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Abstract

The Information Bottleneck is an information theoretic framework that finds
concise representations for an ‘input’ random variable that are as relevant as
possible for an ‘output’ random variable. This framework has been used success-
fully in various supervised and unsupervised applications. However, its learning
theoretic properties and justification remained unclear as it differs from stan-
dard learning models in several crucial aspects, primarily its explicit reliance on
the joint input-output distribution. In practice, an empirical plug-in estimate
of the underlying distribution has been used, so far without any finite sample
performance guarantees. In this paper we present several formal results that
address these difficulties. We prove several finite sample bounds, which show
that the information bottleneck can provide concise representations with good
generalization, based on smaller sample sizes than needed to estimate the under-
lying distribution. The bounds are non-uniform and adaptive to the complexity
of the specific model chosen. Based on these results, we also present a prelimi-
nary analysis on the possibility of analyzing the information bottleneck method
as a learning algorithm in the familiar performance-complexity tradeoff frame-
work. In addition, we formally describe the connection between the information
bottleneck and minimal sufficient statistics.

Key words: Statistical Learning Theory, Information Theory, Information
Bottleneck, Sufficient Statistics

1. Introduction

The Information Bottleneck (IB) method, introduced in [22], is an information-
theoretic framework for extracting relevant components of an ‘input’ random
variable X, with respect to an ‘output’ random variable Y . This is performed
by finding a compressed, non-parametric and model-independent representation
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T of X, that is most informative about Y . Formally speaking, the notion of
compression is quantified by the mutual information between T and X, while
the informativeness is quantified by the mutual information between T and Y .
A scalar Lagrange multiplier � smoothly controls the tradeoff between these
two quantities.

The method has proven to be useful for a number of important applications
(see [23, 7, 20] and references therein), but its learning theoretic justification has
remained unclear, for two main reasons: (i) The method assumes that the joint
distribution of X and Y is known, and uses it explicitly. This stands in contrast
to most finite-sample based machine learning algorithms. In practice, the em-
pirical co-occurrence distribution is used to calculate a plug-in estimate of the
IB functional, but without explicit regularization, finite-sample generalization
bounds or error guarantees of any kind. Moreover, it was not clear what is left
to be learned if it is assumed that this distribution is known. (ii) IB is formally
related to classical information theoretic problems, such as Rate-Distortion the-
ory and Coding with Side-Information. It is, however, unclear why maximizing
mutual information about Y is useful for any “natural” learning theoretic model,
and in particular how it is related to classification error.

In this paper we provide rigorous answers to some of the above issues con-
cerning the IB framework. We focus on a learning theoretic analysis of this
framework, where X and Y are assumed to be discrete, and the empirical dis-
tribution of p(x, y) is used as a plug-in for the true distribution. We develop
several finite sample bounds, and show that despite this use of plug-in estima-
tion, the IB framework can actually generalize quite well, with realistic sample
sizes that can be much smaller than the dimensionality of this joint distribution,
provided that we are looking for a reasonably simple representation T of our
data. In fact, it is exactly the reliance of the framework on explicit manipula-
tion of the joint distribution that allows us to derive non-uniform bounds that
are adaptive to the complexity of the specific model chosen. In addition, we
present a preliminary analysis regarding the question in which settings the in-
formation bottleneck can be seen as a standard learning algorithm, trading off a
risk-like term and a regularization term controlling the generalization. Finally,
we discuss its utility as a natural extension of the concept of minimal sufficient
statistics for discrimination.

The paper is organized as follows. In Sec. 2, we formally present the infor-
mation bottleneck framework and the notation used in the paper. We then turn
to analyze its finite sample behavior in Sec. 3. Sec. 4 discusses the characteris-
tics of the information bottleneck as a learning algorithm, while its relation to
minimal sufficient statistics is considered in Sec. 5. The proofs are presented in
Sec. 6, and we finish with a discussion in Sec. 7.

2. The Information Bottleneck Framework

In this section we explain and formally describe the basic information bot-
tleneck (IB) framework. This framework has several variants and extensions,
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both to multivariate variables and to continuous representations (see [19, 3] for
more details), but these are not the focus of this paper.

The IB framework attempts to find a simple representation of one random
variable X through an auxiliary variable T , which is relevant to another random
variable Y . Let us first exemplify how the IB method can be used for both
supervised and unsupervised learning. Consider the area of text analysis. A
typical unsupervised problem can be clustering documents based on their word-
statistics in order to discover similarities and relationships between them. In
this case the X variable is taken as the document identity (typically considered
as “bags of words”) and the Y as the words in the documents. In this case, the
T variable will be clusters of documents with similar word-statistics, based, for
instance, on the “the two sample problem” [12] similarity measure.

In a typical supervised application in this domain, X can denote the words
while Y are topic-labels of the documents. Here T are clusters of words that are
(approximately) sufficient for document categorization [23]. In all the applica-
tions a variable � allows us to smoothly move between a low resolution - highly
compressed - solution, to a solution with higher resolution and more information
about Y . This form of dimensionality reduction, a special case of the informa-
tion bottleneck, was introduced under the name of distributional clustering in
[17], and has proven to be quite effective in analyzing high dimensional data
[2, 15].

In this work, we assume that X and Y take values in the finite sets X and
Y respectively, and use x and y respectively to denote elements of these sets.
The basic quantity that is utilized in the IB framework is Shannon’s mutual
information between random variables, which for discrete variables is formally
defined as:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
.

Mutual information can be shown to be the unique measure of informative-
ness, up to a multiplicative constant, under very mild assumptions (see [19],
Section 1.2.3). The IB functional is built upon the relationship between mini-
mal sufficiency and information. It captures a tradeoff between minimality of
the representation of X, achieved by minimizing I(X;T ), and sufficiency of in-
formation on Y , achieved by constraining the value of I(Y ;T ). The auxiliary
variable T is thus determined by the minimization of the IB-Lagrangian

ℒIB [p(t∣x)] = I(X;T )− �I(Y ;T ) (1)

with respect to the mapping p(t∣x). T is subject to the Markov chain relation
T −X − Y , and p(t∣x) is subject to the obvious normalization constraints. The
tradeoff parameter � is a positive Lagrange multiplier associated with the con-
straint on I(Y ;T ). Formally, T is defined over some space T , but the elements
of this space are arbitrary - only the probabilistic relationships between T and
X,Y are relevant.

The solutions of this constrained optimization problem are characterized by
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the bottleneck equations,⎧⎨⎩ p(t∣x) = p(t)
Z(�,x) exp(−�DKL[p(y∣x)∥p(y∣t)])

p(t) =
∑
x∈X p(t∣x)p(x)

p(y∣t) =
∑
x∈X p(y∣x)p(x∣t) ,

(2)

where DKL is the Kullback-Leibler divergence and Z(�, x) is a normalization
function. These equations need to be satisfied simultaneously, given p(x, y) and
�. In [22] it is shown that alternating iterations of these equations converge - at
least locally - to a solution for any initial p(t∣x), similar to the Arimoto-Blahut
algorithm in information theory [4]. In [8] it is shown that the set of achievable
p(x, y, t) distributions form a strictly convex set in the (I(X;T ), I(Y ;T )) plane,
bounded by a smooth optimal function - the information curve - similar to the
rate-distortion function in source coding. By increasing the value of � one can
move smoothly along this curve from the trivial, I(X;T ) = I(Y ;T ) = 0 solution
at the origin, all the way to the most complex solution where T captures all the
relevant information from X and I(X;T ) = H(X), H(X) denoting the entropy
of X. In addition, as � is increased, I(Y ;T ) increases and T captures more
information on Y . Due to the data-processing inequality, I(Y ;T ) ≤ I(X;Y ),
with equality only when T becomes an exact sufficient statistic for Y . The
tradeoff inherent in Eq. (1) forces us to find a simple representation T of X,
which preserves only those aspects of X which are informative, i.e. relevant,
about Y .

