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Abstract
The problem of characterizing learnability is the most basic question of statistical learning theory. A fun-
damental and long-standing answer, at least for the case of supervised classification and regression, is that
learnability is equivalent to uniform convergence of the empirical risk to the population risk, and that if a
problem is learnable, it is learnable via empirical risk minimization. In this paper, we consider the General
Learning Setting (introduced by Vapnik), which includes most statistical learning problems as special cases.
We show that in this setting, there are non-trivial learning problems whereuniform convergence does not
hold, empirical risk minimization fails, and yet they are learnable using alternative mechanisms. Instead of
uniform convergence, we identify stability as the key necessary and sufficient condition for learnability. More-
over, we show that the conditions for learnability in the general setting are significantly more complex than in
supervised classification and regression.
Keywords: statistical learning theory, learnability, uniform convergence, stability, stochastic convex opti-
mization

1. Introduction

We consider the General Setting of Learning introduced by Vapnik (1995) where we would like to minimize
a population risk functional (stochastic objective)

F(h) = EZ∼D [ f (h;Z)] (1)

over some hypothesis classH , where the distributionD of Z is unknown, based on i.i.d. samplez1, . . . ,zm

drawn fromD (and full knowledge off andH ). This General Setting subsumes supervised classification
and regression, certain unsupervised learning problems, density estimation and more. For example, in super-
vised learningz= (x,y) is an instance-label pair,h is a predictor, andf (h;(x,y)) = loss(h(x),y) is the loss
functional. See Section 2 for formal definitions and furtherexamples.

In the context of this general setting, we are concerned withthe question of statistical “learnability”. That
is, when can Equation (1) be minimized to within arbitrary precision based only on a finite samplez1, . . . ,zm,
asm→ ∞? We are not concerned here with computational aspects of this problem, that is, whether this
approximate minimization can be carried out efficiently, but only whether it is statistically possible to do so
based only on the samplez1, . . . ,zm.
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For supervised classification and regression problems, it is well known that a problem is learnable if and
only if the empirical risks

FS(h) = 1
m

m

∑
i=1

f (h,zi)

for all h ∈ H converge uniformly to the population risk (Blumer et al., 1989; Alon et al., 1997). If uniform
convergence holds, then the empirical risk minimizer (ERM)is consistent, that is, the population risk of the
ERM converges to the optimal population risk, and the problem is learnable using the ERM. We therefore
have:

• A necessary and sufficient condition for learnability, namely uniform convergence of the empirical
risks. Furthermore, this can be shown to be equivalent to a combinatorial condition: having finite
VC-dimension in the case of classification, and having finitefat-shattering dimensions in the case of
regression.

• A complete understanding ofhow to learn: since learnability is equivalent to learnabilityby ERM, we
can focus our attention solely on empirical risk minimizers.

The situation, for supervised classification and regression, can be depicted as follows:

Finite Dim.
Uniform

Convergence
Learnable
with ERM

Learnable

Other than uniform convergence, certain notions of stability have also been suggested as an explicit
condition for learnability. Intuitively, stability notions focus on particular algorithms, or learning rules, and
measure their sensitivity to perturbations in the trainingset. In particular, it is known that stability of the
ERM is sufficientfor learnability. In Mukherjee et al. (2006), it is argued that stability is also anecessary
for learnability. However, that argument relied on the assumption that uniform convergence is equivalent
to learnability. Therefore, stability was shown to characterize learnability only in situations where uniform
convergence characterizes learnability anyway.

The equivalence of uniform convergence and learnability was formally established only in the supervised
classification and regression setting. In the more general setting, the “rightward” implications in the diagram
above still hold: finite fat-shattering dimensions, uniform convergence, as well as ERM stability, are indeed
sufficient conditions for learnability using the ERM. As forthe reverse implication, Vapnik showed that a
notion of “non-trivial” or “strict” learnability with the ERM is indeed equivalent to uniform convergence of
the empirical risks. This notion was meant to exclude certain “trivial” learning problems, which are learn-
able without uniform convergence (see Section 3.1). Even insuch problems, learnability is still possible by
empirical risk minimization. Thus, it would seem that in theGeneral Learning Setting, as in supervised clas-
sification and regression, a problem is learnable if and onlyif it is learnable by empirical risk minimization.

In this paper we show that the situation in the General Learning Setting is actually much more complex.
In particular, in Section 4.1 we show an example of a learningproblem in the General Learning Setting,
which is learnable (using an online algorithm and an online-to-batch conversion), but which isnot learnable
using empirical risk minimization. To the best of our knowledge this is the first example shown of this type.

Furthermore, in Section 4.2 we show a modified example whichis learnable using empirical risk mini-
mization, but for which the empirical risks of the hypotheses donotconverge uniformly to their expectations,
not even locally for hypotheses very close to the true hypothesis. We argue that unlike the examples discussed
in Section 3.1, this example is far from being “trivial”. We use this example to discuss how Vapnik’s notion
of “strict” learnability with the ERM is too strict, and precludes cases which are far from trivial and in which
learnability with empirical risk minimization isnot equivalent to uniform convergence.

Having shown that learnability does not imply learnabilitywith the ERM, and learnability with the ERM
does not imply uniform convergence (unlike supervised classification and regression), we proceed in Sec-
tion 5 to characterize learnability in the General LearningSetting, unveiling stability as a key notion.
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In particular, we show that for learnable problems, even when they are not learnable with ERM, they are
always learnable with some learning rule which is “asymptotically ERM” and (AERM - see precise definition
in Section 2). Moreover, such an AERM must be stable (under a suitable notion of stability). Namely, we
have the following characterization of learnability in theGeneral Learning Setting:

Exists Stable
AERM

Learnable
with AERM

Learnable

Note that this characterization holds even for learnable problems with no uniform convergence. In this sense,
stability emerges as a strictly more powerful notion than uniform convergence for characterizing learnability.

Other than this, we also discuss several related results, which above all imply that the conditions for
learnability in the General Learning Setting are substantially different and more complex than in supervised
classification and regression.

Our results point not to a specific learning rule (such as an ERM), but rather to a class of learning rules
(AERM learning rules) as possible candidates for learning.In Section 6, we explore how our results can be
strengthened if we allow randomized learning rules. In particular, randomization allows us to pinpoint not a
general class of learning rules, but rather a specific (though highly impractical) learning rule, which learns if
and only if the problem is learnable.

Throughout most of the paper we discuss learning rates (as a function of the sample size), but do not pay
much attention to the confidence at which the learning rule succeeds (i.e., the dependence of the sample size
on the allowed probability of failure). This issue is addressed Section 7, and again we show that in the General
Learning Setting, things can behave rather differently than in supervised classification and regression.

In summary, this paper opens a door to the complexity of learnability in the General Learning Setting,
and provides some understanding of the situation, including highlighting the important role of stability. Many
gaps in our understanding remain, and we hope that future progress will close some of these gaps, as well as
connect the theoretical insights gained to machine learning as used in practice.

This paper is partially based on the results obtained in Shalev-Shwartz et al. (2009a) and Shalev-Shwartz
et al. (2009b).

2. The General Learning Setting: Formal Definition and Notation

In this paper we focus on the General Learning Setting, whichwas introduced by Vapnik (1995) as a unifying
framework for the problem of statistical learning from empirical data.

The General Learning Setting deals withlearning problems. Formally, a learning problem is specified
by a hypothesis classH , an instance setZ (with a sigma-algebra), and an objective function (e.g., “loss” or
“cost”) f : H ×Z → R. Throughout this paper we assume the function is bounded by some constantB, that
is | f (h;z)| ≤ B for all h ∈H andz∈ Z.

Given a distributionD onZ, the quality of each hypothesish ∈H is measured by itsrisk F(h), which is
defined asEz∼D [ f (h;z)]. WhileH , Z and f (h;z) are known to the learner, we assume thatD is unknown.
Ideally, we would like to pickh ∈H whose risk is as close as possible to infh∈H F(h). Since the underlying
distributionD is unknown, we cannot do this directly, but instead need to rely on a finite empiricaltraining
sample S= {z1, . . . ,zm}. On this sample, we apply alearning ruleto pick a hypothesis . Formally, a learning
rule is a mappingA : ∪∞

m=1Z
m → H from sequences of instances inZ to hypotheses. We refer to sequences

S= {z1, . . . ,zm} as “sample sets”, but it is important to remember that the order and multiplicity of instances
may be significant. A learning rule that does not depend on theorder of the instances in the training sample
is said to besymmetric. We will generally consider samplesS∼Dm of m i.i.d. draws fromD.

This framework is sufficiently general to include a large portion of the statistical learning and optimization
problems we are aware of, such as:
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• Binary Classification: Let Z = X × {0,1}, let H be a set of functionsh : X 7→ {0,1}, and let
f (h;(x,y)) = 11{h(x) 6=y}. Here, f (·) is simply the 0− 1 loss function, measuring whether the binary
hypothesish(·) misclassified the example(x,y).

• Regression: Let Z = X ×Y whereX andY are bounded subsets ofRn andR respectively, letH
be a set of bounded functionsh : X n 7→ R, and let f (h;(x,y)) = (h(x)− y)2. Here, f (·) is simply the
squared loss function.

• Large Margin Classification in a Reproducing Kernel Hilbert Space (RKHS):LetZ = X ×{0,1},
whereX is a bounded subset of an RKHS, letH be another bounded subset of the RKHS, and let
f (h;(x,y)) = max{0,1−y〈x,h〉}. Here, f (·) is the well known hinge loss function, and our goal is to
perform margin-based linear classification in the RKHS.

• K-Means Clustering in Euclidean Space:Let Z = R
n, letH be all subsets ofRn of sizek, and let

f (h;z) =minc∈h ‖c−z‖2. Here, eachh represents a set ofk centroids, andf (·) measures the Euclidean
distance squared between an instancez and its nearest centroid, according to the hypothesish.

• Density Estimation: LetZ be a subset ofRn, letH be a set of bounded probability densities onZ, and
let f (h;z) = − log(h(z)). Here, f (·) is simply the negative log-likelihood of an instancez according
to the hypothesis densityh. Note that to ensure boundedness off (·), we need to assume thath(z) is
lower bounded by a positive constant for allz∈ Z.

• Stochastic Convex Optimization in Hilbert Spaces:Let Z be an arbitrary measurable set, letH
be a closed, convex and bounded subset of a Hilbert space, andlet f (h;z) be Lipschitz-continuous
and convex w.r.t. its first argument. Here, we want to approximately minimize the objective function
Ez∼D [ f (h;z)], where the distribution overZ is unknown, based on an empirical samplez1, . . . ,zm.

Our overall goal in this setting is to pick a hypothesish ∈ H with approximately minimal possible risk,
based on a finite sample. Generally, we expect the approximation to get better with the sample size. Learning
rules which allow us to choose such hypotheses are said to beconsistent. Formally, we say a ruleA is
consistent with rateεcons(m) under distributionD if for all m,

ES∼Dm [F(A(S))−F∗]≤ εcons(m), (2)

where we denoteF∗ = infh∈H F(h) (here and whenever talking about a “rate”ε(m), we require it to be
monotone decreasing withεcons(m)

m→∞−→ 0).
However, sinceD is unknown, we cannot choose a learning rule based onD. Instead, we will ask for a

stronger requirement, namely that the rule is consistent with rateεcons(m) underall distributionsD overZ.
This leads to the following central definition:

Definition 1 A learning problem islearnable, if there exist a learning ruleA and a monotonically decreasing
sequenceεcons(m), such thatεcons(m)

m→∞−→ 0, and

∀D, ES∼Dm [F(A(S))−F∗]≤ εcons(m).

A learning ruleA for which this holds is denoted as auniversally consistentlearning rule.

This definition of learnability, requiring a uniform rate for all distributions, is the relevant notion for
studying learnability of a hypothesis class. It is a direct generalization of agnostic PAC-learnability (Kearns
et al., 1992) to Vapnik”s General Setting of Learning as studied by Haussler (1992) and others.

A possible approach to learning is to minimize theempirical risk FS(h) over a sampleS, defined as

FS(h) =
1
m ∑

z∈S

f (h;z).
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Z,z Instance domain and a specific instance.
H ,h Hypothesis class and a specific hypothesis.
f (h,z) Loss of hypothesish on instancez
B suph,z | f (h;z)|
D Underlying distribution on instance domainZ
S Empirical samplez1, . . . ,zm, sampled i.i.d. fromD
m Size of empirical sampleS
A(S) Learning ruleA applied on empirical sampleS
εcons(m) Rate of consistency for a learning rule
F(h) Risk of hypothesish, Ez∼D [ f (h;z)]
F∗ infh∈H F(h)
FS(h) Empirical risk of hypothesish on sampleS, 1

m ∑z∈S f (h;z)
ĥS An ERM hypothesis,FS(ĥS) = infh∈H FS(h)
εerm(m) Rate of AERM for a learning rule
εstable(m) Rate of stability for a learning rule
εgen(m) Rate of generalization for a learning rule

Table 1: Table of Notation

We say that a ruleA is anERM (Empirical Risk Minimizer)if it minimizes the empirical risk

FS(A(S)) = FS(ĥS) = inf
h∈H

FS(h).

where we useFS(ĥS) = infh∈H FS(h) to refer to the minimal empirical risk. But since there mightbe several
hypotheses minimizing the empirical risk,ĥS does not refer to a specific hypotheses and there might be many
rules which are all ERM.

