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Abstract Clustering Stability methods are a family of widely used milosklection tech-
niques for data clustering. Their unifying theme is that pprapriate model should result
in a clustering which is robust with respect to various kinéiperturbations. Despite their
relative success, not much is known theoretically on why bemvdo they work, or even
what kind of assumptions they make in choosing an 'appragnaodel. Moreover, recent
theoretical work has shown that they might 'break down’ fmge enough samples. In this
paper, we focus on the behavior of clustering stability ggimeans clustering. Our main
technical result is an exact characterization of the distion to which suitably scaled mea-
sures of instability converge, based on a sample drawn frogndistribution inR" satisfying
mild regularity conditions. From this, we can show that téuisg stability does not 'break
down’ even for arbitrarily large samples, at least for tameans framework. Moreover,
it allows us to identify the factors which eventually detarethe behavior of clustering
stability. This leads to some basic observations about inalt of assumptions are made
when using these methods. While often reasonable, thesenpsns might also lead to
unexpected consequences.
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1 Introduction

The important and difficult problem of model selection inadelustering has been the focus
of an extensive literature spanning several research camtigslin the natural and social
sciences. Since clustering is often used as a first step idafaeanalysis process, the ques-
tions of what type of clusters or how many clusters are in tite dan be crucial.
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Unfortunately, an objective 'correct’ answer to these ¢joes seldom occurs in prac-
tice. There might be several reasonable ones, dependingearsolution at which we in-
spect the data, and our (usually subjective) definition chtwdonstitutes a cluster. The ill-
posedness of the model selection problem is compoundecdehyntbupervised nature of the
data, often making it difficult to assess the compatibilifyegen a single specific model.
These difficulties suggest that the model selection praeesluiould be carefully chosen to
fit the nature of the problem at hand, and what the practitianeying to achieve. For this,
one needs a good grasp of thesumptiongbout the clustering structure that are inherent
to each such procedure. Understanding these assumptinasaswvays trivial for general-
purpose model selection methods, which are not tied to Spgeinerative assumptions.

In the past few years, an increasingly popular family of sonddel selection methods
are those based @tustering stability The unifying theme of these methods is that an appro-
priate model for the data should result in a clustering wigalobust with respect to various
kinds of perturbations. In other words, if we choose an apate clustering algorithm, and
feed it with the 'correct’ parameters (such as the numbelusiters, the metric used, etc.),
the clustering returned by the algorithm should not be gnazhsitive to the exact structure
of the data.

In particular, we will focus on clustering stability methoehich compare the discrep-
ancy or 'distance’ between clusterings of different randsubsets of our data. These meth-
ods seek a 'stable’ model, in the sense that the value of Satdmde measures should tend
to be small.

Although these methods have been shown to be rather e#featipractice (cf. (Ben-
Hur et al. 2002; Dudoit and Fridlyand 2002; Lange et al. 20@&4¥ine and Domany 2001;
Smolkin and Ghosh 2003; Bertoni and Valentini 2007)),dittheory exists so far to ex-
plain their success, or for which cases are they best suite@®ver the past few years, a
theoretical study of these methods has been initiated, naradwork where the data are
assumed to be an i.i.d sample. However, a fundamental hwalethe observation (Ben-
David et al. 2006, 2007) that under mild conditions and formodel choice, the clustering
algorithm should tend to converge to a single solution wigcbptimal with respect to the
underlying distribution. As a result, clustering stalilitight 'break down’ for large enough
samples, since we get approximately the same clusteringthggis based on each random
subsample, and thus achieve stability regardless of whétkemodel fits the data or not
(this problem was also pointed out in (Krieger and Green JO%9s important to empha-
size that this is not just a theoretical issue. If the scenalove indeed occurs, it implies
that there exists some sample size, which depends on thelyindalistribution and hence
may be hard to compute, beyond which we should not trust ghéteeof clustering stability
methods.

A possible solution to this difficulty was proposed in (Shaamd Tishby 2007). In a
nutshell, that paper showed that even when all consideretelmeventually become com-
pletely stable, theelative stability of each model compared to the other models can some
times be reliably discerned - even when the sample sizeasegeto infinity. With this more
refined analysis, it was argued that there may be no uppdrtbrttie sample size for which
clustering stability remains meaningful. Although it pided the necessary groundwork,
that paper only rigorously proved this assertion for a @irigly example, as a proof-of-
concept.

In this paper, we formally investigate the application afstering stability to the well
known and populak-means clustering framework, when the goal is to deterntinevalue
of k, or the number of clusters in the data. We consider arbil&tyibutions inR" satis-
fying certain mild regularity conditions, and analyze tledavior of the clustering distance



measure, scaled by the square root of the sample size. Rhtireconverging to zero in
probability as the sample size increases to infinity, thidexst measure converges to a non-
degenerate distribution which depends on the choide Bfom this we can show that even
for asymptotically large samples, clustering stabilitesdmot become meaningless, in the
sense described earlier, at least forkfraeans framework that we study. While the prelim-
inary version of this paper (Shamir and Tishby 2008a) assuaneideal algorithm, which
finds the global optimum of the-means objective function, here we extend our results to
the actual algorithm used in practice, which might returmile-sptimal solution. Also, we
note that using different tools, some of the results preskhere can be extended to more
general families of clustering frameworks beydatheans (Shamir and Tishby 2008b).