It should be emphasized that despite superficial similarities, IB is not a hid-
den variable model. In such models, we assume that the joint distribution p(x, y)
can be factorized using an auxiliary random variable T , forming a Markovian re-
lation X−T −Y . In IB, we make no generative assumption on the distribution,
and the Markovian relation is T −X−Y . Namely, T is a generic compression of
X, and the information-curve is characterized by the joint distribution p(x, y)
independently of any modeling assumptions.

An important observation is that the effective cardinality of an optimal T is
not fixed and depends on �. When � ≤ 1, even a trivial T of cardinality 1 will
optimize Eq. (1), since we always have I(Y ;T ) ≤ I(X;T ). On the other hand,
as � increases, more emphasis is put on informativeness with respect to Y , and
the cardinality of T will increase, although the cardinality of an optimal T need
not exceed the cardinality of X, as proven in [9].

In order to optimize Eq. (1) we need to calculate the quantities I(X;T ) and
I(Y ;T ) for any chosen T and �. Since T is defined only via X, we need to
know p(x, y) in order to calculate these two quantities. In most applications,
however, p(x, y) is unknown. Instead, we assume that we have an i.i.d sample
of m instances drawn according to p(x, y), and we use this sample to create
a maximum-likelihood estimate of the distribution using p̂(x, y), the empirical
distribution of the sample. Following current practice, this empirical estimate
is then plugged into the calculation of I(X;T ) and I(Y ;T ) instead of the true
joint distribution, and Eq. (1) is optimized using this plug-in estimate. In
general, we use the ˆ symbol to denote quantities calculated using p̂(x, y)
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instead of p(x, y). Thus, instead of calculating I(X;T ) and I(Y ;T ) precisely,
we rely on the empirical estimates Î(X;T ) and Î(Y ;T ) respectively. These
quantities depend on p(t∣x), which is known and chosen by us, and the empirical
distribution p̂(x, y). In this work, we investigate how much these empirical
estimates can deviate from the true values when we optimize for T - in other
words, whether this plug-in practice is justified. Note that the sample size m
is often smaller than the number of bins ∣X ∣∣Y∣, and thus p̂(x, y) can be a very
poor approximation to p(x, y). Nevertheless, this is precisely the regime we are
interested in for many applications, text categorization to name one.

3. Finite Sample Analysis

We begin our analysis by focusing on the finite-sample behavior of the IB
framework, and in particular on the relationship between I(X;T ) and I(Y ;T )
that appear in Eq. (1) and their empirical estimates Î(X;T ) and Î(Y ;T ).

Our first result shows that for any fixed T defined as a random mapping
of X via p(t∣x), it is possible to determine the value of the objective function
Eq. (1) within reasonable accuracy based on a random sample. The proof is
provided in Sec. 6.1.

Theorem 1. Let T be a fixed probabilistic function of X into an arbitrary finite
target space, determined by a fixed and known conditional probability distribution
p(t∣x). Let S be a sample of size m drawn from the joint probability distribution
p(X,Y ). For any confidence parameter � ∈ (0, 1), it holds with a probability of
at least 1− � over the sample S that

∣I(X;T )− Î(X;T )∣ ≤
(∣T ∣ log(m) + log(∣T ∣))

√
log(4/�)√

2m
+
∣T ∣ − 1

m
,

and that

∣I(Y ;T )− Î(Y ;T )∣ ≤
(3∣T ∣+ 2) log(m)

√
log(4/�)√

2m
+

(∣Y∣+ 1)(∣T ∣+ 1)− 4

m
.

Note that the theorem holds for any fixed T , not just ones which optimize
Eq. (1). In particular, the theorem holds for any T found by an IB algorithm,
even if T is not a globally optimal solution.

The theorem shows that estimating the objective function for a certain so-
lution T is much easier than estimating p(x, y). Indeed, the bound does not
depend on ∣X ∣, which might even be countably infinite. In addition, it depends
on ∣Y∣ only as a second-order factor, since ∣Y∣ is multiplied by 1/m rather than
by 1/

√
m. The complexity of the bound is thus mainly controlled by ∣T ∣. By

constraining ∣T ∣ to be small, or by setting � in Eq. (1) to be small enough so
that the optimal T has low cardinality, a tight bound can be achieved.

Thm. 1 provides us with a bound on a certain pre-specified T , where the
sample S is not part of the process of selecting T . The next theorem is a full
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generalization bound, determined by the sample when it is used as a training
set by which T is selected.

In order to present the theorem compactly, we will use some extra notation.
Let x1, . . . , x∣X ∣ be some fixed ordering of the elements of X , and y1, . . . , y∣Y∣ be
an ordering of the elements of Y. We use the shorthand p(T = t∣x) to denote
the vector (p(t∣x1), . . . , p(t∣x∣X ∣)). In a similar manner, we denote the vector

(Ĥ(T ∣y1), . . . , Ĥ(T ∣y∣Y∣)) by Ĥ(T ∣y) where Ĥ(T ∣yi) is the entropy of p̂(T ∣yi).
The vector (H(T ∣x1), . . . ,H(T ∣xX )) is denoted by H(T ∣x), where H(T ∣xi) is
the entropy of p(T ∣xi). Note that p(T ∣xi) is known as it defines T , and thus
does not need to be estimated empirically.

For any real-valued vector a = (a1, . . . , an), we define the function V (a) as
follows:

V (a) = ∥a− 1

n

n∑
j=1

aj∥2 ≜
n∑
i=1

⎛⎝ai − 1

n

n∑
j=1

aj

⎞⎠2

, (3)

where ∥ ⋅ ∥ signifies the standard Euclidean norm (here and in the rest of the
paper). Note that 1

nV (a) is simply the variance of the elements of a. In addition,
we define the real-valued function � as follows:

�(x) =

⎧⎨⎩
0 x = 0

x log(1/x) 0 < x ≤ 1/e

1/e x > 1/e.

(4)

Note that � is a continuous, monotonically increasing and concave function.

Theorem 2. Let S be a sample of size m drawn from the joint probability dis-
tribution p(X,Y ). For any confidence parameter � ∈ (0, 1), it holds with a
probability of at least 1− � over the sample S that for all T , ∣I(X;T )− Î(X;T )∣
is upper bounded by√

C log(∣Y∣/�) ⋅ V (H(T ∣x))

m
+
∑
t

�

(√
C log(∣Y∣/�) ⋅ V (p(T = t∣x))

m

)
, (5)

and ∣I(Y ;T )− Î(Y ;T )∣ is upper bounded by√
C log(∣Y∣/�) ⋅ V (Ĥ(T ∣y))

m
+ 2

∑
t

�

(√
C log(∣Y∣/�) ⋅ V (p(T = t∣x))

m

)
, (6)

where V and � are defined in Eq. (3) and Eq. (4), and C is a small constant.

As in Thm. 1, this theorem holds for all T , not just those optimizing Eq. (1).
Also, the bound enjoys the advantage of not being uniform over a hypothesis
class of possible T ’s, but rather depending directly on the T of interest. This
is achieved by avoiding standard uniform complexity tools (see the proof for
further details).
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Intuitively, these bounds tell us that the ‘smoother’ T is with respect to X,
the tighter the bound. To see this, assume that for any fixed t ∈ T , p(t∣x)
is more or less the same for any choice of x. By definition, this means that
V (p(T = t∣x)) is close to zero. In a similar manner, if H(T ∣x) is more or

less the same for any x, then V (H(T ∣x)) is close to zero, and so is V (Ĥ(T ∣y))
if Ĥ(T ∣y) is more or less the same for any y. In the extreme case, if T is
independent of X, then p(t∣x) = p(t), H(T ∣x) = H(T ) and Ĥ(T ∣y) = Ĥ(T ) for
any choice of x, y, and the generalization bound becomes zero. This is not too

surprising, since in this case I(X;T ) = ˆI(X;T ) = 0 and I(Y ;T ) = Î(Y ;T ) = 0
regardless of p(x, y) or its empirical estimate p̂(x, y).