We say that a ruleA is anAERM (Asymptotic Empirical Risk Minimizer)with rateεerm(m) under distri-
butionD if:

ES∼Dm
[

FS(A(S))−FS(ĥS)
]

≤ εerm(m)

A learning rule isuniversally an AERMwith rate εerm(m), if it is an AERM with rateεerm(m) under all
distributionsD overZ. A learning rule is analways AERMwith rateεerm(m), if for anysampleSof sizem,
it holds thatFS(A(S))−FS(ĥS)≤ εerm(m).

We say a ruleA generalizeswith rateεgen(m) under distributionD if for all m,

ES∼Dm [|F(A(S))−FS(A(S))|]≤ εgen(m).

A rule universally generalizeswith rateεgen(m) if it generalizes with rateεgen(m) under all distributionsD
overZ.

We note that other authors sometimes define “consistent”, and thus also “learnable” as a combination of
our notions of “consistent” and “generalizing”.

In the above definitions, we choose to use convergence in expectation, and defined the rates as rates on
the expectation. Since the objectivef is bounded, convergence in expectation is equivalent to convergence in
probability. Furthermore, using Markov’s inequality we can translate a rate of the formE [|X|] ≤ ε(m) to a
“low confidence” guaranteeP [|X|> ε(m)/δ]≤ δ. See Section 7 for a further discussion on this issue.

3. Background: Characterization of Learnability

Before presenting our results, we begin with a review of the known connections between learnability, stability,
and uniform convergence, highlighting the issues which will be of importance later on.
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3.1 Learnability and Uniform Convergence

As discussed in the introduction, a central notion for characterizing learnability is uniform convergence.
Formally, we say that uniform convergence holds for a learning problem, if the empirical risks of hypotheses
in the hypothesis class converges to their population risk uniformly, with a distribution-independent rate:

sup
D

ES∼Dm

[

sup
h∈H

|F(h)−FS(h)|
]

m→∞−→ 0.

It is straightforward to show that if uniform convergence holds, then a problem can be learned with the ERM
learning rule.

For binary classification problems (whereZ = X ×{0,1}, each hypothesis is a mapping fromX to {0,1},
and f (h;(x,y)) = 11{h(x) 6=y}), Vapnik and Chervonenkis (1971) showed that the finitenessof a simple com-
binatorial measure known as the VC-dimension implies uniform convergence. Furthermore, it can be shown
that binary classification problems with infinite VC-dimension are not learnable in a distribution-independent
sense. This establishes the condition of having finite VC-dimension, and thus also uniform convergence, as a
necessary and sufficient condition for learnability.

Such a characterization can also be extended to regression,such as regression with squared loss, where
h is now a real-valued function, andf (h;(x,y)) = (h(x)− y)2. The property of having finite fat-shattering
dimension at all finite scales now replaces the property of having finite VC-dimension, but the basic equiva-
lence still holds: a problem is learnable if and only if uniform convergence holds (Alon et al., 1997, see also
Anthony and Bartlet, 1999, Chapter 19). These results are usually based on clever reductions to binary clas-
sification. However, the General Learning Setting that we consider is much more general than classification
and regression, and includes setting where a reduction to binary classification is impossible.

To justify the necessity of uniform convergence even in the General Learning Setting, Vapnik attempted
to show that in this setting, learnability with the ERM learning rule is equivalent to uniform convergence
(Vapnik, 1998). Vapnik noted that this result does not hold,due to “trivial” situations. In particular, consider
the case where we take an arbitrary learning problem (with hypothesis classH ), and add toH a single
hypothesish̃ such thatf (h̃,z) < infh∈H f (h,z) for all z ∈ Z (see figure 1 below). This learning problem
is now trivially learnable, with the ERM learning rule whichalways picksh̃. Note that no assumptions
whatsoever are made onH - in particular, it can be arbitrarily complex, with no uniform convergence or any
other particular property. Note also that such a phenomenonis not possible in the binary classification setting,
where f (h;(x,y)) = 11{h(x) 6=y}, since on any(x,y) we will have hypotheses withf (h;(x,y)) = f (h̃;(x,y))
and thus ifH is very complex (has infinite VC dimension) then on every training set there will be many
hypotheses with zero empirical error.

To exclude such “trivial” cases, Vapnik introduced a stronger notion of consistency, termed as “strict
consistency”, which in our notation is defined as

∀c∈ R, inf
h:F(h)≥c

FS(h)
m→∞−→ inf

h:F(h)≥c
F(h) ,

where the convergence is in probability. The intuition is that we require the empirical risk of the ERM to
converge to the lowest possible risk, even after discardingall the “good” hypotheses whose risk is smaller
than some threshold. Vapnik then showed that such strict consistency of the ERM is in fact equivalent to
(one-sided) uniform convergence, of the form

sup
h∈H

(F(h)−FS(h))
m→∞−→ 0

in probability. Note that this equivalence holds for every distribution separately, and does not rely on universal
consistency of the ERM.

These results seem to imply that up to “trivial” situations,a uniform convergence property indeed char-
acterizes learnability, at least using the ERM learning rule. However, as we will see later on, the situation is
in fact not that simple.
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f(h̃; z)

Figure 1: An example of a “trivial” learning situation. Eachline represents someh∈H , and shows the value
of f (h,z) for all z∈ Z. The hypothesis̃h dominates any other hypothesis (e.g.,f (h̃;z) < f (h;z)
uniformly for all z), and thus the problem is learnable without uniform convergence or any other
property ofH .

3.2 Learnability and Stability

Instead of focusing on the hypothesis class, and ensuring uniform convergence of the empirical risks of
hypothesis in this class, an alternative approach is to directly control the variance of the learning rule. Here, it
is not the complexity of the hypothesis class which matters,but rather the way that the learning rule explores
this hypothesis class. This alternative approach leads to the notion of stability in learning. It is important to
note that stability is a property of a learning rule, not of the hypothesis class.

In the context of modern learning theory,1 the use of stability can be traced back at least to the work
of Rogers and Wagner (1978), which noted that the sensitivity of a learning algorithm with regard to small
changes in the sample controls the variance of the leave-one-out estimate. The authors used this observation
to obtain generalization bounds (w.r.t. the leave-one-outestimate) for thek-nearest neighbor algorithm. It
is interesting to note that a uniform convergence approach for analyzing this algorithm simply cannot work,
because the “hypothesis class” in this case has unbounded complexity. These results were later extended
to other “local” learning algorithms (see Devroye et al., 1996 and references therein). In addition, practi-
cal methods have been developed to introduce stability intolearning algorithms, in particular the Bagging
technique introduced by Breiman (1996).

Over the last decade, stability was studied as a generic condition for learnability. Kearns and Ron (1999)
showed that an algorithm operating on a hypothesis class with finite VC dimension is also stable (under a
certain definition of stability). Bousquet and Elisseeff (2002) introduced a strong notion of stability (denoted
asuniform stability) and showed that it is a sufficient condition for learnability, satisfied by popular learning
algorithms such as regularized linear classifiers and regressors in Hilbert spaces (including several variants
of SVM). Kutin and Niyogi (2002) introduced several weaker variants of stability, and showed how they are
sufficient to obtain generalization bounds for algorithms stable in their sense.

The papers above mainly considered stability as asufficientcondition for learnability. A more recent
line of work (Rakhlin et al., 2005; Mukherjee et al., 2006) studied stability as anecessarycondition for
learnability. However, the line of argument is specific to settings where uniform convergence holds and is

1. In a more general mathematical context, stability has been around for much longer. The necessity of stability for so-called inverse
problems to be well posed was first recognized by Hadamard (1902). The idea of regularization (that is, introducing stability into
ill-posed inverse problems) became widely known through the works of Tikhonov (1943) and Phillips (1962). We return to the
notion of regularization later on.
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necessary for learning. With this assumption, it is possible to show that the ERM algorithm is stable, and thus
stability is also a necessary condition for learning. However, as we will see later on in our paper, uniform
convergence is in fact not necessary for learning in the General Learning Setting, and stability plays there a
key role which has nothing to do with uniform convergence.

Finally, it is important to note that the results cited abovemake use of many different definitions of
stability, which unfortunately are not always comparable.All of them measure stability as the amount of
change in the algorithm’s output as a function of small changes to the sample on which the algorithm is
run. However, “amount of change to the output” and “small changes to the sample” can be defined in many
different ways. “Amount of change to the output” can mean change in risk, change in loss with respect
to particular examples, or supremum of change in loss over all examples. “Small changes to the sample”
usually mean either deleting one example or replacing it with another one (and even here, one can talk about
removing/replacing one instance at random, or in some arbitrary manner). Finally, this measure of change
can be measured with respect to any arbitrary sample, in expectation over samples drawn from the underlying
distribution; or in high probability over samples. For further discussion of this issue, see Appendix A.

4. Gaps Between Learnability, Uniform Convergence and ERM

In this section, we study a special case of the General Learning Setting, where there is a real gap between
learnability and uniform convergence, in the sense that there are non-trivial problems where no uniform
convergence holds (not even in a local sense), but they are still learnable. Moreover, some of these problems
are learnable with an ERM (again, without any uniform convergence), and some are not learnable with an
ERM, but rather with a different mechanism. We also discuss why this peculiar behavior does not formally
contradict Vapnik’s results on the equivalence of strict consistency of the ERM and uniform convergence,
as well as the important role that regularization seems to play here, but in a different way than in standard
theory.

4.1 Learnability without Uniform Convergence : StochasticConvex Optimization

A stochastic convex optimization problem is a special case of the General Learning Setting discussed above,
with the added constraints that the objective functionf (h;z) is Lipschitz-continuous and convex inh for
everyz, and thatH is closed, convex and bounded. We will focus here on problemswhereH is a subset of
a Hilbert space. A special case is the familiar linear prediction setting, wherez= (x,y) is an instance-label
pair, each hypothesish belongs to a subsetH of a Hilbert space, andf (h;x,y) = ℓ(〈h,φ(x)〉,y) for some
feature mappingφ and a loss functionℓ : R×Y → R, which is convex w.r.t. its first argument.

The situation in which the stochastic dependence onh is linear, as in the preceding example, is fairly
well understood. When the domainH and the mappingφ are bounded, we have uniform convergence, in the
sense that|F(h)−FS(h)| is uniformly bounded over allh ∈ H (see Sridharan et al., 2008). This uniform
convergence ofFS(h) to F(h) justifies choosing the empirical minimizerĥS= argminh FS(h), and guarantees
that the expected value ofF(ĥS) converges to the optimal valueF∗ = infh F(h).

Even if the dependence onh is not linear, it is still possible to establish uniform convergence (using
covering number arguments) provided thatH is finite dimensional. Unfortunately, when we turn to infinite
dimensional hypothesis spaces, uniform convergence mightnot hold and the problem might not be learnable
with empirical minimization. Surprisingly, it turns out that this does not imply that the problem is unlearnable.
We will show that using a regularization mechanism, it is possible to devise a learning algorithm for any
stochastic convex optimization problem, even when uniformconvergence does not hold. This mechanism is
fundamentally related to the idea of stability, and will be agood starting point for our more general treatment
of stability and learnability in the next section of the paper.

We now turn to discuss our first concrete example. Consider the convex stochastic optimization problem
given by

f (3)(h;(x,α)) = ‖α∗ (h−x)‖ =
√

∑
i

α2[i](h[i]−x[i])2 , (3)
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where for now we letH to be thed-dimensional unit sphereH =
{

h ∈ R
d : ‖h‖ ≤ 1

}

, we letz= (x,α) with
α ∈ [0,1]d andx ∈H , and we defineu∗v to be an element-wise product. We will first consider a sequence of
problems, whered = 2m for any sample sizem, and establish that we cannot expect a convergence rate which
is independent of the dimensionalityd. We then formalize this example in infinite dimensions.

One can think of the problem in Equation (3) as that of finding the “center” of an unknown distribution
over x ∈ R

d, where we also have stochastic per-coordinate “confidence”measuresα[i]. We will actually
focus on the case where some coordinates are missing, namelythatα[i] = 0.

Consider the following distribution over(x,α): x = 0 with probability one, andα is uniform over{0,1}d.
That is,α[i] are i.i.d. uniform Bernoulli. For a random sample(x1,α1), . . . ,(xm,αm) if d > 2m then we have
that with probability greater than 1−e−1 > 0.63, there exists a coordinatej ∈ 1. . .d such that all confidence
vectorsαi in the sample are zero on the coordinatej, that isαi [ j] = 0 for all i = 1..m. Let ej ∈ H be the
standard basis vector corresponding to this coordinate. Then

F(3)
S (ej) =

1
m

m

∑
i=1

∥

∥αi ∗ (ej −0)
∥

∥ =
1
m

m

∑
i=1

|αi [ j]| = 0,

whereF(3)
S (·) denotes the empirical risk w.r.t. the functionf (3)(·). On the other hand, lettingF(3)(·) denote

the actual risk w.r.t.f (3)(·), we have

F(3)(ej) = Ex,α
[∥

∥α∗ (ej −0)
∥

∥

]

= Ex,α [|α[ j]|] = 1/2.

Therefore, for anym, we can construct a convex Lipschitz-continuous objectivein a high enough dimension

such that with probability at least 0.63 over the sample, suph

∣

∣

∣
F(3)(h)−F(3)

S (h)
∣

∣

∣
≥ 1/2. Furthermore, since

f (·; ·) is non-negative, we have thatej is an empirical minimizer, but its expected valueF(3)(ej) = 1/2 is far
from the optimal expected value minh F(3)(h) = F(3)(0) = 0.

