > 0 andv2 > 0, we assume without loss of generality that

yiw1xi,1

v1
≤

yiw2xi,2

v2
. (35)

We deal with two separate cases. First, ifτ1+(τ2v2/v1) ≤ 1 then defineτ ′

1 = τ1+(τ2v2/v1), τ ′

2 = 0,
andτ ′

j = τj for all j ∈ {3, . . . , n}. We now have that
∑n

j=1 τ ′

jvj =
∑n

j=1 τjvj , soτ ′ is a feasible point
of Eq. (7). On the other hand, using the assumption in Eq. (35),we also have that(τ2v2/v1)yiw1xi,1 ≤
τ2yiw2xi,2, and therefore

yi

n
∑

j=1

τ ′

jwjxi,j ≤ yi

n
∑

j=1

τjwjxi,j .

Once again, using the fact that
∑n

j=1 τ ′

jvj =
∑n

j=1 τjvj , we conclude that

yib +
∑n

j=1 τ ′

j

(

yiwjxi,j −
vj

P

)

≤ yib +
∑n

j=1 τ ′

j

(

yiwjxi,j −
vj

P

)

,

and thereforeτ ′ is a minimizer of Eq. (7) with at mosts − 1 elements in(0, 1).
The second case is whereτ1 + (τ2v2/v1) > 1. In this case, setτ ′

1 = 1, τ ′

2 = τ2 − (1 − τ1)v1/v2,
and once again,τ ′

j = τj for all j ∈ {3, . . . , n}. Our assumptions imply thatτ2 > τ ′

2 > 0, and by definition
we have

∑n
j=1 τ ′

jvj =
∑n

j=1 τjvj . Therefore,τ ′ is a feasible point of Eq. (7). We can rewrite

yi

n
∑

j=1

τ ′

jwjxi,j = yi

n
∑

j=1

τjwjxi,j +
(

(1 − τ1)yiw1xi,1 − v1

v2

(1 − τ1)yiw2xi,2

)

.

Using Eq. (35), we know that the term in brackets above is non-positive. We conclude that the value of the
objective function obtained byτ ′ is smaller or equal to the value obtained byτ . Again, we conclude thatτ ′

is a minimizer of Eq. (7) with onlys − 1 elements in(0, 1). This concludes the proof of claim (b).
Finally, we turn to proving claim (c). We assume thatvj ∈ {0, 1} for all j ∈ [n] and thatN is an

integer. One direction of the claim follows from claim (a), so we focus on the other direction, namely, we
assume that Eq. (5) holds for allJ with V ([n] \ J) ≤ N , and we proveθ ≥ −ξi. As we have just shown,
there exists a minimizer of Eq. (7), which we now denote byτ , that has at most one element in(0, 1).
If all of the elements ofτ are integers thenτ is also a solution to Eq. (6). As we have previously seen,
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checking that the value of Eq. (6) upper bounds−ξi is equivalent to verifying that Eq. (5) holds for allJ with
V ([n] \ J) ≤ N . Therefore, we assume without loss of generality that0 < τ1 < 1, and thatτj ∈ {0, 1}
for all j ∈ {2, . . . , n}. It must be the case that

yiw1xi,1 −
v1

P
≥ 0 , (36)

since otherwise we could decrease the objective function byincreasingτ1, without violating any of the
constraints in Eq. (7). That would be in contradiction to ourassumption thatτ attains a global minimum.
Now defineτ ′

1 = 0 andτ ′

j = τj for all j ∈ {2, . . . , n}. We know that
∑n

j=1 τjvj ≥ P and we assumed
thatP is an integer. Therefore,









n
∑

j=1

τjvj







 ≥ P .