This theorem thus suggests that generalization becomes better as T becomes
less statistically dependent on X, and so provides a more compressed probabilis-
tic representation of X. This is exactly in line with empirical findings [19], and
with the intuition that ‘simpler’ models should lead to better generalization.

A looser but simpler bound on Thm. 2 can be achieved by fixing the cardinal-
ity of T , and analyzing the bound with worst-case assumptions on the statistical
dependency between X and T . The proof is provided in Sec. 6.3

Theorem 3. Under the conditions and notation of Thm. 2, we have that with
a probability of at least 1− �, for all T ,

∣I(X;T )− Î(X;T )∣ ≤
1
2

√
C log(∣Y∣/�)(

√
∣T ∣∣X ∣ log(m)+

√
∣X ∣log(∣T ∣))+ 1

e ∣T ∣√
m

and

∣I(Y ;T )− Î(Y ;T )∣ ≤

√
C log(∣Y∣/�)

(√
∣T ∣∣X ∣ log(m)+ 1

2

√
∣Y∣log(∣T ∣)

)
+ 2
e ∣T ∣√

m
,

where C is the same constant as in Thm. 2.

Even with this much looser bound, if ∣Y∣ is large and ∣T ∣ ≪ ∣Y∣ the bound
can be quite small, even with sample sizes which are in general insufficient
to reasonably estimate the joint distribution p(x, y). One relevant setting is
in unsupervised learning, when Y models the feature space. Also, we remind
that this theorem differs from Thm. 1, in that Thm. 1 assumes that T is fixed,
and the random sample is used merely to validate the performance of this T ,
whereas Thm. 3 assumes the random sample is used to determine T as well as
its performance concurrently.

In this section, we have shown that the quantities that make up the IB
objective function can be estimated reliably from a sample of a reasonable size,
depending on the characteristics of T . In the next section we investigate the
motivation for using these quantities in the objective function in the first place.

4. A Learning Theoretic Perspective

The IB framework optimizes a trade-off between I(X;T ) and I(Y ;T ). In
this section we provide a preliminary discussion of the learning theoretic proper-
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ties of this tradeoff, investigating when mutual information provides reasonable
measures for both learning complexity and accuracy.

In an unsupervised setting, such as clustering, it is rather easy to see how
I(X;T ) and I(Y ;T ) control the complexity and granularity of the clustering
by trading between homogeneity and resolution of the clusters; this has been
discussed previously in the literature (such as [23], [8]). Therefore, we will focus
here mainly on the use of this framework in supervised learning, where the
objectives are more well defined.

Most supervised learning algorithms are based on a tradeoff between two
quantities: a risk term, measuring the performance of a hypothesis on the sample
data, and a regularization term, which penalizes complex hypotheses and so
ensures reasonable generalization to unseen data. In the following we argue
that under relevant settings it is reasonable to consider I(Y ;T ) as a measure of
risk and I(X;T ) as a regularization term that controls generalization.

4.1. I(Y;T) as a Measure of Performance

In this section we investigate the plausibility of I(Y ;T ) as a measure of
performance or risk in a supervised learning setting. We show that in those
supervised learning settings where IB was demonstrated to be highly effective,
such as document categorization [21], there is a strong connection between the
classification error and the mutual information I(Y ;T ), especially when the
categories are uniformly spread. The discussion here is a first step towards a
full analysis of the IB classification performance in a more general setting, which
we leave for future work.

In a typical document classification task we model X as a random variable
over the set of possible words, and Y as a random variable over the set of
document categories or classes. Each document is treated as an i.i.d. sample of
words drawn from p(x∣y), in accordance with the bag of words representation,
where y is the class of the document. Unlike the simple supervised learning
settings, where each example is described as a single data point, in this case each
example (document) to be labeled is described by a sample of points (words) of
variable size (usually large) and we seek the most probable class of the whole
sample (document) collectively.

IB is used in this setting to find T , a compressed representation of the words
in a document, which is as informative as possible on the categories Y . The
bottleneck equations Eq. (2) provide for each class y its conditional distribution
on T , via p̂(t∣y) =

∑
x p(t∣x)p̂(x∣y). When a new document D = {x1, . . . , xn}

of size n is to be classified, the empirical distribution of T given D is p̃(t) =∑n
i=1 p(t∣xi)p̂(xi). Assuming that the document is sampled according to p(t∣y)

for some class y, the most probable class y∗ can be selected using the maximum
likelihood principle, namely y∗ = argminy DKL[p̃(t)∥p̂(t∣y)].

We now show that Î(Y ;T ) is indeed a reasonable objective function whenever
we wish to collectively label an entire set of sampled instances.

Assume that the true class for document D is y1, with its word distribu-
tion sampled via p(t∣y1). The probability �n of misclassifying this sample as
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y2 for some y2 ∕= y1 via the likelihood test decreases exponentially with the
sample size n. The rate of exponential decrease is larger if the two distri-
butions p(t∣y1), p(t∣y2) are more distinct. Formally, by Stein’s lemma [4], if
p̂(t∣y1) = p(t∣y1) and p̂(t∣y2) = p(t∣y2), then

lim
n→∞

1

n
log(�n) = DKL[p(t∣y2)∥p(t∣y1)]. (7)

When p̂(t∣y1) and p̂(t∣y2) deviate from the true conditional distributions,
Stein’s Lemma still holds up to an additive constant which depends on the
amount of deviation, and the exponent is still controlled mainly by the term
DKL[p(t∣y2)∥p(t∣y1)]. In the following we will assume for simplicity that Eq. (7)
holds exactly.

The overall probability of misclassifying a document when there are more
than two possible classes is thus upper bounded by∑

y ∕=y1

exp(−nDKL[p(t∣y)∥p(t∣y1)]). (8)

On the other hand, by the definition of mutual information and the convexity
of the Kullback-Leibler divergence we have that

I(Y ;T ) = EyDKL[p(t∣y)∥p(t)] = EyDKL[p(t∣y)∥Ey′p(t∣y′)] (9)

≤ Ey,y′DKL[p(t∣y)∥p(t∣y′)],

Hence −nI(Y ;T ) is an upper bound on the expected value of the exponent in
Eq. (7), assuming that y1 and y2 are picked according to p(y). The relationship
between Eq. (9) on the one hand, and Eq. (7), Eq. (8) on the other hand, is not
direct. Nonetheless, these equations indicate that if the examples to classify are
represented by a large sample, as in the document classification setting, higher
values of I(Y ;T ) should correspond to a reduced probability of misclassification.
For example, if DKL[p(t∣y)∥p(t∣y1)] is equal for every y ∕= y1, we have that Eq. (8)
is upper bounded by

(n− 1) exp
(
− nI(Y ;T )/ (∣Y∣ − 1)

)
,

in which case the probability of misclassification is exponentially dominated by
I(Y ;T ). This is the case when categories are uniformly spread, which happens
for many applications incidently or by design. In this case, when the bottleneck
variable T captures just a fraction � = I(Y ;T )/I(X;Y ) of the relevant infor-
mation, the test (document) size should increase only by a factor 1/� in order
to achieve a similar bound on the classification error.