To formalize the example in a sample-size independent way, takeH to be the unit sphere of an infinite-
dimensional Hilbert space with orthonormal basise1,e2, . . ., where forv ∈ H , we refer to its coordinates
v[ j] =

〈

v,ej
〉

w.r.t this basis. The confidencesα are now a mapping of each coordinate to[0,1]. That is, an
infinite sequence of reals in[0,1]. The element-wise product operationα ∗ v is defined with respect to this
basis and the objective functionf (3)(·) of Equation (3) is well defined in this infinite-dimensional space.

We again take a distribution overz= (x,α) wherex = 0 andα is an infinite i.i.d. sequence of uniform
Bernoulli random variables (that is, a Bernoulli process with eachαi uniform over{0,1} and independent of
all otherα j ). Now, for any finite sample there is almost surely a coordinate j with αi [ j] = 0 for all i, and so

we a.s. have an empirical minimizerF(3)
S (ej) = 0 with F(3)(ej) = 1/2> 0= F(3)(0).

As a result, we see that the empirical valuesF(3)
S (h) do not converge uniformly to their expectations, and

empirical minimization is not guaranteed to solve the problem. Moreover, it is possible to construct a sharper
counterexample, in which theuniqueempirical minimizerĥS is far from having optimal expected value. To
do so, we augmentf (3)(·) by a small term which ensures its empirical minimizer is unique, and far from the
origin. Consider:

f (4)(h;(x,α)) = f (3)(h;(x,α))+ ε∑
i

2−i(h[i]−1)2 (4)

whereε = 0.01. The objective is still convex and(1+ ε)-Lipschitz. Furthermore, since the additional term is
strictly convex, we have thatf (4)(h;z) is strictly convex w.r.t.h and so the empirical minimizer is unique.

Consider the same distribution overz: x = 0 while α[i] are i.i.d. uniform zero or one. The empirical

minimizer is the minimizer ofF(4)
S (h) subject to the constraints‖h‖ ≤ 1. Identifying the solution to this

constrained optimization problem is tricky, but fortunately not necessary. It is enough to show that the

optimum of theunconstrainedoptimization problemh∗UC = argminF(4)
S (h) (without constrainingh ∈H ) has

norm ‖h∗
UC‖ ≥ 1. Notice that in the unconstrained problem, wheneverαi [ j] = 0 for all i = 1..n, only the

second term off (4) depends onh[ j] and we haveh∗
UC[ j] = 1. Since this happens a.s. for some coordinatej,
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we can conclude that the solution to the constrained optimization problem lies on the boundary ofH , that is
∥

∥ĥS
∥

∥= 1. But for such a solution we have

F(4)(ĥS)≥ Eα

[

√

∑
i

α[i]ĥ2
S[i]

]

≥ Eα

[

∑
i

α[i]ĥ2
S[i]

]

= ∑
i

ĥ2
S[i]Eα [α[i]] =

1
2

∥

∥ĥS
∥

∥

2
=

1
2
,

while F∗ ≤ F(0) = ε.
In conclusion, no matter how big the sample size is, the unique empirical minimizer̂hS of the stochastic

convex optimization problem in Equation (4) is a.s. much worse than the population optimum,F(ĥS)≥ 1
2 >

ε ≥ F∗, and certainly does not converge to it.

4.2 Learnability via Stability

At this point, we have seen an example in the stochastic convex optimization framework where uniform
convergence does not hold, and the ERM algorithm fails. Surprisingly, we will now show that such problems
are in fact learnable using an alternative mechanism which has nothing to do with uniform convergence.

Given a stochastic convex optimization problem with an objective function f (h;z), consider aregularized
version of it: instead of minimizing the expected riskEz [ f (h;z)] overh ∈H , we will try to minimize

Ez

[

f (h;z)+
λ
2
‖h‖2

]

for someλ > 0. Notice that this is simply a stochastic convex optimization problem w.r.t. the objective
function f (h;z)+ λ

2 ‖h‖2. We will show that this regularized problemis learnable using the ERM algorithm

(namely, by attempting to minimize1m ∑i f (h;zi)+
λ
2 ‖h‖2), by showing that the ERM algorithm isstable. By

takingλ → 0 at an appropriate rate as the sample size increases, we are able to solve the original stochastic
problem optimization problem, w.r.t.f (h;z).

The key characteristic of the regularized objective function we need is that it isλ-strongly convex. For-
mally, we say that a real functiong(·) over a domainH in a Hilbert space isλ-strongly convex (whereλ ≥ 0),
if the functiong(·)− λ

2‖ · ‖2 is convex. In this case, it is easy to verify that ifh minimizesg then

∀h′, g(h′)−g(h)≥ λ
2‖h′−h‖2 .

When λ = 0, strong convexity corresponds to standard convexity. In particular, it is immediate from the
definition thatf (h;z)+ λ

2 ‖h‖2 is λ-strongly convex w.r.t.h (assumingf (h;z) is convex).
The arguments above are formalized in the following two theorems:

Theorem 2 Consider a stochastic convex optimization problem such that f (h;z) is λ-strongly convex and
L-Lipschitz with respect toh ∈ H . Let z1, . . . ,zm be an i.i.d. sample and let̂hS be the empirical minimizer.
Then, with probability at least1−δ over the sample we have

F(ĥS)−F∗ ≤ 4L2

δλm
.

Theorem 3 Let f : H ×Z → R be such thatH is bounded by B and f(h,z) is convex and L-Lipschitz with
respect toh. Letz1, . . . ,zm be an i.i.d. sample and let̂hλ be the minimizer of

ĥλ = min
h∈H

(

1
m

m

∑
i=1

f (h,zi)+
λ
2 ‖h‖2

)

(5)

with λ =
√

16L2

δB2 m
. Then, with probability at least1−δ we have

F(ĥλ)−F∗ ≤ 4

√

L2B2

δm

(

1+
8

δm

)

.
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Proof [Proof of Theorem 2] To prove the theorem, we use a stability argument. Denote

F(i)
S (h) =

1
m

(

f (h,z′i)+∑
j 6=i

f (h,z j)

)

.

the empirical average withzi replaced by an independently and identically drawnz′i , and consider its mini-
mizer:

ĥ(i)
S = arg min

h∈H
F(i)

S (h).

We first use strong convexity and Lipschitz-continuity to establish that empirical minimization is stable in the
following sense:

∀z∈ Z,
∣

∣

∣
f (ĥS,z)− f (ĥ(i)

S ,z)
∣

∣

∣
≤ 4L2

λm . (6)

We have that

FS(ĥ
(i)
S )−FS(ĥS)

=
f (ĥ(i)

S ,zi)− f (ĥS,zi)

m
+

∑ j 6=i

(

f (ĥ(i)
S ,z j)− f (ĥS,z j)

)

m

=
f (ĥ(i)

S ,zi)− f (ĥS,zi)

m
+

f (ĥS,z′i)− f (ĥ(i)
S ,z′i)

m

+
(

F(i)
S (ĥ(i)

S )−F(i)
S (ĥS)

)

≤ | f (ĥ(i)
S ,zi)− f (ĥS,zi)|

m
+

| f (ĥS,z′i)− f (ĥ(i)
S ,z′i)|

m

≤ 2L
m

∥

∥

∥
ĥ(i)

S − ĥS

∥

∥

∥
(7)

where the first inequality follows from the fact thatĥ(i)
S is the minimizer ofF(i)

S (h) and for the second inequal-
ity we use Lipschitz continuity. But from strong convexity of FS(h) and the fact that̂hS minimizesFS(h) we
also have that

FS(ĥ
(i)
S )≥ FS(ĥS)+

λ
2

∥

∥

∥
ĥ(i)

S − ĥS

∥

∥

∥

2
. (8)

Combining Equation (8) with Equation (7) we get
∥

∥

∥
ĥ(i)

S − ĥS

∥

∥

∥
≤ 4L/(λm) and combining this with Lipschitz

continuity of f we obtain that Equation (6) holds. Later on in this paper, we show that a stable ERM is
sufficient for learnability. More formally, Equation (6) implies that the ERM is uniform-RO stability (Defini-
tion 4) with rateεstable(m) = 4L2/(λm) and therefore Theorem 8 implies that the ERM is consistent with rate
≤ εstable(m), namely

ES∼Dm
[

F(ĥS)−F∗]≤ 4L2

λm .

Since the random variable in the expectation is non-negative, the theorem follows by Markov’s inequality.

We now turn to the proof of Theorem 3.
Proof [Proof of Theorem 3] Letr(h;z) = λ

2‖h‖2 + f (h;z) and letR(h) = Ez [r(h,z)]. Note thatĥλ is the
empirical minimizer for the stochastic optimization problem defined byr(h;z).

We apply Theorem 2 tor(h;z), to this end note that sincef is L-Lipschitz and∀h ∈H , ‖h‖ ≤ B we see
thatr is in factL+λB-Lipschitz. Applying Theorem 2, we see that

λ
2

∥

∥ĥλ
∥

∥

2
+F(ĥλ) = R(ĥλ)≤ inf

h
R(h)+

4(L+λB)2

δλm
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Now note that infh R(h)≤ infh F(h)+ λ
2B2 = F∗+ λ

2B2, and so we get that

F(ĥλ)≤ F∗+
λ
2

B2+
4(L+λB)2

δλm

≤ F∗+
λ
2

B2+
8L2

δλm
+

8λB2

δm

Plugging in the value ofλ given in the theorem statement we see that

F(ĥλ)≤ F∗+4

√

L2B2

δm
+

32
δm

√

L2B2

δm

This gives us the required bound.

From the above theorem, we see that regularization is essential for convex stochastic optimization. It
is important to note that even for the strongly convex optimization problem in Theorem 2, where the ERM
algorithm does work, it is not due to uniform convergence. Tosee this, consider augmenting the objective
function f (3)(·) from Equation (3) with a strongly convex term:

f (9)(h;x,α) = f (3)(h;x,α)+
λ
2
‖h‖2 . (9)

The modified objectivef (9)(·; ·) is λ-strongly convex and(1+ λ)-Lipschitz overH = {h : ‖h‖ ≤ 1} and
thus satisfies the conditions of Theorem 2. Now, consider thesame distribution overz= (x,α) used earlier:
x = 0 andα is an i.i.d. sequence of uniform zero/one Bernoulli variables. Recall that almost surely we have
a coordinatej that is never “observed”, namely such that∀iαi [ j] = 0. Consider a vectortej of magnitude

0 < t ≤ 1 in the direction of this coordinate. We have thatF(9)
S (tej) =

λ
2t2 (whereF(9)

S (·) is the empirical
risk w.r.t. f (9)(·)) but F(9)(tej) =

1
2t + λ

2t2. Hence, lettingF(9)(·) denote the risk w.r.t.f (9)(·), we have

thatF(9)(tej)−F(9)
S (tej) = t/2. In particular, we can sett = 1 and establish suph∈H (F(9)(h)−F(9)

S (h))≥ 1
2

regardless of the sample size.

We see then that the empirical averagesF(9)
S (h) do not converge uniformly to their expectations. More-

over, the example above shows that there is no uniform convergence even in a local sense, namely over all
hypotheses whose risk is close enough toF∗, or those close enough to the minimizer off (9)(h;x,α).

Finally, we note that the learning algorithm we have discussed here is mainly for pedagogical reasons. A
different generic algorithm for stochastic convex optimization is already known in the literature, by combining
Zinkevich’s algorithm (Zinkevich, 2003) for online convexoptimization, with an online-to-batch conversion
(e.g., Cesa-Bianchi et al., 2004). While different than our algorithm, Shalev-Shwartz (2007) showed that
Zinkevich’s online learning algorithm can be viewed as approximate coordinate ascent optimization of the
dual of the regularized problem Equation (5). Thus, this algorithm still uses the same mechanisms of regular-
ization and stability. Also, we note that the algorithm alsoenjoys bounds which depend only logarithmically
on 1/δ, while the bounds we have obtained above depend linearly on 1/δ. However, we suspect that the
dependence onδ in Theorem 2 can be improved to log(1/δ). For instance, such bounds has been obtained
whenever the objective function is a generalized linear function ofh (Sridharan et al., 2008).

4.3 How to Interpret Regularization: Uniform Convergence vs Stability

The technique of regularizing the objective function by adding a “bias” term is old and well known. In
particular, adding‖h‖2 is the so-called Tikhonov Regularization technique, whichhas been known for more
than half a century (see Tikhonov, 1943). However, the role of regularization in our case is very different
than in familiar settings such asℓ2 regularization in SVMs andℓ1 regularization in LASSO. In those settings
regularization serves to constrain our domain to a low-complexity domain (e.g., low-norm predictors), where
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we rely on uniform convergence. In fact, almost all learningguarantees that we are aware of can be expressed
in terms of some sort of uniform convergence.

In our case, constraining the norm ofh doesnot ensure uniform convergence. Consider the example
f (3)(·) we have seen earlier. Even over a restricted domainHr = {h : ‖h‖ ≤ r}, for arbitrarily smallr >
0, the empirical averagesFS(h) do not uniformly converge toF(h). Furthermore, consider replacing the
regularization termλ‖h‖2 with a constraint on the norm of‖h‖, namely, solving the problem

h̃r = arg min
‖h‖≤r

FS(h)

We cannot solve the stochastic optimization problem by setting r in a distribution-independent way (i.e.,
without knowing the solution...). To see this, note that when x = 0 a.s. we must haver → 0 to ensure
F(h̃r)→ F∗. However, ifx = e1 a.s., we must setr → 1. No constraint will work for all distributions over
Z = (X ,α)! This sharply contrasts with traditional uses of regularization, where learning guarantees are
typically stated in terms of a constraint on the norm rather than in terms of a parameter such asλ, and adding
a regularization term of the formλ2 ‖h‖2 is viewed as a proxy for bounding the norm‖h‖.

