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SUPPLEMENTARY MATERIAL

Proof of Lemma 5.1. We only prove the lower bound
for the analytic moment case (other cases are similar).
We have,
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Proof of Lemma 5.2. As s ∈ [0, 1], by convexity, we
have L(θ)−L(θ⋆) ≥ L(θ⋆ + s∆)−L(θ⋆). We consider
the analytic moment case (cumulant case is easier).
By Lemma 3.5,

L(θ)− L(θ⋆) ≥ log(1 + m2(∆)
3 max{16α2m2(∆),1} )

By Jensen’s inequality, we know that the 4th standard-
ized moment (kurtosis) is greater than 1, so α2 ≥ 1
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(since 4!
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1/4 since the sum is only larger if we choose any ar-
gument in the max. Now for 0 ≤ x ≤ 1/4, we have
log(1 + x) ≥ 1 + 3

4x. Hence,
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which proves (6). For the second claim, the precondi-
tion implies that the max in (6) will be achieved at 1,
which directly implies the lower bound. For the upper
bound, we apply Lemma 5.1 with s = 1 (s = 1 under

our precondition), which implies that
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3m2(∆). The claim follows using Lemma 3.5,
with s = 1, and the fact that log(1 + x) ≤ x.