4.2. I(X;T) as a Regularization Term

Recall that the goal of the IB framework is to find a simple representation of
a random variable X, which is relevant to another random variable Y . ’Simple’
here is obtained by the compression term I(X;T ) in the IB objective function
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(Eq. (1)). In this subsection we discuss the role of I(X;T ) from a learning
theoretic perspective, in particular as a regularizer when maximizing I(Y ;T ).
Note that without regularization, I(Y ;T ) can be maximized by setting T = X.
However, p(x∣y) cannot be estimated efficiently from a sample of a reasonable
size; therefore the formal solution T = X cannot be used to perform reliable
classification. Moreover, in the context of unsupervised learning, setting T = X
is generally a meaningless operation, corresponding to singleton clusters.

The IB framework attempts to find a simple representation of one random
variable X through an auxiliary variable T , which is relevant to another random
variable Y . Let us first exemplify how the IB method can be used for both
supervised and unsupervised learning. Consider the area of text analysis. A
typical unsupervised problem can be clustering documents based on their word-
statistics in order to discover similarities and relationships between them. In
this case the X variable is taken as the document identity (typically considered
as “bags of words”) and the Y as the words in the documents. In this case, the
T variable will be clusters of documents with similar word-statistics, based, for
instance, on the “the two sample problem” [12] similarity measure.

In a typical supervised application in this domain, X can denote the words
while Y are topic-labels of the documents. Here T are clusters of words that are
(approximately) sufficient for document categorization [23]. In all the applica-
tions a variable � allows us to smoothly move between a low resolution - highly
compressed - solution, to a solution with higher resolution and more information
about Y . This form of dimensionality reduction, a special case of the informa-
tion bottleneck, was introduced under the name of distributional clustering in
[17], and has proven to be quite effective in analyzing high dimensional data
[2, 15].

The bottleneck variable T must therefore be restricted to allow reasonable
generalization in a supervised setting and to generate a reasonable model in an
unsupervised setting. In the IB framework I(X;T ) can be viewed as a penalty
term that restricts the complexity of T . A more formal justification for this
is given in the following theorem, which is derived from Thm. 2. The proof is
provided in Sec. 6.4.

Theorem 4. For any probability distribution p(x, y), with a probability of at
least 1− � over the draw of the sample of size m from p(x, y), we have that for
all T ,

∣I(Y ;T )− Î(Y ;T )∣ ≤
√
C log(∣Y∣/�)

m

(
C1 log(m)

√
∣T ∣I(X;T )

+ C2∣T ∣3/4(I(X;T ))1/4 + C3Î(X;T )
)
,

where C is the same constant as in Thm. 1, and C1, C2, C3 depend only on p(x)
and p(y).

This bound is similar to learning theoretic generalization bounds, where
I(Y ;T ) measures the performance of the learned ’hypothesis’ T , and the bound
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depends on I(X;T ) and Î(X;T ), which control the complexity of the hypoth-
esis (we note that I(X;T ) and Î(X;T ) are closely related by Thm. 3). This
is not a fully empirical bound, as it depends on the unknown quantity I(X;T )
and the marginal distributions of X,Y . The bound does however illustrate the
relationship between the generalization error, as embodied in the difference be-
tween I(Y ;T ) and Î(Y ;T ), and the mutual information I(X;T ). This provides
motivation for the use of I(X;T ) as a regularization term, beyond its obvious
description length interpretation or coding interpretation.

5. Relationship with Sufficient Statistics

A fundamental issue in statistics, pattern recognition, and machine learning
is the notion of relevance. Finding the relevant components of data is implic-
itly behind the problems of efficient data representation, feature selection and
dimension reduction for supervised learning, and is the essence of most unsu-
pervised learning problems. One of the earliest and more principled approaches
to relevance was the concept of sufficient statistics for parametric distributions,
introduced by Fisher [6] as function(s) of a sample that capture all the informa-
tion about the parameter(s). A sufficient statistic is defined as follows:

Definition 5 (Sufficient Statistic). Let Y be a parameter indexing a family
of probability distributions. Let X be random variable drawn from a probability
distribution determined by Y . Let T be a deterministic function of X. T is
sufficient for Y if

∀x ∈ X , t ∈ T , y ∈ Y p(x∣t, y) = p(x∣t).

Throughout this section we assume that it suffices that the equality holds almost
everywhere with respect to the probability of y and x.

In words, the sufficiency of T means that given the value of T , the distribu-
tion of X does not depend on the value of Y .

In the parametric statistics setting, Y is a random variable that parame-
terizes a family of probability distributions, and X is a data point drawn from
p(x∣y) where x ∈ X and y ∈ Y. For example, the family of probability dis-
tributions may be the set of Bernoulli distributions with success probability p
determined by y, with Y ⊆ [0, 1] and some prior distribution p(y). In this case,
for a given y, p(X = 1∣y) = y, and p(X = 0∣y) = 1− y.

Y and X may be high dimensional. For instance, Y may determine the mean
and the variance of a normal distribution, or fully parameterize a multinomial
distribution. X may be a high dimensional data point. For any family of
probability distributions, we can consider a sample of m i.i.d data points, all
drawn from the same distribution determined by a single draw of Y . In the
context of sufficient statistics, this is just a special case of a high dimensional X
which is drawn from the cross-product of m identical probability distributions
determined by the value of Y .

11



Just as X and Y may be high dimensional, so can T map X to a multidi-
mensional space. If X denotes an i.i.d sample, the number of dimensions in T
may depend on the size of the sample m. Specifically, T = X is always sufficient
for Y . To avoid trivial sufficient statistics such as this, Lehmann and Scheffé
[13] introduced the concept of a minimal sufficient statistic, which denotes the
coarsest sufficient partition of X, as follows:

Definition 6 (Minimal Sufficient Statistic). A sufficient statistic S is min-
imal if and only if for any sufficient statistic T , there exists a deterministic
function f such that S = f(T ) almost everywhere w.r.t X.

For instance, for an i.i.d sample of size m of the Bernoulli distribution in the
example above, T = X is trivially a sufficient statistic, but the one-dimensional
T = 1

m

∑
i xi where x = (x1, . . . xm) is also sufficient. It can be shown that the

latter T (and any one-to-one function of it) is a minimal sufficient statistic.
By the Pitman-Koopman-Darmois theorem [10], sufficient statistics whose

dimension does not depend on the sample size exist only for families of expo-
nential form. This makes the original concept of sufficiency rather restricted.

Kullback and Leibler [11] related sufficiency to Shannon’s information theory,
showing that sufficiency is equivalent to preserving mutual information on the
parameter, while minimal sufficient statistics minimize the mutual information
with the sample due to the data-processing inequality [4].

The IB framework allows us to naturally extend this concept of relevance to
any joint distribution of X and Y , not necessarily ones of exponential form, in
a constructive computational manner. In this framework, built on Kullback’s
information theoretic characterization of sufficiency [11], one can find compact
representations T of a sample X that maximize mutual information about the
parameter variable Y , corresponding to sufficiency for Y , and minimize I(X;T ),
corresponding to the minimality of the statistic. However, unlike the original
concepts of sufficient statistic and minimal sufficient statistic, the IB framework
provides a soft tradeoff between these two objectives.

It can easily be seen that as � grows to infinity, if T is not restricted then
I(Y ;T ) converges to I(X;Y ) and T converges to a minimal sufficient statis-
tic. The following theorem formalizes this insight. Similar formulations of this
theorem can be gleaned from [11] and [4]. The full proof is presented for com-
pleteness in Sec. 6.5.

Theorem 7. Let X be a sample drawn according to a distribution determined
by the random variable Y . The set of solutions to

min
T

I(X;T ) s.t. I(Y ;T ) = max
T ′

I(Y ;T ′)

is exactly the set of minimal sufficient statistics for Y based on the sample X.