4.4 Contradiction to Vapnik?

In Section 3.1, we discussed how Vapnik showed that uniform convergence is in fact necessary for learnability
with the ERM. At first glance, this might seem confusing in light of the examples presented above, where we
have problems learnable with the ERM without uniform convergence whatsoever.

The solution for this apparent paradox is that our examples are not “strictly consistent” in Vapnik’s sense.
Recall that in order to exclude “trivial” cases, Vapnik defined strict consistency of empirical minimization as
(in our notation):

∀c∈ R, inf
h:F(h)≥c

FS(h)−→ inf
h:F(h)≥c

F(h) , (10)

where the convergence is in probability. This condition indeed ensures thatF(ĥS)
P→ F∗. Vapnik’s Key

Theorem on Learning Theory (Vapnik, 1998, Theorem 3.1) thenstates thatstrict consistency of empirical
minimization is equivalent to one-sided2 uniform convergence. In the example presented above, even though
Theorem 2 establishesF(9)(ĥS)

P→ F∗, the consistency isn’t “strict” by the definition above. To see this, for
any c > 0, consider the vectortej (where∀iαi [ j] = 0) with t = 2c. We haveF(9)(tej) =

1
2t + λ

2t2 > c but

F(9)
S (tej) =

λ
2t2 = 2λc2. Focusing onλ = 1

2 we get:

inf
F(9)(h)≥c

F(9)
S (h)≤ c2

almost surely for any sample sizem, violating the strict consistency requirement Equation (10).
We emphasize that stochastic convex optimization is far from “trivial” in that there is no dominating

hypothesis that will always be selected. Although for convenience of analysis we tookx= 0, one should think
of situations in whichx is stochastic with an unknown distribution. This shows thatuniform convergence is a
sufficient, but not at all necessary, condition for consistency of empirical minimization in non-trivial settings.

5. Learnability in the General Learning Setting: the role of Stability

In the previous section, we have shown that in the General Learning Setting, it is possible for problems
to be learnable without uniform convergence, in sharp contrast to previously considered settings. The key
underlying mechanism which allowed us to learn is stability. In this section, we study the connection between
learnability and stability in greater depth, and show that stability can in factcharacterizelearnability. Also,
we will see how various “common knowledge facts”, which we usually take for granted and are based on a

2. “One-sided” meaning requiring only sup(F(h)−FS(h))−→ 0, rather then sup|F(h)−FS(h)| −→ 0.
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“uniform convergence equivalent to learnability” assumption, do not hold in the General Learning Setting,
and things can be much more delicate.

We will refer to settings where learnability is equivalent to uniform convergence as “supervised classifica-
tion” settings. While supervised classification does not encompass all settings where this equivalence holds,
most equivalence results refer to it either explicitly or implicitly (by reduction to a classification problem).

5.1 Stability : Definitions

We start by giving the exact definition of the stability notions that we will use. As discussed earlier, there are
many possible stability measures, some of which can be used to obtain results of a similar flavor to the ones
below. The definition we use seems to be the most convenient for the goal of characterizing learnability in the
General Learning Setting. In Appendix A, we provide a few illustrating examples to the subtle differences
that can arise from slight variations in the stability measure.

Our two stability notions are based on replacing one of the training sample instances. For a sampleSof
sizem, let S(i) = {z1, ...,zi−1,z′i ,zi+1, ...,zm} be a sample obtained by replacing thei-th observation ofSwith
some different instancez′i . When not discussed explicitly, the nature of howz′i is obtained should be obvious
from context.

Definition 4 A ruleA is uniform-RO stable3 with rateεstable(m), if for all possible S(i) and anyz′ ∈ Z,

1
m

m

∑
i=1

∣

∣

∣
f (A(S(i));z′)− f (A(S);z′)

∣

∣

∣
≤ εstable(m).

Definition 5 A ruleA is average-RO stablewith rateεstable(m) under distributionsD if
∣

∣

∣

∣

∣

1
m

m

∑
i=1

ES∼Dm,(z′1,...,z
′
m)∼Dm

[

f (A(S(i));z′i)− f (A(S);z′i)
]

∣

∣

∣

∣

∣

≤ εstable(m).

Note that this definition corresponds to assuming that the expected empirical risk of the learning rule con-
verges to the expected risk - see Lemma 11.

We say that a rule isuniversallystable with rateεstable(m), if the stability property holds with rateεstable(m)
for all distributions.

Claim 6 Uniform-RO stability with rateεstable(m) implies average-RO stability with rateεstable(m).

5.2 Characterizing Learnability : Main Results

Our overall goal is to characterize learnable problems (namely, problems for which there exists a universally
consistent learning rule, as in Equation (2)). That means finding some condition which is bothnecessaryand
sufficientfor learnability. In the uniform convergence setting, sucha condition is the stability of the ERM
(under any of several possible stability measures, including both variants of RO-stability defined above). This
is still sufficient for learnability in the General LearningSetting, but far from being necessary, as we have
seen in Section 4.

The most important result in this section is a condition which is necessary and sufficient for learnability
in the General Learning Setting:

Theorem 7 A learning problem is learnable if and only if there exists a uniform-RO stable, universally
AERM learning rule.

In particular, if there exists aεcons(m)-universally consistent rule, then there exists a rule thatis εstable(m)-
uniform-RO stable and universallyεerm(m)-AERM where:

εerm(m) = 3εcons(m
1/4)+ 8B√

m ,

εstable(m) = 2B√
m.

3. RO is short for “replace-one”.
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In the opposite direction, if a learning rule isεstable(m)-uniform-RO stable and universallyεerm(m)-
AERM, then it is universally consistent with rate

εcons(m)≤ εstable(m)+ εerm(m)

Thus, while we have seen in Section 4 that the ERM rule might fail for learning problems which are in
fact learnable, there is always an AERM rule which will work.In other words, when designing learning
rules, we might need to look beyond empirical risk minimization, but not beyond AERM learning rules. On
the downside, we must choose our AERM carefully, since not any AERM will work. This contrasts with
supervised classification, where any AERM will work if the problem is learnable at all.

How do we go about proving this assertion? The easier part is showing sufficiency. Namely, that a stable
AERM must be consistent (and generalizing). In fact, this holds both separately for any particular distribution
Ds, and uniformly over all distributions:

Theorem 8 If a rule is an AERM with rateεerm(m) and average-RO stable (or uniform-RO stable) with rate
εstable(m) underD, then it is consistent and generalizes underD with rates

εcons(m)≤ εstable(m)+ εerm(m)

εgen(m)≤ εstable(m)+2εerm(m)+ 2B√
m

The second part of Theorem 7 follows as a direct corollary. Wenote that close variants of Theorem 8 has
already appeared in previous literature (e.g., Mukherjee et al., 2006 and Rakhlin et al., 2005).

The harder part is showing that a uniform-RO stable AERM isnecessaryfor learnability. This is done in
several steps.

First, we show that consistent AERMs have to be average-RO stable:

Theorem 9 For an AERM, the following are equivalent:
• Universal average-RO stability.
• Universal consistency.
• Universal generalization.

The exact conversion rate of Theorem 9 is specified in the corresponding proof (Section 5.3), and are all
polynomial. In particular, anεcons-universal consistentεerm-AERM is average-RO stable with rate

εstable(m)≤ εerm(m)+3εcons(m
1/4)+ 4B√

m.

Next, we show that if we seek universally consistent and generalizing learning rules, then we must con-
sider only AERMs:

Theorem 10 If a rule A is universally consistent with rateεcons(m) and generalizing with rateεgen(m), then
it is universally an AERM with rate

εerm(m)≤ εgen(m)+3εcons(m
1/4)+

4B√
m

Now, recall that learnability is defined as the existence of some universally consistent learning rule. Such
a rule might not be generalizing, stable or even an AERM (see example 2 below). However, it turns out that if
a universally consistent learning rule exist, then there isanotherlearning rule for the same problem, which is
generalizing (Lemma 20). Thus, by Theorems 9-10, this rule must also be average-RO stable AERM. In fact,
by another application of Lemma 20, such an AERM must also be uniform-RO stable, leading to Theorem 7.

5.3 Detailed Results and Proofs

We first establish that for AERMs, average-RO stability and generalization are equivalent.
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5.3.1 EQUIVALENCE OF STABILITY AND GENERALIZATION

It will be convenient to work with a weaker version of generalization as an intermediate step: We say a rule
A on-average generalizeswith rateεoag(m) under distributionD if for all m,

|ES∼Dm [F(A(S))−FS(A(S))]| ≤ εoag(m). (11)

It is straightforward to see that generalization implies on-average generalization with the same rate. We show
that for AERMs, the converse is also true, and also that on-average generalization is equivalent to average-RO
stability. This establishes the equivalence between generalization and average-RO stability (for AERMs).

Lemma 11 (on-average generalization⇔ average-RO stability) If A is on-average generalizing with rate
εoag(m) then it is average-RO stable with rateεoag(m). If A is average-RO stable with rateεstable(m) then it
is on-average generalizing with rateεstable(m).

Proof For anyi, zi andz′i are both drawn i.i.d. fromD, we have that

ES∼Dm [ f (A(S);zi)] = ES∼Dm,z′i∼D
[

f (A(S(i));z′i)
]

.

Hence,

ES∼Dm [FS(A(S))] = ES∼Dm

[

1
m

m

∑
i=1

f (A(S);zi)

]

=
1
m

m

∑
i=1

ES∼Dm [ f (A(S);zi)]

=
1
m

m

∑
i=1

ES∼Dm,z′i∼D
[

f (A(S(i));z′i)
]

Also note thatF(A(S)) = Ez′i∼D [ f (A(S);z′i)] =
1
m ∑m

i=1Ez′i∼D [ f (A(S);z′i)]. Hence we can conclude that

ES∼Dm [F(A(S))−FS(A(S))] =
1
m

m

∑
i=1

ES∼Dm,(z′1,...,z
′
m)∼Dm

[

f (A(S);z′i)− f (A(S(i));z′i)
]

Hence we have the required result.

For the next result, we will need the following two short utility lemmas.

Utility Lemma 12 For i.i.d. Xi , |Xi | ≤ B and X= 1
m ∑m

i=1Xi we haveE [|X−E [X]|]≤ B/
√

m.

Proof E [|X−E [X]|]≤
√

E

[

|X−E [X]|2
]

≤
√

Var[X] =
√

Var[Xi ]/m≤ B/
√

m.

Utility Lemma 13 Let X,Y be random variables s.t. X≤Y almost surely. ThenE [|X|]≤ |E [X]|+2E [|Y|].

Proof
E [|X|] = E [|(Y−X)−Y|]≤ E [Y−X]+E [|Y|]≤ |E [X]|+2|E [Y]| .
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Lemma 14 (AERM + on-average generalization⇒ generalization) If A is an AERM with rateεerm(m)
and on-average generalizes with rateεoag(m) underD, thenA generalizes with rateεoag(m)+2εerm(m)+ 2B√

m
underD.

Proof Recall thatF∗ = infh∈H F(h). For an arbitrarily smallν > 0, let hν be a fixed hypothesis such that
F(hν)≤ F∗+ν. Using respective optimalities ofĥS andF∗ we can bound:

FS(A(S))−F(A(S))

= FS(A(S))−FS(ĥS)+FS(ĥS)−FS(hν)+FS(hν)−F(hν)+F(hν)−F(A(S))

≤ FS(A(S))−FS(ĥS)+FS(hν)−F(hν)+ν =Yν

Where the final equality defines a new random variableYν. By Lemma 12 and the AERM guarantee we have
E [|Yν|]≤ εerm(m)+B/

√
m+ν. From Lemma 13 we can conclude that

E [|FS(A(S))−F(A(S))|]≤ |E [FS(A(S))−F(A(S))]|+2E [|Yν|]≤ εoag(m)+2εerm(m)+ 2B√
m +ν.

Notice that the l.h.s. is a fixed quantity which does not depend onν. Therefore, we can takeν in the r.h.s. to
zero, and the result follows.

Combining Lemma 11 and Lemma 14, we have nowestablished the stability↔generalization parts
of Theorem 8 and Theorem 9(in fact, even a slightly stronger converse than in Theorem 9, as it does not
require universality).

5.3.2 A SUFFICIENT CONDITION FOR CONSISTENCY

It is fairly straightforward to see that generalization (oreven on-average generalization) of an AERM implies
its consistency:

Lemma 15 (AERM+generalization⇒consistency) If A is AERM with rateεerm(m) and it on-average gen-
eralizes with rateεoag(m) underD then it is consistent with rateεoag(m)+ εerm(m) underD.

Proof For anyν > 0, lethν be a hypothesis such thatF(hν)≤ F∗+ν. We have

E [F(A(S))−F∗] = E [F(A(S))−FS(hν)+ν]
= E [F(A(S))−FS(A(S))]+E [FS(A(S))−FS(hν)]+ν

≤ E [F(A(S))−FS(A(S))]+E
[

FS(A(S))−FS(ĥS)
]

+ν
≤ εoag(m)+ εerm(m)+ν.