Now note that the left-hand side above equals
∑n

j=1 τ ′

jvj , and thereforeτ ′ is a feasible point of Eq. (7).
Using Eq. (36), we have that

yib +
∑n

j=1 τ ′

j

(

yiwjxi,j −
vj

P

)

≤ yib +
∑n

j=1 τ ′

j

(

yiwjxi,j −
vj

P

)

,

andτ ′ is a minimizer of Eq. (7) whose elements all have values in{0, 1}. If θ < −yib − ξi then define
J = {j : τ ′

j = 1}, and

yib +
∑

j∈J

(

yiwjxi,j −
vj

P

)

= yib +
∑n

j=1 τ ′

j

(

yiwjxi,j −
vj

P

)

= θ < − ξi .

Rearranging terms above gives

yi

(

b +
∑

j∈J wjxi,j

)

<
V (J)

P
− ξi .

This concludes our proof.

B Flop Counts for Solving the Normal Equation

In this appendix we give detailed analysis of the flop counts for solving the normal equation (13). We first go
through the four steps of the block-elimination approach:

1. We solve the linear equations (15) using thefactor-solveapproach (e.g., [3, Appendix C.2]). First we
conduct the Cholesky factorization

AiDiA
T
i + Dm+i = LiL

T
i

whereLi is a lower-triangular matrix. Then we do forward and backwardsubstitutions (the solve step):

Liz̃i = ri, L
T
i zi = z̃i.

Let f be the flop count for the factorization ands be the flop count for the solve step (two substitutions).
The total flop count for this step ism(f + s).

2. To form the Schur complement in (16), we first compute the matrices(AiDiA
T
i +Dm+i)

−1AiDiBi

by solving a linear system like (15) for each column ofAiDiBi. Since the factorsLi have been pre-
computed in step 1, we only needn + 1 solve steps, which lead to a flop count of(n + 1)s for eachi.
Multiplication by the sparse matrixBiDiA

T
i (which has the same sparsity asAT

i ) takes5(n + 1)2

flops. Together with them matrix additions, each with a cost(n + 1)2, the total flop count for forming
the matrixS is m((n + 1)s + 6(n + 1)2).

3. Forming the right-hand side vector in (17) takes6m(n+1) flops. The Cholesky factorization ofS takes
(1/3)(n + 1)3 flops, and the two triangular solves take2(n + 1)2 flops. So the dominant flop count for
this step is6m(n + 1) + (1/3)(n + 1)3.

4. In the substitution step, we first compute the second term onthe right-hand side of the equation (18). For
eachi, this takess flops using a solve step with pre-computed factorsLi. The vector subtraction takes
(n + 2) flops for eachi. The total flop count for this step ism(s + n + 2).
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The overall flop count for the block elimination approach is dominated by

m
(

f + (n + 3)s + 6(n + 1)2
)

+ (1/3)(n + 1)3. (37)

Now let’s take a closer look at the flop countsf ands for solving the linear systems in (15). The matrices
AiDiA

T
i + Dm+i are all dense with sizen + 2 by n + 2. Without exploiting further structure, we have

the factorization costf = (1/3)(n + 2)3, and the solve step costss = 2(n + 2)2 (see, e.g., [19]). Thus
the overall flop count in (37) is dominated by(7/3)m(n + 2)3, or O(mn3). The corresponding storage
requirement would beO(mn2).

By further exploiting the arrow-plus-rank-one structure,instead of solving the dense linear systems
in (15) directly, we solve the two sparse linear systems in (20) and then use the rank-one update formula (21).
To solve the two sparse linear systems, we need one factorization step and two solve steps. Cholesky factor
of Wi has the same sparsity as the lower triangular part ofWi (no fill-in), and it only costs3(n + 2) flops
to compute. Each solve step costs6(n +2) flops. The rank-one update in (21) also costs6(n +2) flops. The
corresponding values forf ands in (37) aref = 3(n + 2) ands = 18(n + 2). Therefore, the dominating
terms in the complexity analysis is24m(n+2)2+(1/3)(n+1)3, or simplyO(mn2) (under the assumption
m > n). It is easy to check that, by only storing the sparse matricesWi and vectorsui instead of the dense
matricesAiDiA

T
i + Dm+i, the storage cost is reduced toO(mn).