The IB framework thus provides a natural generalization of the concept of
a sufficient statistic, where by setting � to lower values, different degrees of
approximate minimal sufficient statistics can be found, characterized by the

12



fraction of mutual information they maintain on the Y . Furthermore, such ap-
proximate minimal sufficient statistics exist for any joint distribution p(X,Y )
in a continuous hierarchy that is fully captured by the set of optimal IB solu-
tions for all values of �. These solutions lie on the information curve of the
distribution.

6. Proofs

6.1. Proof of Thm. 1

Let S be a sample of size m, and let T be a probabilistic function of X into
an arbitrary finite target space, defined by p(t∣x) for all x ∈ X and t ∈ T .

To prove the theorem, we bound the deviations of the information estima-
tions from their expectation: ∣Î(X;T )−E(Î(X;T ))∣ and ∣Î(Y ;T )−E(Î(Y ;T ))∣,
and then use a bound on the expected bias of entropy estimation.

To bound the deviation of the information estimates, we use McDiarmid’s
inequality [14], in a manner similar to [1]. For this we must bound the change in
value of each of the entropy estimates when a single instance in S is arbitrarily
changed. A useful and easily proven inequality in that regard is the following:
for any natural m and for any a ∈ [0, 1− 1/m] and Δ ≤ 1/m,∣∣∣(a+ Δ) log(a+ Δ)− a log (a)

∣∣∣ ≤ log(m)

m
. (10)

With this inequality, a careful application of McDiarmid’s inequality leads
to the following lemma.

Lemma 8. For any �1 > 0, with probability of at least 1− �1 over the sample,
we have that

∣Î(X;T )− E[Î(X;T )] ≤
(∣T ∣ log(m) + log(∣T ∣))

√
log(2/�1)√

2m
. (11)

Similarly, with a probability of at least 1− �2,

∣Î(Y ;T )− E[Î(Y ;T )]∣ ≤
(3∣T ∣+ 2) log(m)

√
log(2/�2)√

2m
. (12)

Proof. We use the equality Î(X;T ) = Ĥ(T ) − Ĥ(T ∣X). First, we bound the
change caused by a single replacement in Ĥ(T ). We have that

Ĥ(T ) = −
∑
t

(
∑
x

p(t∣x)p̂(x)) log(
∑
x

p(t∣x)p̂(x)).

If we change a single instance in S, then there exist two pairs (x, y) and (x′, y′)
such that p̂(x, y) increases by 1/m, and p̂(x′, y′) decreases by 1/m. This means
that p̂(x) and p̂(x′) also change by at most 1/m, while all other values in the
distribution remain the same. Therefore, for each t ∈ T ,

∑
x p(t∣x)p̂(x) changes

by at most 1/m.
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Based on this and Eq. (10), Ĥ(T ) changes by at most ∣T ∣ log(m)/m. We
now move to bound the change in Ĥ(T ∣X). We have

Ĥ(T ∣X) =
∑
x

p̂(x)H(T ∣X = x).

H(T ∣X = x) is dependent only on p(t∣x) which is known and does not depend
on the sample. Changing a single instance in S changes p̂(x) by at most 1/m for
two values x. Since H(T ∣X = x) ≤ log(∣T ∣), this implies that H(T ∣X) changes
by at most log(∣T ∣)/m. Overall, Î(X;T ) = Ĥ(T ) − Ĥ(T ∣X) can change by
at most (∣T ∣ log(m) + log(∣T ∣))/m. Invoking McDiarmid’s inequality gives us
Eq. (11).

We now turn to Î(Y ;T ) and perform a similar analysis using the fact that
Î(Y ;T ) = Ĥ(Y ) + Ĥ(T )− Ĥ(Y, T ). First, for Ĥ(Y ), we have that

Ĥ(Y ) = −
∑
y

p̂(y) log(p̂(y)).

Changing a single instance in S changes p̂(y) by at most 1/m for two values y,
hence by Eq. (10), Ĥ(Y ) changes by at most 2 log(m)/m. For Ĥ(Y, T ), we have

Ĥ(Y, T ) = −
∑
t,y

p̂(t, y) log (p̂(t, y))

and
p̂(y, t) =

∑
x

p(t∣x)p̂(x, y)

Since T −X−Y is a Markov chain, changing a single instance in S may change∑
x p(t∣x)p̂(x, y) by at most 1/m for two values y. Using Eq. (10), we have that

Ĥ(Y, T ) can change by at most 2∣T ∣ log(m)/m. Finally, as we saw above, by
replacing a single instance Ĥ(T ) can change by at most ∣T ∣ log(m)/m. Overall,
we have that Î(Y ;T ) can change by at most (3∣T ∣ + 2) log(m)/m. Applying
McDiarmid’s inequality, we get Eq. (12).

Lemma 8 provides bounds on the deviation of the Î(X;T ), Î(Y ;T ) from
their expected values. In order to relate these to the true values of the mutual
information I(X;T ) and I(Y ;T ), we use the following bias bound from [16].

Lemma 9 (Paninski, 2003). For a random variable X, with the plug-in es-
timate Ĥ(⋅) on its entropy, based on an i.i.d sample of size m, we have that

∣E[Ĥ(X)−H(X)]∣ ≤ log

(
1 +
∣X ∣ − 1

m

)
≤ ∣X ∣ − 1

m
.

From this lemma, the quantities ∣E[Ĥ(T )−H(T )]∣, ∣E[Ĥ(Y )−H(Y )]∣, and
∣E[Ĥ(Y, T )−H(Y, T )]∣ are upper bounded by (∣T ∣ − 1)/m, (∣Y∣ − 1)/m and
(∣Y∣∣T ∣ − 1)/m respectively. Combining these with Eq. (11) and Eq. (12), and
setting �1 = �2 = �/2, we get the bounds in Thm. 1.
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6.2. Proof of Thm. 2

The idea of the proof is as follows. We bound the quantities ∣I(X;T ) −
Î(X;T )∣ and ∣I(Y ;T )− Î(Y ;T )∣ with deterministic bounds that depend on the
empirical distribution and on the true underlying distribution. These bounds
are factorized, in the sense that quantities that depend on the empirical sample
are separated from quantities that depend on the characteristics of T . Quantities
of the first type can be bounded by concentration of measure theorems, while
quantities of the second type can be left dependent on the T we choose.

The deterministic bounds are summarized in the following lemma.

Lemma 10. The following two inequalities hold:

∣I(X;T )− Î(X;T )∣ ≤
∑
t

∥p(x)− p̂(x)∥ ⋅ �
(√

V (p(T = t∣x))
)

(13)

+ ∥p(x)− p̂(x)∥ ⋅
√
V (H(T ∣x)),

∣I(Y ;T )− Î(Y ;T )∣ ≤
∑
t

∥p(x)− p̂(x)∥ ⋅ �
(√

V (p(T = t∣x))
)

) (14)

+
∑
y

p(y)
∑
t

�
(
∥p̂(x∣y)− p(x∣y)∥ ⋅

√
V (p(T = t∣x))

)
+ ∥p(y)− p̂(y)∥ ⋅

√
V (Ĥ(T ∣y)).

Proof. Starting with ∣I(X;T )− Î(X;T )∣, we use the fact that

∣I(X;T )− Î(X;T )∣ ≤ ∣H(T ∣X)− Ĥ(T ∣X)∣+ ∣H(T )− Ĥ(T )∣

and bound each of the summands on the right separately. For the first summand,
since

∑
x p(x) =

∑
x p̂(x) = 1, we have that for any scalar a,

∣H(T ∣X)− Ĥ(T ∣X)∣ =
∣∣∣∑
x

(p(x)− p̂(x))H(T ∣x)
∣∣∣

=
∣∣∣∑
x

(p(x)− p̂(x))(H(T ∣x)− a)
∣∣∣ (15)

≤ ∥p(x)− p̂(x)∥∥H(T ∣x)− a∥,

where p and H stand for vectors indexed by the values of X, and we subtract
a from all entries of the vector. Setting a = 1

∣X ∣
∑
xH(T ∣x) we get

∣H(T ∣X)− Ĥ(T ∣X)∣ (16)

≤ ∥p(x)− p̂(x)∥
√
V (H(T ∣x)),

Where V (⋅) is defined in Eq. (3).
We now turn to bound the second summand. For the rest of the proof, we

use the following easily proven lemma.
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Lemma 11. For any a, b ∈ [0, 1],

∣a log(a)− b log(b)∣ ≤ �(∣a− b∣),

where �(⋅) is defined in Eq. (4).