Since this upper bound holds for anyν, we can takeν to zero, and the result follows.

Combined with the results of Lemma 11, this completes theproof of Theorem 8 and the stability →
consistency and generalization→ consistency parts of Theorem 9.

5.3.3 CONVERSEDIRECTION

Lemma 11 already provides a converse result, establishing that stability is necessary for generalization. How-
ever, as it will turn out, in order to establish that stability is also necessary foruniversal consistency, we must
prove that universal consistency of an AERM impliesuniversalgeneralization. The assumption ofuniversal
consistency for the AERM is crucial here: mere consistency of an AERM with respect to a specific distri-
bution doesnot imply generalization nor stability with respect to that distribution. The following example
briefly illustrates this point.
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Example 1 There exists a learning problem and a distribution on the instance space, such that the ERM
(or any AERM) is consistent with rateεcons(m) = 0, but does not generalize and is not average-RO stable
(namely,εgen(m),εstable(m) = Ω(1)).

Proof Let the instance space be[0,1], the hypothesis space consist of all finite subsets of[0,1], and define
the objective function asf (h,z) = 11{z/∈h}). Consider any continuous distribution on the instance space. Since
the underlying distributionD is continuous, we haveF(h) = 1 for any hypothesish. Therefore, any learning
rule (including any AERM) will be consistent withF(A(S)) = 1. On the other hand, the ERM here always
achievesFS(ĥS) = 0, so any AERM cannot generalize, or even on-average-generalize (by Lemma 14), hence
cannot be average-RO stable (by Lemma 11).

The main tool we use to prove our desired converse result is the following lemma. It is here that we cru-
cially use the universal consistency assumption (i.e., consistency with respect toanydistribution). Intuitively,
it states that if a problem is learnable at all, then althoughthe ERM rule might fail, its empirical risk is a
consistent estimator of the minimal achievable risk.

Lemma 16 (Main Converse Lemma) If a problem is learnable, namely there exists a universallyconsistent
rule A with rateεcons(m), then under any distribution,

E
[∣

∣FS(ĥS)−F∗∣
∣

]

≤ εemp(m) where (12)

εemp(m) = 2εcons(m
′)+ 2B√

m + 2Bm′2
m

for any m′ such that2≤ m′ ≤ m/2.

Proof Let I = {I1, . . . , Im′} be a random sample ofm′ indexes in the range 1..mwhere eachIi is independently
uniformly distributed, andI is independent ofS. Let S′ = {zIi}m′

i=1, that is, a sample of sizem′ drawn from
the uniform distribution over samples inS (with replacements). We first bound the probability thatI has no
repeated indexes (“duplicates”):

P [I has duplicates]≤ ∑m′
i=1(i −1)

m
≤ m′2

2m
(13)

Conditioned on not having duplicates inI , the sampleS′ is actually distributed according toDm′
, that is,

can be viewed as a sample from the original distribution. We therefore have by universal consistency:

E
[∣

∣F(A(S′))−F∗∣
∣

∣

∣ no dups
]

≤ εcons(m
′) (14)

But viewed as a sample drawn from the uniform distribution over instances inS, we also have:

ES′
[∣

∣FS(A(S′))−FS(ĥS)
∣

∣

]

≤ εcons(m
′) (15)

Conditioned on having no duplications inI , the set of those samples inS not chosen byI (i.e., S\S′) is
independent ofS′, and|S\S′|= m−m′, and so by Lemma 12:

ES
[∣

∣F(A(S′))−FS\S′(A(S′))
∣

∣

]

≤ B√
m−m′ (16)

Finally, if there are no duplicates, then for any hypothesis, and in particular forA(S′) we have:

∣

∣FS(A(S′))−FS\S′(A(S′))
∣

∣≤ 2Bm′

m
(17)

Combining Equation (14),Equation (15),Equation (16) and Equation (17), accounting for a maximal dis-
crepancy ofB when we do have duplicates, and assuming 2≤ m′ ≤ m/2, we get the desired bound.
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Equipped with Lemma 16, we are now ready to show that universal consistency of an AERM implies
universal generalization and that any universally consistent and generalizing rule must be an AERM. What
we show is actually a bit stronger: that if a problem is learnable, and so Lemma 16 holds, then for any
distributionD separately, consistency of an AERM underD implies generalization underD and also any
consistent and generalizing rule underD must be an AERM.

Lemma 17 (learnable+AERM+consistent⇒generalizing) If Equation (12) in Lemma 16 holds with rate
εemp(m), and A is an εerm-AERM andεcons-consistent underD, then it is generalizing underD with rate
εemp(m)+ εerm(m)+ εcons(m).

Proof

E [|FS(A(S))−F(A(S))|]≤ E
[∣

∣FS(A(S))−FS(ĥS)
∣

∣

]

+E [|F∗−F(A(S))|]+E
[∣

∣FS(ĥS)−F∗∣
∣

]

≤ εerm(m)+ εcons(m)+ εemp(m) .

Lemma 18 (learnable+consistent+generalizing⇒AERM) If Equation (12) in Lemma 16 holds with rate
εemp(m), and A is εcons-consistent andεgen-generalizing underD, then it is AERM underD with rate
εemp(m)+ εgen(m)+ εcons(m).

Proof

E
[∣

∣FS(A(S))−FS(ĥS)
∣

∣

]

≤ E [|FS(A(S))−F(A(S))|]+E [|F(A(S))−F∗|]+E
[∣

∣F∗−FS(ĥS)
∣

∣

]

≤ εgen(m)+ εcons(m)+ εemp(m) .

Lemma 17 establishes that universal consistency of an AERM implies universal generalization, and thus
completes the proof of Theorem 9. Lemma 18establishes Theorem 10. To get the rates in Section 5.2, we
usem′ = m1/4 in Lemma 16.

Lemma 15, Lemma 17 and Lemma 18 together establish an interesting relationship:

Corollary 19 For a (universally) learnable problem, for any distributionD and learning ruleA, any two of
the following imply the third :

• A is an AERM underD.
• A is consistent underD.
• A generalizes underD.

Note, however, that any one property by itself is possible, even universally:

• In Section 4.1, we have discussed an example where the ERM learning rule is neither consistent nor
generalizing, despite the problem being learnable.

• In the next subsection (Example 2) we demonstrate a universally consistent learning rule which is
neither generalizing nor an AERM.

• A rule returning a fixed hypothesis always generalizes, but of course need not be consistent nor an
AERM.
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In contrast, for learnable supervised classification problems, it is not possible for a learning rule to be just
universally consistent, without being an AERM and without generalization. Nor is it possible for a learning
rule to be a universal AERM for a learnable problem, without being generalizing and consistent.

Corollary 19 can also provide acertificateof non-learnability. In other words, for the problem in Example
1 we show a specific distribution for which there is a consistent AERM that does not generalize. We can
conclude that there isno universally consistent learning rule for the problem, otherwise the corollary is
violated.

5.3.4 EXISTENCE OF ASTABLE RULE

Theorem 9 and Theorem 10, which we just completed proving, already establish that for AERMs, universal
consistency is equivalent to universal average-RO stability. Existence of a universally average-RO stable
AERM is thus sufficient for learnability. In order to prove that it is also necessary, it is enough to show that
existence of a universally consistent learning rule implies existence of a universally consistent AERM. This
AERM must then be average-RO stable by Theorem 9.

We actually show how to transform a consistent rule to a consistent and generalizing rule (Lemma 20
below). If this rule is universally consistent, then by Lemma 18 we can then conclude it must be an AERM,
and by Lemma 11 it must be average-RO stable.

Lemma 20 For any ruleA there exists a ruleA′, such that:
• A′ universally generalizes with rate3B√

m.

• For anyD, if A is εcons-consistent underD thenA′ is εcons(⌊
√

m⌋) consistent underD.
• A′ is uniformly-RO-stable with rate2B√

m.

Proof For a sampleSof sizem, letS′ be a sub-sample consisting of some⌊√m⌋ observation inS. To simplify
the presentation, assume that⌊√m⌋ is an integer. DefineA′(S) = A(S′). That is,A′ appliesA to only

√
m of

the observation inS.
A′ generalizes:We can decompose:

FS(A(S′))−F(A(S′)) = 1√
m(FS′(A(S′))−F(A(S′)))+(1− 1√

m)(FS\S′(A(S′))−F(A(S′)))

The first term can be bounded by 2B/
√

m. As for the second term,S\S′ is statistically independent ofS′ and
so we can use Lemma 12 to bound its expected magnitude to obtain:

E
[∣

∣FS(A(S′))−F(A(S′))
∣

∣

]

≤ 2B√
m +(1− 1√

m)
B√

m−√
m
≤ 3B√

m

A′ is consistent:If A is consistent, then:

E

[

F(A′(S))− inf
h∈H

F(h)
]

= E

[

F(A(S′))− inf
h∈H

F(h)
]

≤ εcons(
√

m)

A′ is uniformly-RO-stable:SinceA′ only uses the first
√

msamples ofS, for anyi >
√

mwe haveA′(S(i)) =
A′(S) and so:

1
m

m

∑
i=1

∣

∣

∣
f (A′(S(i));z′)− f (A′(S);z′)

∣

∣

∣
=

1
m

√
m

∑
i=1

∣

∣

∣
f (A′(S(i));z′)− f (A′(S);z′)

∣

∣

∣
≤ 2B√

m

Proof of Converse in Theorem 7If there exists a universally consistent rule with rateεcons(m), by Lemma 20
there existsA′ which is εcons(

√
m)- universally consistent,2B√

m-generalizing and2B√
m-uniformly-RO-stable.
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Further by Lemma 18 and Lemma 16 (withm′ = m1/4), we can conclude thatA′ is εerm-universally AERM
where,

εerm(m)≤ 3εcons(m
1/4)+

8B√
m
.

Hence we get the specified rate for the converse direction. Tosee that if there exists a rule that is a universal
AERM and stable it is consistent, we simply use Lemma 15.

As a final note, the following example shows that while learnability is equivalent to the existence of stable
and consistent AERM’s (Theorem 7 and Theorem 9), there mightstill exist other learning rules, which are
neither stable, nor generalize, nor AERM’s. In this sense, our results characterize learnability, but do not
characterize all learning rules which “work”.

Example 2 There exists a learning problem with a universally consistent learning rule, which is not average-
RO stable, generalizing nor an AERM.

Proof Let the instance space be[0,1]. Let the hypothesis space consist of all finite subsets of[0,1], and the
objective function be the indicator functionf (h,z) = 11{z∈h}. Consider the following learning rule: given a
sampleS⊆ [0,1], the learning rule checks if there are any two identical instances in the sample. If so, the
learning rule returns the empty set/0. Otherwise, it returns the sample.

Consider any continuous distribution on[0,1]. In that case, the probability of having two identical in-
stances is 0. Therefore, the learning rule always returns a countable non-empty setA(S), with FS(A(S)) = 1,
while FS( /0) = 0 (so it is not an AERM) andF(A(S)) = 0 (so it does not generalize). Also,f (A(S),zi) = 1
while f (A(S(i)),zi) = 0 with probability 1, so it is not average-RO stable either.

However, the learning rule is universally consistent. If the underlying distribution is continuous on[0,1],
then the returned hypothesis isS, which is countable hence ,F(S) = 0= infh F(h). For discrete distributions,
let M1 denote the proportion of instances in the sample which appear exactly once, and letM0 be the proba-
bility mass of instances which did not appear in the sample. Using (McAllester and Schapire, 2000, Theorem
3), we have that for anyδ, it holds with probability at least 1−δ over a sample of sizem that

|M0−M1| ≤ O
(

log(m/δ)√
m

)

,

uniformly for any discrete distribution. If this occurs, then eitherM1 < 1, or M0 ≥ 1−O(log(m/δ)/
√

m).
But in the first event, we get duplicate instances in the sample, so the returned hypothesis is the optimal/0,
and in the second case, the returned hypothesis is the sample, which has a total probability mass of at most
O(log(m/δ)/

√
m), and thereforeF(A(S)) ≤ O(log(m/δ)/

√
m). As a result, regardless of the underlying

distribution, with probability of at least 1−δ over the sample,

F(A(S))≤ O
(

log(m/δ)√
m

)

.

Since the r.h.s. converges to 0 withm for anyδ, it is easy to see that the learning rule is universally consistent.

6. Randomization, Convexification, and a Generic Learning Algorithm

The strongest result we were able to obtain for characterizing learnability so far is Theorem 7, which stated
that a problem is learnable if and only if there exists a universally uniform-RO stable AERM. In fact, this
result was obtained under the assumption that the learning rule A is deterministic: given a fixed sampleS, A
returns a single specific hypothesish. However, we might relax this assumption and also considerrandomized
learning rules: given any fixedS, A(S) returns a distribution over the hypothesis classH .

With this relaxation, we will see that we can obtain a stronger version of Theorem 7, and even provide a
generic learning algorithm (at least for computationally unbounded learners) which successfully learns any
learnable problem.
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6.1 Stronger Results with Randomized Learning Rules

For simplicity, we will override the notationsf (A(S),z), F(A(S)) andFS(A(S)) to meanEh∼A(S) [ f (h,z)],
Eh∼A(S) [F(h)] andEh∼A(S) [FS(h)]. In other words,A returns a distribution overH and f (A(S),z) for some
fixed S,z is the expected loss of a random hypothesis picked accordingto that distribution, with respect to
z. Similarly, F(A(S)) for some fixedS is the expected generalization error, andFS(A(S)) is the expected
empirical risk on the fixed sampleS. With this slight abuse of notation, all our previous definitions hold.
For instance, we still define a learning ruleA to be consistent with rateεcons(m) if ES∼Dm [F(A(S))−F∗]≤
εcons(m), only now we actually mean

ES∼Dm
[

Eh∼A(S) [F(h)−F∗]
]

≤ εcons(m).