The asymptotic distribution is also interesting for two #idtial reasons. The first is
that it can be seen as an approximation which improves asathels size increases. The
second and more profound reason is that if we are interesididdovering what fundamen-
tal assumptions are implicit in performing model selectiaith clustering stability, these
should not be overly dependent on the sample size used.foreras we look at larger
samples, sample-size-specific effects diminish, and wdratins are the more fundamen-
tal characteristics of the method. As a result, the analgsids to some basic observations
about the factors influencing clustering stability for tameans framework, which may be
of theoretical and practical interest.

The paper is organized as follows. In Sec. 2, we introduceptbblem setting and the
notation we shall use. The notation is also summarized ie tabin Sec. 3, we formally
present the results which characterize the asymptoticviimhaf clustering stability in the
k-means framework. We build on these results in Sec. 4, wherdiscuss the factors influ-
encing this behavior, and how do they affect what is considi@s a 'stable’ or 'unstable’
model by clustering stability methods. These observatéwasllustrated with some simple
examples in Sec. 5. In Sec. 6, we give a negative result abewdnvergence rates of clus-
tering stability estimators to their asymptotic distribat Almost all the proofs in the paper
are concentrated in Sec. 7, except for the proof of one ofetmerias, which is placed in an
appendix due to its length and it being conceptually sepdrain the other results. We end
with conclusions in Sec. 8.

2 Problem Setting and Notation

We refer the reader to Fig. 1 for a graphical illustrationha basic setting, and some of the
notation introduced below. A list of the notation used maydaend in table 1.

Denote{1,...,k} as[k]. Vectors will be denoted by bold-face charactérs|| will de-
note the Euclidean norm unless stated otherwigg ., >) denotes the multivariate normal
distribution with mean and covariance matriX.

Let 2 be a probability distribution of", with a bounded probability density function
p(-), which is defined everywhere, and is continuous as a functioR". Assume that the
following two regularity conditions hold:

- / p(x)||x||?dx < e (in words,Z has bounded variance).
]RI’\
— There exists a bounded, monotonically decreasing funaien: R — R, such that

p(x) <g(|[x|)) forallx e R", and [ r"g(r) < co.
r=0

The second requirement is purely for technical reasons angmbably be improved.
Nevertheless, it is quite mild, and holds in particular fay distribution that is not heavy-



tailed or has bounded support. As to the continuity asswunpfit should be noted that
our results hold even if we assume continuity solely in somenoneighborhood of the
limit cluster boundaries to which our clustering algoritaonverges (to be formally defined
shortly). However, since this somewhat complicates thdyaisawithout leading to novel
insights, we will take this stronger assumption for simipjic

Let A¢(-) denote the (possibly randomized) standardeans algorithm, which is given
asamples= {x;}"; CR", sampled i.i.d from?, and a required number of clustéssand
returns a set of centroids= (cy, ..., c) € R™¥. These will usually be thought of as random
variables, dependent on the randomness of the sample.| Redathek-means algorithm
attempts to minimize the objective function

A i1
Wie) =, 3 minlle; i, &

via alternating steps of associating each instance to #seséecentroid, and then reposition-
ing the centroids at the center of mass of their respectiv&@eits (for further discussion of
the algorithm and its properties, see for instance (Duda 2081; Hartigan 1975; Steinley
2006)). This procedure is not guaranteed, in general, tatfieglobal minimum ofV(c).

In a statistical settinglV(c) can be seen as an empirical approximation of the objective
function with respect to the underlying distribution, defiras

W(c):= [ p(x)min||c; —x||%dx. 2
R" jelk]

As discussed earlier, we focus in this paper on the settingrevthe clustering algorithm
converges to a single solution as the sample size goes tdynfgain, this solution may
not be the global minimum &k/(c). A bit more formally, we shall assume that as the sample
sizemincreases, the centroids returned by the algorithm coegdrgprobability to a single
fixed solutiong = (p1,. .., k) € R™ (up to permutation of the centroids), with centroids
which lie at the center of mass of the clusters with respettieainderlying distribution:

fxec‘“ xp(x)dx

vielK e

For simplicity, we will also assume that all these centraidsdistinct (for all # j, pi # pj).

To avoid ambiguities involving permutation of the centsjigve assume that the number-
ing of the centroids is by some uniform canonical orderiray €xample, by sorting with
respect to the coordinates), such that this numbering doeshange for sufficiently small
perturbations ofe.