From this lemma we have that

∣H(T )− Ĥ(T )∣ =
∣∣∣∑

t

p(t) log(p(t))− p̂(t) log(p̂(t))
∣∣∣

≤
∑
t

�(∣p(t)− p̂(t)∣)

=
∑
t

�

(∣∣∣∣∣∑
x

p(t∣x)(p(x)− p̂(x))

∣∣∣∣∣
)

≤
∑
t

�
(
∥p(x)− p̂(x)∥

√
V (p(T = t∣x))

)
, (17)

where the last inequality is derived as in Eq. (15), by setting
a ≜ 1

∣X ∣
∑
x p(T = t∣x).

From Eq. (16) and Eq. (17) we get Eq. (13) in the lemma.
Turning now to ∣I(Y ;T )− Î(Y ;T )∣, we similarly use the inequality

∣I(Y ;T )− Î(Y ;T )∣ ≤ ∣H(T ∣Y )− Ĥ(T ∣Y )∣+ ∣H(T )− Ĥ(T )∣.

It remains to bound the first summand, as the second summand was already
bounded above. We have

∣H(T ∣Y )− Ĥ(T ∣Y )∣ =
∣∣∣∑
y

(
p(y)H(T ∣y)− p̂(y)Ĥ(T ∣y)

) ∣∣∣
≤
∣∣∣∑
y

p(y)
(
H(T ∣y)− Ĥ(T ∣y)

) ∣∣∣+
∣∣∣∑
y

(p(y)− p̂(y))Ĥ(T ∣y)
∣∣∣. (18)

For the first summand in this bound we have∣∣∣∑
y

p(y)
(
H(T ∣y)− Ĥ(T ∣y)

) ∣∣∣
≤
∣∣∣∑
y

p(y)
∑
t

(p̂(t∣y) log(p̂(t∣y))− p(t∣y) log(p(t∣y)))
∣∣∣

≤
∑
y

p(y)
∑
t

� (∣p̂(t∣y)− p(t∣y)∣)

=
∑
y

p(y)
∑
t

�

(∣∣∣∣∣∑
x

p(t∣x) (p̂(x∣y)− p(x∣y))

∣∣∣∣∣
)

=
∑
y

p(y)
∑
t

�
(
∥p̂(x∣y)− p(x∣y)∥

√
V (p(T = t∣x))

)
,
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where the last inequality is again derived similarly to Eq. (15), by setting a ≜
1
X
∑
x p(t∣x). For the second summand in Eq. (18) we have∣∣∣∑

y

(p(y)− p̂(y))Ĥ(T ∣y)
∣∣∣ ≤ ∥p(y)− p̂(y)∥ ⋅

√
V (Ĥ(T ∣y)).

Therefore,

∣H(T ∣Y )− Ĥ(T ∣Y )∣ ≤∑
y

p(y)
∑
t

�
(
∥p̂(x∣y)− p(x∣y)∥ ⋅

√
V (p(T = t∣x))

)
+ ∥p(y)− p̂(y)∥ ⋅

√
V (Ĥ(T ∣y)). (19)

From Eq. (17) and Eq. (19) we conclude Eq. (14) in the lemma.

In order to transform the bounds in Eq. (13) and Eq. (14) to bounds that
do not depend on p(x), we can use concentration of measure arguments on L2

norms of random vectors, such as the following one based on an argument in
section 4.1 of [5]: Let � be a distribution vector of arbitrary (possible countably
infinite) cardinality, and let �̂ be an empirical estimation of � based on a sample
of size m. Then with a probability of at least 1− � over the samples,

∥�− �̂∥ ≤
2 +

√
2 log(1/�)√
m

. (20)

We apply this concentration bound to ∥p(x)− p̂(x)∥, ∥p(y)− p̂(y)∥, and to
∥p̂(x∣y)−p(x∣y)∥ for any y in Eq. (13) and Eq. (14). To make sure the bounds
hold simultaneously over these ∣Y∣ + 2 quantities, we replace � in Eq. (20) by
�/(∣Y∣ + 2). Note that the union bound is taken with respect to the marginal
distributions of p̂(x), p̂(y) and p̂(x∣y), which do not depend on the T chosen.
Thus, the following bounds hold with a probability of 1− �, for all T :

∣I(X;T )− Î(X;T )∣ ≤ (2 +
√

2 log ((∣Y∣+ 2)/�))

√
V (H(T ∣x))

m

+
∑
t

�

(
(2 +

√
2 log ((∣Y∣+ 2)/�))

√
V (p(T = t∣x))

m

)
,

∣I(Y ;T )− Î(Y ;T )∣ ≤ (2 +
√

2 log ((∣Y∣+ 2)/�))

√
V (Ĥ(T ∣y))

m

+ 2
∑
t

�

(
(2 +

√
2 log ((∣Y∣+ 2)/�))

√
V (p(T = t∣x))

m

)
.

To get the bounds in Thm. 2, we note that

2 +
√

2 log ((∣Y∣+ 2)/�) ≤
√
C log(∣Y∣/�)

where C is a small constant.
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6.3. Proof of Thm. 3

In this proof we apply worst-case assumptions on Thm. 2 to get a bound
that does not depend on p(t∣x) but only on the cardinality of T . The variance
of any random variable bounded in [0, 1] is at most 1/4. Since 1

nV (p(T = t∣x))
is the variance of the vector p(T = t∣x), we have that V (p(T = t∣x)) ≤ ∣X ∣/4
for any p(t∣x). Assume that

m ≥ C

4
log(∣Y∣/�)∣X ∣e2n2(�), (21)

for C as in Thm. 2, then it follows that for any p(t∣x),√
C log(∣Y∣/�)V (p(T = t∣x))

m
≤

√
C log(∣Y∣/�)∣X ∣

4m
≤ 1/e.

For readability, we define V ≜ C log(∣Y∣/�)V (p(T = t∣x)). Therefore we have
that ∑

t

�

(√
V
m

)
=
∑
t

(√
V
m

log

(√
m

V

))

≤
∑
t

√
V log(

√
m) + 1/e√
m

,

where the last inequality follows from
√
V log( 1√

V ) ≤ 1/e. Reintroducing the

definition of V and rearranging, we have

∑
t

�

(√
V
m

)
≤ (22)

√
C log(∣Y∣/�) log(m)

(∑
t

√
V (p(T = t∣x))

)
+ 2

e ∣T ∣

2
√
m

.

To bound
∑
t

√
V (p(T = t∣x)), we note that

∑
t

√
V (p(T = t∣x)) ≤

∑
t

∥p(T = t∣x)∥2.