The definitions for AERM, generalization etc. also hold withthis subtle change in meaning.
An alternative way to view randomization is as a method tolinearizethe learning problem. In other words,

randomization implicitly replaces the arbitrary hypothesis classH by the space of probability distributions
overH ,

M =

{

α : H → [0,1] s.t.
∫

α[h] = 1

}

,

and replaces the arbitrary functionf (h;z) by a linear function in its first argument

f (α;z) = Eh∼α [ f (h,z)] =
∫

f (h;z)α[h] .

Linearity of the loss and convexity ofM are the key mechanism which allows us to obtain our stronger
results. Moreover, if the learning problem is already convex (i.e., f is convex andH is covex), we can
achieve the same results using a deterministic learning rule, as the following claim demonstrates:

Claim 21 Assume that the hypothesis classH is convex subset of a vector space, such thatEh∼A(S) [h]
is a well-defined element ofH for any S. Moreover, assume that f(h;z) is convex inh. Then from any
(possibly randomized) learning ruleA, it is possible to construct a deterministic learning ruleA′, such that
f (A′(S),z) ≤ f (A(S),z) for any S,z. As a result, it also holds that FS(A′(S)) ≤ FS(A(S)) and F(A′(S)) ≤
F(A(S)).

Proof Given a sampleS, defineA′(S;z) as the single hypothesisEh∼A(S) [h]. The proof of the theorem is
immediate by Jensen’s inequality: sincef () is convex in its first argument,

f (A′(S);z) = f (Eh∼A(S) [h],z)≤ Eh∼A(S) [ f (h,z)],

where the r.h.s. is in factf (A(S),z) by the abuse of notation we have defined previously.

Although linearization is the real mechanism at play here, we find it more convenient to display our results
and proofs in the language of randomized learning rules.

Allowing randomization allows us to obtain results with respect to the following very strong notion of
stability:4

Definition 22 A rule A is strongly-uniform-RO stable with rateεstable(m) if for all samples S of m points,
for all i, and anyz′,z′i ∈ Z, it holds that

∣

∣

∣
f (A(S(i));z′)− f (A(S);z′)

∣

∣

∣
≤ εstable(m).

The strengthening of Theorem 7 that we will prove here is the following:

4. This definition of stability is very similar to the so-called “uniform stability”, discussed in Bousquet and Elisseeff(2002), although
Bousquet and Elisseeff (2002) consider deterministic learning rules. See Appendix A for more details.
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Theorem 23 A learning problem is learnable if and only if there exists a (possibly randomized) learning rule
which is an always AERM and strongly-uniform-RO stable.

Compared to Theorem 7, we have replaced universal AERM by thestronger notion of an always AERM,
and uniform-RO stability by strongly-uniform-RO stability. This makes the result strong enough to formulate
a generic learning algorithm, as we will see later on.

The theorem is an immediate consequence of Theorem 7 and the following lemma:

Lemma 24 For any deterministic learning ruleA, there exists a randomized learning ruleA′ such that:

• For anyD, if A is εcons-consistent underD thenA′ is εcons(⌊
√

m⌋) consistent underD.

• A′ universally generalizes with rate4B/
√

m.

• If A is uniform-RO stable with rateεstable(m), then A′ is strongly-uniform-RO stable with rate
εstable(⌊

√
m⌋).

• If A is universallyεcons-consistent, thenA′ is an always AERM with rate2εcons(⌊
√

m⌋).

Moreover,A′ is a symmetric learning rule (it does not depend on the order of elements in the sample on which
it is applied).

Proof Consider the learning ruleA′ which given a sampleS, returns a uniform distribution overA(S′), where
S′ ranges over all subsets ofSof size⌊√m⌋.

The fact thatA′ is symmetric is trivial. We now prove the other assertions inthe lemma.
A′ is consistent:First note thatF(A′(S)) = ES′ [F(A(S′))], and so:

ES
[∣

∣F(A′(S))−F∗∣
∣

]

≤ ES,S′
[∣

∣F(A(S′))−F∗∣
∣

]

= E[S′]
[

ES|[S′]
[∣

∣F(A(S′))−F∗∣
∣

]]

where[S′] designates a choice of indices forS′. This decomposition of the random choice ofS′ (e.g., first
deciding on the indices and only then samplingS) allows us think of[S′] andSas statistically independent.
Given a fixed choice of indices[S′], S′ is simply an i.i.d. sample of size⌊√m⌋. Therefore, ifA is consistent,
|F(A(S′))−F∗| ≤ εcons(⌊

√
m⌋), this holds for any possible fixed[S′], and therefore

E[S′]
[

ES|[S′]
[∣

∣F(A(S′))−F∗∣
∣

]]

= E[S′]
[

εcons(⌊
√

m⌋)
]

≤ εcons(⌊
√

m⌋).

A′ generalizes:For convenience, letb(S,S′) = |FS(A(S′))−F(A(S′))|. Using similar arguments and notation
as above:

ES
[∣

∣FS(A′(S))−F(A′(S))
∣

∣

]

≤ E[S′]
[

ES|[S′]
[

b(S,S′)
]]

≤ E[S′]

[

ES|[S′]

[⌊√m⌋
m

b(S′,S′)

]

+ ES|[S′]

[(

1− ⌊√m⌋
m

)

b(S\S′,S′)

]]

≤ E[S′]

[

⌊√m⌋
m

2B+

(

1− ⌊√m⌋
m

)

B
√

m−⌊√m⌋+1

]

,

where the last line follows from Lemma 12 and the fact thatb(S,S′)≤ 2B for anyS,S′. It is not hard to show
that the expression above is at most 4B/

√
m, assumingm≥ 1.

A′ is strongly-uniform-RO stable:For any sampleS, any i and replacement instancezi , and any instancez′,
we have that

∣

∣

∣
f (A′(S(i));z′)− f (A′(S);z′)

∣

∣

∣
≤ ES′

[∣

∣

∣
f (A(S′(i));z′)− f (A(S′);z′)

∣

∣

∣

]

,

2657



SHALEV-SHWARTZ, SHAMIR , SREBRO AND SRIDHARAN

where we takeS′(i) in the expectation to meanS′ if i /∈ [S′]. Notice that if i /∈ [S′], then f (A(S′(i));zi)−
f (A(S′);zi) is trivially 0. Thus, we can upper bound the expression aboveby

ES′
[

∣

∣ f (A(S′i);z′)− f (A(S′);z′)
∣

∣

∣

∣

∣
i ∈ [S′]

]

.

SinceS′ is chosen uniformly over all⌊√m⌋-subsets ofS, all permutations of[S′] are equally happen to occur,
and therefore the above is equal to

ES′

[

1
⌊√m⌋ ∑

j∈S′

∣

∣

∣
f (A(S′( j));z′)− f (A(S′);z′)

∣

∣

∣

]

≤ ES′
[

εstable(⌊
√

m⌋)
]

= εstable(⌊
√

m⌋).

A′ is an always AERM:For any fixed sampleS, we note that

|FS(A′(S))−FS(ĥS)| = ES′
[

FS(A(S′))−FS(ĥS)
]

= ES′∼U(S)⌊
√

m⌋
[

FS(A(S′))−FS(ĥS) | no dups
]

,

whereU(S)⌊
√

m⌋ signifies the distribution of i.i.d. samples of size⌊√m⌋, picked uniformly at random (with
replacement) from⌊√m⌋, and ’no dups’ signifies the event that no element inSwas picked twice. By the law
of total expectation, this is at most

ES′∼U(S)⌊
√

m⌋
[

FS(A(S′))−FS(ĥS)
]

P [no dups]
.

Since the learning ruleA is universally consistent, it is in particular consistent with respect to the distribution
U(S), and therefore the expectation in the expression above is atmostεcons(⌊

√
m⌋). As toP [no dups], an

analysis identical to the one performed in the proof of Lemma16 (see Equation (13)) implies that it is at least
1− (⌊√m⌋)2/m≥ 1/2. Overall, we get thatFS(A′(S))−FS(ĥS)≤ 2εcons(⌊

√
m⌋), so in particular

ES′∼U(S)⌊
√

m⌋
[

FS(A(S′))−FS(ĥS)
]

P [no dups]
≤ 2εcons(⌊

√
m⌋),

from which the claim follows.

6.2 A Generic Learning Algorithm

Recall that a symmetric learning ruleA is such thatA(S) = A(S′) wheneverS,S′ are identical samples up
to permutation. When we deal with randomized learning rules,we assume that the distribution ofA(S) is
identical to the distribution ofA(S′). Also, letH̄ denote the set of all distributions onH . An element̄h ∈ H̄
will be thought of as a possible outcome of a randomized learning rule.

Consider the following learning rule: given a sample sizem, find a minimizer over all symmetric5 func-
tionsA : Zm → H̄ of

sup
S∈Zm

(

FS(A(S))−FS(ĥS)
)

+ sup
S∈Zm,z′

∣

∣

∣
f (A(S);z′)− f (A(S(i));z′)

∣

∣

∣
, (18)

with i being an arbitrary fixed element in{1, . . . ,m}. Once such a functionA is found, returnAm(S).

5. The algorithm would still work, with slight modifications,if we minimize over all functions - symmetric or not. However, thesearch
space would be larger.
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Theorem 25 If a learning problem is learnable (namely, there exist a universally consistent learning rule
with rateεcons(m)), the learning algorithm described above is universally consistent with rate

4εcons(⌊
√

m⌋)+ 8B√
m
.

Proof By Lemma 24, if a learning problem is learnable, there existsa (possibly randomized) symmetric
learning ruleA′, which is an always AERM and strongly-uniform-RO stable. More specifically, we have that

sup
S∈Zm

(

FS(A′(S))−FS(ĥS)
)

≤ 2εcons(⌊
√

m⌋),

as well as

sup
S∈Zm,z′

∣

∣

∣
f (A′(S);z′)− f (A′(S(i));z′)

∣

∣

∣
≤ 4B√

m
.

In particular, there exists some symmetricA : Zm → H̄ , for which the expression in Equation (18) is at most

2εcons(⌊
√

m⌋)+ 4B√
m
.

Therefore, by definition, theA found satisfies

sup
S∈Zm

(

FS(Am(S))−FS(ĥS)
)

≤ 2εcons(⌊
√

m⌋)+ 4B√
m
, (19)

as well as

sup
S∈Zm

∣

∣

∣
f (Am(S);z′)− f (Am(S

(i));z′)
∣

∣

∣
≤ 2εcons(⌊

√
m⌋)+ 4B√

m
. (20)

In Theorem 9, we have seen that a universally average-RO stable AERM learning rule has to be universally
consistent. The inequalities above essentially say thatA is in fact both strongly-uniform-RO stable (and in
particular, universally average-RO stable) and an AERM, and thus is a universally consistent learning rule.
Formally speaking, this is not entirely accurate, becauseA is defined only with respect to samples of size
m, and hence is not formally a learning rule which can be applied to samples of any size. However, the
analysis we have done earlier in fact carries through also for learning rulesA which are defined just on a
specific sample sizem. In particular, the analysis of Lemma 11 and Lemma 15 hold verbatim for A (with
trivial modifications due to the fact thatA is randomized), and together imply that since Equation (19)and
Equation (20) hold, then

E [F(A(S))−F∗]≤ 4εcons(⌊
√

m⌋)+ 8B√
m
.

Therefore, our learning algorithm is consistent with rate 4εcons(⌊
√

m⌋)+ 8B√
m.

The main drawback of the algorithm we described is that it is completely infeasible: in practice, we cannot
hope to efficiently perform minimization of Equation (18) over all functions fromZm to H̄ . Nevertheless,
we believe it is conceptually important for three reasons: First, it hints that generic methods to develop
learning algorithms might be possible in the General Learning Setting (similar to the more specific supervised
classification setting); Second, it shows that stability might play a crucial role in the way such methods will
work; And third, that stability might act in a similar mannerto regularization. Indeed, Equation (18) can be
seen as a “regularized ERM” in the space of learning rules (i.e., functions from samples to hypotheses): if we
take just the first term in Equation (18), supS∈Zm

(

FS(A(S))−FS(ĥS)
)

, then its minimizer is trivially the ERM

learning rule. If we take just the second term in Equation (18), supS∈Zm,z

∣

∣

∣
f (A(S);z′)− f (A(S(i));z′)

∣

∣

∣
, then

its minimizers are trivial learning rules which return the same hypothesis irrespective of the training sample.
Minimizing a sum of both terms forces us to choose a learning rule which is an “almost”-ERM but also stable
- a learning rule which must exist if the problem is learnableat all, as Theorem 23 proves.

In any case, using these results and intuitions to design a generic,practicalmethod to learn in the General
Learning Setting - remains a very interesting open problem.
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7. High Confidence Learnability

So far, we have presented all our results in terms of expectation: namely, the rate at which the expected risk
converges to the lowest possible risk. By Markov’s inequality, we can always convert these bounds to bounds
which hold with probability 1− δ over the sample, and the bounds depend linearly on 1/δ. However, in
supervised classification, if we have learnability at all, then we have learnability at rates which are logarithmic
in 1/δ. Can such results be attained in the General Learning Setting?