Finding an upper bound for the right-hand expression is equivalent to solving
the following optimization problem

max
ai,j

∑
t

√∑
x

a2t,x

s.t. ∀x
∑
t

at,x = 1 , ∀t, x at,x ≥ 0.
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It is easily seen that in this problem we are maximizing a convex function
over a compact convex set. It is well known (e.g. [18]) that the maximal
values in this case are achieved on vertices of the set. In other words, we can
limit ourselves to solutions {at,x} such that for any x, at,x = 1t=t∗x where t∗x
is a function of x. Letting bt =

√
∣{x : t∗x = t}∣, we get the following equivalent

optimization problem:

max
bt

∑
t

bt

s.t.
∑
t

b2t = ∣X ∣ , ∀t b2t ∈ ℤ+

To upper bound this, we can relax the integer constraint, and get the following
problem

max
b=(b1,...,b∣T ∣)

∥b∥1

s.t. ∥b∥2 =
√
∣X ∣ , b ∈ ℝ∣T ∣,

whose optimal solution is of course
√
∣X ∣∣T ∣ by choosing bt =

√
∣X ∣/∣T ∣ for all

t. We can plug this bound back into Eq. (22) to get that

∑
t

�

(√
C log(∣Y∣/�)V (p(T = t∣x))

m

)

≤
√
C log(∣Y∣/�)∣X ∣∣T ∣ log(m) + 2

e ∣T ∣
2
√
m

. (23)

To complete the proof, note that H(T ∣x) and Ĥ(T ∣y) are in [0, log(∣T ∣)].
Therefore

V (H(T ∣x)) ≤ ∣X ∣ log2(∣T ∣)
4

, (24)

and

V (Ĥ(T ∣y)) ≤ ∣Y∣ log2(∣T ∣)
4

, (25)

Applying Eq. (23), Eq. (24) and Eq. (25) on the bounds in Thm. 2 generates
the required result.

Finally, it is easy to show that the resulting bound is trivially true for m not
satisfying Eq. (21), and thus this bound it true for any m.

6.4. Proof of Thm. 4

Throughout the proof we assume that our model T pertains only to values
of X,Y actually observed in the sample, and therefore w.l.o.g p(x), p(y) > 0 for
any x ∈ X , y ∈ Y of interest.

To prove this theorem, we will find a new upper bound for Eq. (6), using the
same notation as in Thm. 2. As a shorthand, We denote the two summands of
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Eq. (6) by S1 for the first summand and S2 for the second summand, so that
we have

∣I(Y ;T )− Î(Y ;T )∣ ≤ S1 + S2.

We start by bounding S2, first seeking an upper bound for
√
V (p(T = t∣x)).

By definition of V (⋅) and using Bayes’ formula p(t∣x) = p(x∣t)p(t)
p(x) , we have

that √
V (p(T = t∣x)) = (26)

p(t)

√√√⎷∑
x

(
p(x∣t)
p(x)

− 1

∣X ∣
∑
x′

p(x′∣t)
p(x′)

)2

.

Denoting 1 = (1, . . . , 1), we have by the triangle inequality that√√√⎷∑
x

(
p(x∣t)
p(x)

− 1

∣X ∣
∑
x′

p(x′∣t)
p(x′)

)2

≤ ∥p(x∣t)
p(x)

− 1∥2 +

√√√⎷∑
x

(
1− 1

∣X ∣
∑
x′

p(x′∣t)
p(x′)

)2

= ∥p(x∣t)
p(x)

− 1∥2 +
1√
∣X ∣

∣∣∣∑
x′

(1− p(x′∣t)
p(x′)

)
∣∣∣

= ∥p(x∣t)
p(x)

− 1∥2 +
1√
∣X ∣
∥p(x∣t)
p(x)

− 1∥1

≤

(
1 +

1√
∣X ∣

)
∥p(x∣t)
p(x)

− 1∥1

≤ 2

minx p(x)
∥p(x∣t)− p(x)∥1 (27)

From an inequality linking KL-divergence and the L1 norm (lemma 12.6.1
in [4]), we have that

∥p(x∣t)− p(x)∥1 ≤
√

2 log(2)DKL[p(x∣t)∥p(x)].

Plugging this into Eq. (27) and using Eq. (26), we get the following bound:

√
V (p(T = t∣x)) ≤

2
√

2 log(2)

minx p(x)
p(t)

√
DKL[p(x∣t)∥p(x)]. (28)

For notational convenience, let

g(m) =

√
C log(∣Y∣/�)

m
⋅

2
√

2 log(2)

minx p(x)
,
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and let dt = DKL[p(x∣t)∥p(x)]. Then, using Eq. (28), we have

S2 ≤ 2
∑
t

�(g(m)p(t)
√
dt). (29)

At this point, let us assume that given T , the sample size m is large enough
so that g(m)p(t)

√
dt ≤ 1/e for any t. We will later see that this condition can

be discarded. For such m, we get by definition of �(⋅) that

S2 ≤ 2
∑
t

g(m)p(t)
√
dt

(
log

(
1

g(m)

)
+ log

(
1

p(t)
√
dt

))

= 2g(m)

(
log

(
1

g(m)

)∑
t

p(t)
√
dt

+
∑
t

pt
√
dt log

(
1

p(t)
√
dt

))
.

It is easily verified that for any x > 0, x log(1/x) ≤
√
x. Using this fact and

thinking of p(t)
√
dt as a vector indexed by t, we have

S2 ≤ 2g(m)

(
log

(
1

g(m)

)
∥p(t)

√
dt∥1 + ∥

√
p(t)

√
dt∥1

)
.

We use the following two inequalities:

∥p(t)
√
dt∥1 ≤

√
∣T ∣∥p(t)

√
dt∥2 ≤

√
∣T ∣∥

√
p(t)dt∥2,

and

∥
√
p(t)

√
dt∥1 ≤

√
∣T ∣∥

√
p(t)

√
dt∥2

=
√
∣T ∣
√
∥p(t)

√
dt∥1 ≤ ∣T ∣3/4

√
∥
√
p(t)dt∥2,

to have

S2 ≤ 2g(m)
(

log

(
1

g(m)

)√
∣T ∣∥

√
p(t)dt∥2

+ ∣T ∣3/4
√
∥
√
p(t)dt∥2

)
.

Using the equality

∥
√
p(t)dt∥2 =

√
Et [DKL[p(x∣t)∥p(x)]] =

√
I(X;T ),

we reach the following bound

S2 ≤ 2g(m)
(

log

(
1

g(m)

)√
∣T ∣I(X;T ) (30)

+ ∣T ∣3/4(I(X;T ))1/4
)
.
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By inserting the definition of g(m) back into the inequality, we get our final
bound for S2,

S2 ≤
√
C log(∣Y∣/�)

m

(
C1 log(m)

√
∣T ∣I(X;T ) (31)

+ C2∣T ∣3/4(I(X;T ))1/4
)
.

with C1 and C2 as constants that depend only on minxp(x).

Turning now to S1, we have to bound
√
V (Ĥ(T ∣y)). By definition of V (⋅),

and using the triangle inequality, we have√
V (Ĥ(T ∣y)) ≤

√∑
y

(Ĥ(T ∣y)− Ĥ(T ))2

+

√√√√⎷∑
y

⎛⎝Ĥ(T )− 1

∣Y∣
∑
y′

Ĥ(T ∣y′)

⎞⎠2

For the second summand we have√√√√⎷∑
y

⎛⎝Ĥ(T )− 1

∣Y∣
∑
y′

Ĥ(T ∣y′)

⎞⎠2

=
√
∣Y∣
∣∣∣Ĥ(T )− 1

∣Y∣
∑
y′

Ĥ(T ∣y′)
∣∣∣

=
1√
∣Y∣

∣∣∣∑
y′

(Ĥ(T )− Ĥ(T ∣y′))
∣∣∣

=
1√
∣Y∣
∥Ĥ(T )− Ĥ(T ∣y)∥1,

where we think of Ĥ(T )− Ĥ(T ∣y) as a vector ranging over the values of y.
Therefore, we have that√

V (Ĥ(T ∣y)) ≤

(
1 +

1√
∣Y∣

)
∥Ĥ(T )− Ĥ(T ∣y)∥1. (32)

It is known that Ĥ(T ) ≥ Ĥ(T ∣y) for any y, since conditioning cannot increase
entropy. Therefore

∥Ĥ(T )− Ĥ(T ∣y)∥1 ≤
∑
y

p(y)

miny p(y)

(
Ĥ(T )− Ĥ(T ∣y)

)
=

1

miny p(y)

(
Ĥ(T )−

∑
y

p(y)Ĥ(T ∣y)

)

=
1

miny p(y)
Î(Y ;T ) ≤ 1

miny p(y)
Î(X;T ),
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where the last inequality follows from the data processing inequality. Substitut-
ing this into Eq. (32), and since ∣Y∣ ≥ 1, we get√

V (Ĥ(T ∣y)) ≤ 2

miny p(y)
Î(X;T ). (33)

Setting C3 = 2
miny p(y)

we thus have our bound for S1,

S1 ≤
√
C log(∣Y∣/�)

m
C3Î(X;T ).

Plugging Eq. (31) and Eq. (33) into Eq. (6) gives us the bound in our theo-
rem.

Lastly, recall that we derived this bound by assuming that g(m)p(t)
√
dt ≤

1/e for any t. We now show that the bound can be made trivial if this condi-
tion does not hold. If the condition does not hold, there exists a t such that
g(m)p(t)

√
dt > 1/e. Since

√
I(X;T ) =

√∑
t

p(t)dt ≥ p(t)
√
dt

for any t, we get that
√
I(X;T ) ≥ 1

e⋅g(m) . Since ∣T ∣ ≥ 1 and g(m) > 0, we get

that our bound in Eq. (30) is at least

2g(m)
(

log

(
1

g(m)

)√
∣T ∣I(X;T ) + ∣T ∣3/4(I(X;T ))1/4

)
≥ 2
√
∣T ∣

(
log(1/g(m))

e
+ ∣T ∣1/4

√
g(m)

e

)
≥
√
∣T ∣ ≥ log(∣T ∣)

Therefore if indeed g(m)p(t)
√
dt > 1/e for some t, then the bound in the theorem

is trivially true, since I(Y ;T ), Î(Y ;T ) are both within [0, log(∣T ∣)]. Hence the
bound in Thm. 4 holds for any m.

6.5. Proof of Thm. 7

Thm. 7 follows directly from the following two lemmas.
We denote by ℱ(X) the set of probabilistic functions of X into an arbitrary

target space, and by S(Y ) the set of sufficient statistics for Y .

Lemma 12. Let T be a probabilistic function of X. Then T is a sufficient
statistic for Y if and only if

I(Y ;T ) = max
T ′∈ℱ(X)

I(Y ;T ′)
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Proof. First, assume that T is a sufficient statistic for Y . For every T ′ which is
a probabilistic function of X, we have the Markov chain Y −X−T ′. Therefore,
by the data processing inequality, I(Y ;X) ≥ I(Y ;T ′). In addition, X ∈ ℱ(X).
Therefore

I(Y ;X) = max
T ′∈ℱ(X)

I(Y ;T ′).

Since T is a sufficient statistic, Y −T−X is also a Markov chain, hence I(Y ;X) ≤
I(Y ;T ). It follows that

I(Y ;T ) = I(Y ;X) = max
T ′∈ℱ(X)

I(Y ;T ′).

This completes one direction of the claim. For the other direction, assume that

I(Y ;T ) = max
T ′∈ℱ(X)

I(Y ;T ′).

Then I(Y ;T ) = I(Y ;X). Since Y − X − T is a Markov chain, it follows that
Y and X are conditionally independent given T (see [4], proof of Thm. 2.8.1),
hence T is a sufficient statistic.

Lemma 13. Let T be a sufficient statistic for Y . Then T is a minimal sufficient
statistic for Y if and only if

I(X;T ) = min
T ′∈S(Y )

I(X;T ′). (34)

Proof. First, let T be a minimal sufficient statistic, and let T ′ be some suf-
ficient statistic. By the definition of a minimal sufficient statistic, there is a
function f such that T = f(T ′). Therefore, X − T ′ − T is a Markov chain.
Therefore, I(X;T ) ≤ I(X;T ′). This holds for any sufficient statistic T ′, hence
indeed Eq. (34) holds. This completes the first direction of the proof.

For the second direction, we show that if T is not minimal, then there exists
a sufficient statistic V such that I(X;T ) > I(X;V ), thus Eq. (34) does not
hold. We will use the Fisher-Neyman factorization theorem [6] which states
that T is a sufficient statistic for Y if and only if there exist functions ℎT and
gT such that

∀x, y p(x∣y) = ℎT (x)gT (T (x), y). (35)

Since T is not minimal, there exists a sufficient statistic T ′ such that T is
not a function of T ′. Define the equivalence relation ∼ by

t1 ∼ t2 ⇐⇒
gT (t1, y)

gT (t2, y)
is a constant function of Y ,

where gT is a function satisfying Eq. (35) with some ℎT . Let V : X → T be a
function such that

∀x, V (x) ∈ {t ∣ t ∼ T (x)} .
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V is thus a function of T . We use Fisher-Neyman’s theorem to show that V is
a sufficient statistic: Define

ℎV (x) ≜ ℎT (x)
gT (T (x), y)

gT (V (x), y)

gV (V (x), y) ≜ gT (V (x), y).

Then

p(x∣y) = ℎT (x)gT (T (x), y)

= ℎT (x)
gT (T (x), y)

gT (V (x), y)
gT (V (x), y)

= ℎV (x)gV (V (x), y).

Therefore V has a factorization; hence it is a sufficient statistic. It is left to
show that I(X;T ) > I(X;V ). V is a function of T ′, for let x1, x2 such that
T ′(x1) = T ′(x2), then

gT (T (x1), y)

gT (T (x2), y)
=
p(x1∣y)ℎT (x2)

p(x2∣y)ℎT (x1)

=
ℎT ′(x1)gT ′(T

′(x1), y)ℎT (x2)

ℎT (x1)gT ′(T ′(x2), y)ℎT ′(x2)

=
ℎT ′(x1)ℎT (x2)

ℎT (x1)ℎT ′(x2)
.

Hence T (x1) ∼ T (x2), therefore V (x1) = V (x2) for any x1, x2 such that T ′(x1) =
T ′(x2).

Since X − T − V is a Markov chain, we have

I(X;T ) =I(X;V ) + I(X;T ∣ V )

≥ I(X;V ) + I(X;T ∣ T ′, V )

= I(X;V ) + I(X;T ∣ T ′).

Since T is a function ofX but is not a function of T ′, we have that I(X;T ∣ T ′) > 0.
Therefore I(X;T ) > I(X;V ), hence Eq. (34) does not hold.

7. Discussion

In this paper we analyzed the information bottleneck framework from a
learning theoretic perspective. This framework has been used successfully for
finding efficient relevant data representations in various applications, but this
is its first rigorous learning theoretic analysis. Despite the fact that the infor-
mation bottleneck is all about manipulating the joint input-output distribution,
we show that it can generalize quite well based on plug-in empirical estimates,
even with sample sizes much smaller than needed for reliable estimation of the
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joint distribution. In fact, it is exactly the reliance on the joint distribution that
allows us to derive non-uniform and adaptive bounds.

Moreover, these bounds allow us to view the information bottleneck frame-
work in the more familiar learning theoretic setting of a performance-complexity
tradeoff. In particular, we provided a preliminary analysis of the role of mutual
information as both a complexity regularization term and as a bound on the
classification error for common supervised applications, such as document clas-
sification. This is the first step in providing a theoretical justification for many
applications of interest, including a characterization of the learning scenarios
for which this method is best suited. Finally, we showed how this framework
extends the classical statistical concept of minimal sufficient statistics.
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