Fortunately, there is a generic method already known in the literature (“Boosting the Confidence”, see
Schapire, 1989) which allows us to convert any learning algorithm with linear dependence onδ to an al-
gorithm with logarithmic dependence on 1/δ, at a certain price in terms of the sample complexity. This
technique is reviewed below.

Moreover, we show that such conversions can in fact be necessary: we give a learning problem which is
learnable with an ERM algorithm, and the ERM is stable, but the dependence on the confidence parameterδ
cannot be better than linear. This shows that both learnability and stability (under our definitions) of the ERM
learning rule are not sufficient to ensure logarithmic dependence on 1/δ. Also, this gives a nice illustration
to the fundamental differences between the General Learning Setting and supervised classification, where in
the latter case learnability implies logarithmic dependence on 1/δ.

Theorem 26 LetA be a universally consistent learning rule with rateεcons(m), namely that

ES∼Dm [F(A(S))−F∗]≤ εcons(m). (21)

Then there exists another universally consistent learningrule A′ such that with probability at least1−δ over
a sample S of size m,

F(A′(S))−F∗ ≤ eεcons

(

m
log(2/δ)+1

)

+2B

√

log(2/δ)+ log(log(2/δ))
2m

Proof Applying Markov’s inequality on Equation (21), we have withprobability at least 1− 1/e over a
sampleSof sizem that

F(A(S))−F∗ ≤ eεcons(m). (22)

Now, define the learning ruleA′ as follows: given a sample of sizem, split it randomly intoa+ 1 parts
S1, . . . ,Sa+1 of size m/(a+ 1) each (wherea is a constant to be determined later). ApplyA separately
on S1, . . . ,Sa, to createa hypothesesA(S1), . . . ,A(Sa). Now, return the hypothesisA(St) which minimizes
FSa+1(A(St)) (namely, the hypothesis with lowest empirical risk onSa+1), where ties are broken arbitrarily.
By Equation (22), we have for anySt separately that with probability at least 1−1/e,

F(A(St))−F∗ ≤ eεcons

(

m
a+1

)

.

SinceF(A(S1)), . . . ,F(A(Sa)) are independent random variables, we have that with probability at least 1−
(1/e)a, there exists at least oneSt such that

F(A(St))−F∗ ≤ eεcons

(

m
a+1

)

.

Assume w.l.o.g. that this holds forS1. Using Hoeffding’s inequality and a union bound, it also holds with
probability at least 1−δ1 overS that

FSa+1(A(S1))−F(A(S1))≤ B

√

log(2a/δ1)

2m
,

and also

F(A(St))−FSa+1(A(St))≤ B

√

log(2a/δ1)

2m
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simultaneously for everyt = 2, . . . ,a. If this happens, it means that we will pick a hypothesis whose risk is
at most 2B

√

log(2a/δ1)/2m larger thanF(A(S1)). Overall, we have that with probability at least 1− δ1−
(1/e)a,

F(A′(S))−F∗ ≤ eεcons

(

m
a+1

)

+2B

√

log(2a/δ1)

2m
.

Pickinga= log(2/δ) andδ1 = δ/2, we get that with probability at least 1−δ,

F(A′(S))−F∗ ≤ eεcons

(

m
log(2/δ)+1

)

+2B

√

log(4/δ)+ log(log(4/δ))
2m

as required.

After we have seen how to convert a low-confidence learning rule (linear in δ) to a high-confidence
learning rule (logarithmic inδ), we show that such conversions might actually be necessary, in sharp contrast
to supervised classification.

Example 3 There exists a learning problem where any ERM algorithm is universally consistent and average-
RO stable with ratesΘ(1/

√
m), but for any ERM algorithm,

P
[

F(ĥS)−F∗ = 1
]

= Θ
(

1√
m

)

. (23)

TheΘ(·) notation hides only absolute constants.

This example implies that no high-confidence bound is possible, at least without foregoing polynomial
dependence onm. To see this, note that a high-confidence result correspondstoP

[

F(ĥS)−F∗]> ε) decreas-
ing exponentially inm for any fixedε > 0, while in the case above we only have convergence at the rateof
1/
√

m.
Proof Consider the instance spaceX ×Y ×Z = [0,1]×{−1,+1}×{−1,+1}, with any joint distribution
such thatp(y,z|x) for anyx is uniform on{−1,+1}2, and the marginal distribution onX is continuous.

Consider the hypothesis classH = G ∪B , whereG consists of the constant function 1 and the constant
function−1 over[0,1], andB consists of all functionsh : [0,1] 7→ {−1,0,+1}, such that eachh(·) equals 0
on all but a non-empty finite subset of[0,1], and is uniformly either+1 or−1 on this finite subset.

Finally, define the objective function as

f (h,(x,y,z)) =
(

1(h ∈ G)y+
1(h ∈ B)z

2|h|

)

h(x)+1(h(x) = 0),

where|h|= |{x∈ [0,1] : h(x) 6= 0}| (namely, the number of points in[0,1] on which the functionh(·) is not
zero). Forh ∈ G , where the number of such points is infinite, we take|h|= ∞.

First, notice that for anyh ∈ G , F(h) = 0, and for anyh ∈ B, F(h) = 1. Thus, we can think ofG as the
set of “good” hypotheses, andB as the set of ‘bad” hypotheses. Our goal is to show that any ERMwill pick
a hypothesis fromB with probabilityΘ(1/

√
m).

We need to do a bit of case-by-case analysis. Let(x1,y1,z1), . . . ,(xm,ym,zm) be the sample. If∑m
i=1yi 6= 0,

then using hypotheses inG, it is possible to achieve an empirical risk of

−
∣

∣

∣

∣

∣

m

∑
i=1

yi

∣

∣

∣

∣

∣

≤−1,

while using hypotheses inB, it is only possible to achieve an empirical risk of

∑m
i=1zih(xi)

2|h| +
m

∑
i=1

1(h(xi) = 0)≥−1
2
.

2661



SHALEV-SHWARTZ, SHAMIR , SREBRO AND SRIDHARAN

Uniform
Convergence

ERM Strict
Consistency

ERM
Consistency

Learnability
All AERM
Stable and
Consistent

Exists Stable
AERM

Exists
Consistent

AERM

Figure 2: Implications of various properties of learning problems. Consistency refers to univeral consistency
and stability refers to universal uniform-RO stability.

Thus, with probability 1−Θ(1/
√

m) (the probability that∑m
i=1yi 6= 0 in the sample), any ERM algorithm will

pick ĥS∈ G.
If ∑m

i=1yi = 0, then anyh ∈ G achieves an empirical objective value of 0. On the other hand, unless
∑m

i=1zi = 0, we can choose someh ∈ B, which is non-zero on all points in the sample, and achieves an
empirical risk smaller than 0. The probability that∑m

i=1yi = 0 and∑m
i=1zi 6= 0 is Θ(1/

√
m)(1−Θ(1/

√
m)),

or Θ(1/
√

m).
So we have that any ERM picksĥS∈ G with probability 1−Θ(1/

√
m), and somêhS∈ B with probability

Θ(1/
√

m), from which the consistency rate and Equation (23) in the theorem statement follows. Finally,
note that replacing a single instance in the training set will lead to the ERM picking a different hypothe-
sis, only if ∑m

i=1yi = 0 before or after the replacement. The probability for getting a training set where this
happens isO(1/

√
m), and from this it is easy to see that the ERM is average-RO stable with rateO(1/

√
m).

8. Discussion and Conclusions

In the familiar setting of supervised classification problems, the question of learnability is reduced to that
of uniform convergence of empirical risks to their expectations. Therefore, for the purposes of establishing
learnability, there is no need to look beyond the ERM.

In this paper, we showed that in the General Learning Setting, which includes more general problems, this
equivalence does not hold, and the situation is substantially more complex. ERM might work without any
uniform convergence, and learnability might be possible only with a non-ERM algorithm. We are therefore in
need of a new understanding of the question of learnability,that applies more broadly than just to supervised
classification.

In studying learnability in the General Setting, Vapnik (1995) focuses solely on empirical risk minimiza-
tion, which we have seen to be insufficient for understandinglearnability. Furthermore, for empirical risk
minimization, Vapnik establishes uniform convergence as anecessary and sufficient condition not for ERM
consistency, but rather forstrict consistency of the ERM. We have seen that even in rather non-trivial prob-
lems, where the ERM is consistent and generalizes, strict consistency does not hold. This perhaps gives an
indication that strict consistency might be too strict.

On the other hand, we have seen that stability is both a sufficient and necessary condition for learning,
even in the General Learning Setting where uniform convergence fails to characterize learnability. A previous
stability-based characterization (Mukherjee et al., 2006) relied on uniform convergence and thus applied only
to restricted setting. Extending the characterization beyond these settings is particularly interesting, since
for supervised classification the question of learnabilityis already essentially solved. This also allows us to
frame stability as the core condition guaranteeing learnability, with uniform convergence only a sufficient,
but not necessary, condition for stability (see Figure 2).

In studying the question of learnability and its relation tostability, we encountered several differences be-
tween this more general setting, and settings such as supervised classification where learnability is equivalent
to uniform convergence. We summarize some of these distinctions:
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• Perhaps the most important distinction is that in the General Setting learnability might be possible
only with a non-ERM. In this paper we establish that if a problem is learnable, although it might not
be learnable with an ERM, it must be learnable with some AERM.And so, in the General Setting we
must look beyond empirical risk minimization, but not beyond asymptotic empirical risk minimization.

• In supervised classification, if one AERM is universally consistent then all AERMs are universally
consistent. In the General Setting we must choose the AERM carefully.

• In supervised classification, a universally consistent rule must also generalize and be AERM. In the
General Setting, a universally consistent rule need not generalize nor be an AERM, as example 2
demonstrates. However, Theorem 10 establishes that, even in the General Setting, if a rule is universally
consistentandgeneralizing then it must be an AERM. This gives us another reason to not look beyond
asymptotic empirical risk minimization, even in the General Setting.

The above distinctions can also be seen through Corollary 19, which is concerned with the relationship
between AERM, consistency and generalization in learnableproblems. In the General Setting, any
two conditions imply the other, but it is possible for any onecondition to exist without the others. In
supervised classification, if a problem is learnable then generalization always holds (for any rule), and
so universal consistency and AERM imply each other.

• In supervised classification, ERM inconsistency for some distribution is enough to establish non-
learnability. Establishing non-learnability in the General Setting is trickier, since one must consider
all AERMs. We show how Corollary 19 can provide acertificatefor non-learnability, in the form of a
rule that is consistent and an AERM for some specific distribution, but does not generalize (Example
1).

• In supervised classification, any learnable problem is learnable with an ERM,and the ERM “works”
with high-confidence (namely,F(ĥS)−F∗ can be bounded with probability 1− δ by an expression
with logarithmic dependence on 1/δ). In Section 7 we have seen that in the General Learning Setting,
even if the ERM is universally consistent, high-confidence bounds for the ERM might be impossible
to obtain.

We have begun exploring the issue of learnability in the General Setting, and uncovered important re-
lationships between learnability and stability. But many problems are left open, some of which are listed
below.

First, is it possible to come up with well-known machine learning applications, where learnability is
achievable despite uniform convergence failing to hold?

In Section 6.2, we have managed to obtain a completely generic learning algorithm: an algorithm which
in principle allows us to learn any learnable problem. However, the algorithm suffers from the severe draw-
back that in general, it requires unbounded computational power. Can we derive an efficient algorithm, or
characterize classes of learning problems where our algorithm, or some other generic learning algorithm us-
ing the notion of stability, can be executed efficiently? Forinstance, can we always learn using a regularized
ERM learning rule?

On a related vein, it would be interesting to develop learning algorithms (perhaps for specific settings
rather than generic learning problems) which directly use stability in order to learn. Convex regularization is
one such mechanism, as discussed in Section 4. Are there other mechanisms, which use the notion of stability
in a different way?

Another issue is that even the existence of uniform-RO stable AERM (or strongly-uniform-RO stable,
always-AERM allowing for convexity/randomization) is notas elegant and simple as having finite VC dimen-
sion or fat-shattering dimension. It would be very interesting to derive equivalent but more “combinatorial”
conditions for learnability.

Yet another open question: We showed that existence of an uniform-RO stable AERM is necessary and
sufficient for learnability (Theorem 7). However, it is possible that learnability is an equivalent to the ex-
istence of an AERM with a stronger notion of stability, without resorting to convexity/randomization as we
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have done in Section 6.2. This might perhaps lead to generic learning algorithms which perform minimization
over a search space more feasible than the one our algorithm (in Section 6.2) uses.

Finally, we do not know whether it is enough to consider symmetric learning rules: that is, learning rules
which do not depend on the order of the instances in the training sample. Intuitively, this should be true, since
the instances were sampled i.i.d. Can our characterizationof learnability (e.g., existence of a uniform-RO
stable AERM learning rule) be strengthened to existence of symmetric uniform-RO stable AERM learning
rule, without allowing convexity/randomization?
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Appendix A. Alternative Notions of Stability

In this appendix, we discuss how our definition of stability compares to previous definitions in the literature,
as well as demonstrate how subtleties involved in the precise choice of the definition can have a significant
effect on the results which can be obtained.

A.1 Previous Definitions in the Literature

The existing literature on stability in learning, briefly surveyed in Section 3.2, uses many different stability
measures. All of them measure the amount of change in the algorithm’s output as a function of small changes
to the sample on which the algorithm is run. However, they differ in how “output”, “amount of change to
the output”, and “small changes to the sample” are defined. InSection 5, we used three stability measures.
Roughly speaking, one measure (average-RO stability) is the expected change in the objective value on a
particular instance, after that instance is replaced with adifferent instance. The second measure and third
measure (uniform-RO stability and strongly-uniform-RO stability respectively) basically deal with the maxi-
mal possible change in the objective value with respect to a particular instance, by replacing a single instance
in the training set. However, instead of measuring the objective value on a specific instance, we could have
measured the change in the risk of the returned hypothesis, or any other distance measure between hypothe-
ses. Instead of replacing an instance, we could have talked about adding or removing one instance from the
sample, either in expectation or in some arbitrary manner. Such variations are common in the literature.

To relate our stability definitions to the ones in the literature, we note that our definitions of uniform-RO
stability and strongly-uniform-RO stability are somewhatsimilar to uniform stability (Bousquet and Elisse-
eff, 2002), which in our notation is defined as supS,zmaxi | f (A(S;z))− f (A(S\i);z)|, whereS\i is the training
sampleS with instancezi removed. Compared to uniform-RO stability, here we measuremaximal change
over any particular instance, rather than average change over all instances in the training sample. Also,
we deal with removing an instance rather than replacing it. Strongly-uniform-RO stability is more simi-
lar, with the only formal difference being removal vs. replacement of an instance. However, the results
for uniform stability mostly assume deterministic learning rules, while in this paper we have used strongly-
uniform-RO stability solely in the context of randomized learning rules. For deterministic learning rules,
the differences outlined above are sufficient to make uniform stability a strictly stronger requirement than
uniform-RO stability, since it is easy to come up with learning problems and (non-symmetric) learning rules
which are uniform-RO stable but not uniformly stable. Moreover, we show in this paper that uniform-RO
stable AERM’s characterize learnability, while it is well known that uniformly stable AERM’s are not neces-
sary for learnability (see Kutin and Niyogi, 2002). For the same reason, our notion of strongly-uniform-RO
stability is apparently too strong to characterize learnability when we deal with deterministic learning rules,
as opposed to randomized learning rules.
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Our definition of average-RO stable is similar to “average stability” defined in Rakhlin et al. (2005), which

in our notation is defined asES∼Dm,z′1

[

f (A(S(i));z1)− f (A(S);z1)
]

. Compared to average-RO stability, the

main difference is that the change in the objective value is measured with respect toz1 rather than an average
overzi for all i, and stems from the assumption there that the learning algorithm is symmetric. Notice that in
this paper we do not make such an assumption.

For an elaborate study on other stability notions and their relationships, see Kutin and Niyogi (2002).
Unfortunately, many of the stability notions in the literature are incomparable, and even slight changes in

the definition radically affect their behavior. We go into this in much more detail in the following subsections.

A.2 LOO Stability vs. RO Stability

The stability definitions we have used in this paper are all based on the idea of replacing one instance in the
training sample by another instance (e.g., “RO” or “replace-one” stability). An alternative set of definitions
can be obtained based onremovingone instance in the training sample (e.g., “LOO” or “leave-one-out”
stability). In fact, these were the definitions used in our preliminary paper (Shalev-Shwartz et al., 2009b).
Despite seeming like a small change, it turns out there is a considerable discrepancy in terms of the obtainable
results, compared to RO stability. In this subsection, we wish to discuss these discrepancies, as well as show
how small changes to the stability definition can materiallyaffect its strength.

Specifically, we consider the following four LOO stability measures, each slightly weaker than the pre-
vious one. The first and last are similar to our notion of uniform-RO stability and average-RO stability
respectively. However, we emphasize that RO stability and LOO stability are in general incomparable no-
tions, as we shall see later on. Also, we note that some of these definitions appeared in previous literature.
For instance, the notion of “all-i-LOO” below has been studied by several authors under different names
(Bousquet and Elisseeff, 2002; Mukherjee et al., 2006; Rakhlin et al., 2005). The notationS\i below refer to
a training sampleSwith instancezi removed.

Definition 27 A rule A is uniform-LOO stable with rateεstable(m) if for all samples S of m points and for
all i:

∣

∣

∣
f (A(S\i);zi)− f (A(S);zi)

∣

∣

∣
≤ εstable(m).

Definition 28 A ruleA is all-i-LOO stable with rateεstable(m) under distributionD if for all i:

ES∼Dm

[∣

∣

∣
f (A(S\i);zi)− f (A(S);zi)

∣

∣

∣

]

≤ εstable(m).

Definition 29 A ruleA is LOO stable with rateεstable(m) under distributionD if

1
m

m

∑
i=1

ES∼Dm

[∣

∣

∣
f (A(S\i);zi)− f (A(S);zi)

∣

∣

∣

]

≤ εstable(m).

Definition 30 A ruleA is on-average-LOO stablewith rateεstable(m) under distributionD if
∣

∣

∣

∣

∣

1
m

m

∑
i=1

ES∼Dm

[

f (A(S\i);zi)− f (A(S);zi)
]

∣

∣

∣

∣

∣

≤ εstable(m).

While some of the definitions above might look rather similar,we show below that each one is strictly
stronger than the other. Example 6 is interesting in its own right, since it presents a learning problem and
an AERM that is universally consistent, but not LOO stable. While this is possible in the General Learning
Setting, in supervised classification every such AERM has tobe LOO stable (this is essentially proven in
Mukherjee et al., 2006).

Example 4 There exists a learning problem with a universally consistent and all-i-LOO stable learning rule,
but there is no universally consistent and uniform LOO stable learning rule.
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Proof This example is taken from Kutin and Niyogi (2002). Considerthe hypothesis space{0,1}, the
instance space{0,1}, and the objective functionf (h,z) = |h−z|.

It is straightforward to verify that an ERM is a universally consistent learning rule. It is also universally
all-i-LOO stable, because removing an instance can change the hypothesis only if the original sample had an
equal number of 0’s and 1’s (plus or minus one), which happenswith probability at mostO(1/

√
m) wherem

is the sample size. However, it is not hard to see that the onlyuniform LOO stable learning rule, at least for
large enough sample sizes, is a constant rule which always returns the same hypothesish regardless of the
sample. Such a learning rule is obviously not universally consistent.

Example 5 There exists a learning problem with a universally consistent and LOO-stable AERM, which is
not symmetric and is not all-i-LOO stable.

Proof Let the instance space be[0,1], the hypothesis space[0,1]∪2, and the objective functionf (h,z) =
11{h=z}. Consider the following learning ruleA: given a sample, check if the valuez1 appears more than once
in the sample. If no, returnz1, otherwise return 2.

SinceFS(2) = 0, andz1 returns only if this value constitutes 1/m of the sample, the rule above is an
AERM with rateεerm(m) = 1/m. To see universal consistency, letP [z1] = p. With probability(1− p)m−2,
z1 /∈ {z2, . . . ,zm}, and the returned hypothesis isz1, with F(z1) = p. Otherwise, the returned hypothesis is 2,
with F(2) = 0. HenceES[F(A(S))] ≤ p(1− p)m−2, which can be easily verified to be at most 1/(m−1),
so the learning rule is consistent with rateεcons(m)≤ 1/(m−1). To see LOO-stability, notice that our learn-
ing hypothesis can change by deletingzi , i > 1, only if zi is the only instance inz2, . . . ,zm equal toz1. So
εstable(m) ≤ 2/m (in fact, LOO-stability holds even without the expectation). However, this learning rule is
not all-i-LOO-stable. For instance, for any continuous distribution, | f (A(S\1),z1)− f (A(S),z1)| = 1 with
probability 1, so it obviously cannot be all-i-LOO-stable with respect toi = 1.

Example 6 There exists a learning problem with a universally consistent (and on-average-LOO stable)
AERM, which is not LOO stable.

Proof Let the instance space, hypothesis space and objective function be as in Example 4. Consider the
following learning rule, based on a sampleS= (z1, . . . ,zm): if ∑i 11{zi=1}/m> 1/2+

√

log(4)/2m, return 1.

If ∑i 11{zi=1}/m< 1/2−
√

log(4)/2m, return 0. Otherwise, return Parity(S) = (z1+ . . .zm) mod 2.

This learning rule is an AERM, withεerm(m) =
√

2log(4)/m. Since we have only two hypotheses,
we have uniform convergence ofFS(·) to F(·) for any hypothesis. Therefore, our learning rule universally
generalizes (with rateεgen(m) =

√

log(4/δ)/2m), and by Theorem 9, this implies that the learning rule is
also universally consistent and on-average-LOO stable.

However, the learning rule is not LOO stable. Consider the uniform distribution on the instance space.
By Hoeffding’s inequality,|∑i 11{zi=1}/m−1/2| ≤

√

log(4)/2m with probability at least 1/2 for any sample
sizem. In that case, the returned hypothesis is the parity function (even when we remove an instance from
the sample, assumingm≥ 3). When this happens, it is not hard to see that for anyi,

f (A(S),zi)− f (A(S\i),zi) = 11{zi=1}(−1)Parity(S).
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This implies that

E

[

1
m

m

∑
i=1

∣

∣

∣

(

f (A(S\i);zi)− f (A(S);zi)
)∣

∣

∣

]

(24)

≥ 1
2
E

[

1
m

m

∑
i=1

11{zi=1}

∣

∣

∣

∣

∣

√

log(4)
2m

≥
∣

∣

∣

m

∑
i=1

11{zi=1}
m

− 1
2

∣

∣

∣

]

≥ 1
2

(

1
2
−
√

log(4)
2m

)

−→ 1
4

,

which does not converge to zero with the sample sizem. Therefore, the learning rule is not LOO stable.

Note that the proof implies that on-average-LOO stability cannot be replaced even by something between
on-average-LOO stability and LOO stability. For instance,a natural candidate would be

ES∼Dm

[∣

∣

∣

∣

∣

1
m

m

∑
i=1

(

f (A(S\i);zi)− f (A(S);zi)
)

∣

∣

∣

∣

∣

]

, (25)

where the absolute value is now over the entire sum, but inside the expectation. In the example used in the
proof, Equation (25) is still lower bounded by Equation (24), which does not converge to zero with the sample
size.

After showing that the hierarchy of definitions above is indeed strict, we turn to the question of what
can be characterized in terms of LOO stability. In Shalev-Shwartz et al. (2009b), we show a version of
Theorem 7, which asserts that a problem is learnable if and only if there is an on-average-LOO stable AERM.
However, on-average-LOO stability is qualitatively much weaker than the notion of uniform-RO stability
used in Theorem 7 (see Definition 4). Rather, we would expect to prove a version of the theorem with the
notion of uniform-LOO stability or at least LOO stability, which are more analogous to uniform-RO stability.
However, the proof of Theorem 7 does not work for these stability definitions (technically, this is because the
proof relies on the sample size remaining constant, which istrue for replacement stability, but not when we
remove an instance as in LOO stability). We do not know if one can prove a version of Theorem 7 with an
LOO stability notion stronger than on-average-LOO stability.

On the plus side, LOO stability allows us to prove the following interesting result, specific to ERM
learning rules.

Theorem 31 For an ERM the following are equivalent:
• Universal LOO stability.
• Universal consistency.
• Universal generalization.

In particular, the theorem implies that LOO stability is a necessary property for consistent ERM learning
rules. This parallels Theorem 9, which dealt with AERM’s in general, and used RO stability. As before, we
do not know how to obtain something akin to Theorem 9 with RO stability.
Proof Lemma 15 and Lemma 17 from Section 5.3.3 already tell us that for ERM’s, universal consistency
is equivalent to universal generalization. Moreover, Lemma 14 implies that for ERM’s, generalization is
equivalent to on-average generalization (see Equation (11) for the exact definition). Thus, is left to prove
that for ERM’s, generalization implies LOO stability, and LOO stability implies on-average generalization.
stability.
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First, suppose the ERM learning rule is generalizing with rate εgen(m). Note thatf (ĥS\i ;zi)− f (ĥS;zi) is
always nonnegative. Therefore the LOO stability of the ERM can be upper bounded as follows:

1
m

m

∑
i=1

E
[

| f (ĥS\i ;zi)− f (ĥS;zi)|
]

=
1
m

m

∑
i=1

E
[

f (ĥS\i ;zi)− f (ĥS;zi)
]

=
1
m

m

∑
i=1

E
[

F(ĥS\i )
]

−E

[

1
m

m

∑
i=1

f (ĥS;zi)

]

≤ 1
m

m

∑
i=1

E
[

FS\i (ĥS\i )+ εgen(m−1)
]

−E
[

FS(ĥS)
]

= εgen(m−1)+E

[

1
m

m

∑
i=1

FS\i (ĥS\i )−FS(ĥS)

]

≤ εgen(m−1).

For the opposite direction, suppose the ERM learning rule isLOO stable with rateεstable(m). Notice that
we can get any sample of sizem−1 by picking a sampleSof sizemand discarding any instancei. Therefore,
the on-average generalization rate of the ERM for samples ofsizem−1 is equal to the following:

∣
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Now, note that for the ERM’s ofSandS\i we have
∣

∣FS\i (ĥS\i )−FS(ĥS)
∣

∣≤ 2B
m . Therefore, we can upper bound

the above by
∣
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∣
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≤ εstable(m)

using the assumption that the learning rule isεstable(m)-stable.
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