The basic idea of clustering instability is to measure dists between clusterings,
based on different samples from our data. More formally, efné the (scaled) distance
between two clusterings,(S1) andA, (), whereS;, S, are samples of size, as\/mtimes
the probability that a randomly sampled instance fr@rwill belong to different clusters in
A (S1) andAx(S). Formally,

7 (ks (S0), Ae(S2)) = VM Pr (x € hi(S1) X € Al 7 1) ©)

This definition follows (Ben-David et al. 2006, 2007), andsisnilar to what clustering

stability methods attempt to estimate in practice, by campguhe proportion of the data
which switches between clusters when the clusteriadS;) andA(S,) are compared. The
main difference is the additional scaling k§m (the 'correct’ scaling factor as will become



evident later on). This is usually performed by clusteringegpendent subsamples of the
data, and empirically estimating the distance betweenetelting clusterings. The average
distance is taken to be the measure of the model instafilitys, understanding the behavior
of d}(Ax(S1). Ax(S2)) (over drawing and clustering independent samples) is ofrinterest
in analyzing the behavior of clustering stability.

Any choice of cluster centroids= (cy,...,Cx) induces a Voronoi partition oR". For
each cluster centroid, we denote the interior of its corresponding clusteCgs defined as

Cei = {x € R": argmin||cj — x||* = i} .
' ISl

Also, we will denotef; j, fori # j, as the boundary face between clusteaad j. Namely,
the points inR" whose two closest cluster centroids arandc;, and are equidistant from
them:

Fosy = {x € B argminjca —x|2 = {1} }. @

Assumingg;,c;j are distinctF j is a (possibly empty) subset of the hyperplahg j,

defined as
) AN\ T
Hc,i,j = {XER”: (X—%) '(Cl—CZ) :O}. (5)

In the paper, we use integrals with respect to botmtdénensional Lebesgue measure,
as well as then— 1)-dimensional Lebesgue measure. The type of integral we hsads
be clear from the context, depending on the set over whichrevggegrating. For example,
integrals over som&;; are of the first type, while integrals over sofag j are of the second
type.

The remainder of this section formally defines two matricdsctv prove to play an
important role in how clustering stability behaves. Thet finatrix, of sizekn x kn, is the
Hessian of the mapping/(-) at the limit solutior, which we shall denote ds. This matrix
is composed ok x k blocks/; ; for i, j € [k], each such block being of sire< n. Each block
[i,; can be shown to be equafto

if i = j, and fori # j itis defined as

2

[ij=+———
Y = el SR

PO (¢ — pai) (X = pa) "l ™)

We will use the same block notation later for its invefse'. We assume that the mattixis
positive definite. This is a mild requirement, because i§ a locally optimal solution then
I is always positive semidefinite. Cases whEris not strictly positive definite correspond
to singularities which are often pathological (for morecdission on this, see (Radchenko
2004)).

The second matrix we shall need, denote&/ as equal (up to a constant of 4) to the
covariance matrix o7 with respect to each cluster, assuming the optimal clugjénduced

1 Thisis proven in (Pollard 1982). The definitionfotthere differs from ours in one of the signs, apparently
due to a small error in that paper (Pollard, personal commuaigat
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Fig. 1 An illustrative drawing of the setting and notation usedicKhr lines represent the optimaimeans
clustering partition (fok = 3 clusters) with respect to the underlying distributiorustéring two independent
random samples gives us two random centroid satsdc’. These induce two different Voronoi partitions of
R", and the distance measure is the probability mass in the arieh wiitches between clusters, when we
compare these two partitions (gray area).

(K] {1,...,k}.

N, X) Multivariate normal distribution with mean and covariance matriX.

2,p(+) Underlying probability distribution and correspondingudigy function.
S=(X1,...,Xm) Sample of sizendrawn i.i.d fromZ.

Ax(4) The standardé-means algorithm.

W(-) Thek-means objective function w.r.t. an empirical sample (see Bj}. (

W(-) Thek-means objective function w.r.t. the underlying distribatZ (see Eq. (2)).
c=(C1,...,0) Cluster centroids, returned by tkemeans algorithm based on a random sample.
= (pa,..., k) Limit cluster centroids to which thiemeans algorithm converges in probability.
d7(Ax(S1),Ax(S2)) | Scaled stability measure, based on samBleS; of sizem (see Eq. (3)).
instal{A,, 2) Expected value of the limit distribution o) (Ax(S1), A (S2)) (see Eq. (9)).

Cei The cluster associated with centraid

Feiij The boundary between the clusters associated with ceatioir] (see Eq. (4)).
Hei i The infinite hyperplane containing the cluster boundayy; (see Eq. (5)).

r Hessian ofV/(+) at u (see Eq. (6),Eq. (7)).

Vv Per-cluster covariance matrix 6f with respect to clustering (see Eq. (8)).

Table 1 Table of Notation

by 1. More specificallyV is aknx knmatrix, composed df diagonal block¥; of sizenx n
fori € [K] (all other elements of are zero), where

Vii=a [ pOo ) (x— i) ®

We shall assume th&t has full rank for any.

3 Asymptotic Behavior of Clustering Stability

In this section, we formally characterize the asymptotisaweor of clustering stability, and
discuss some immediate consequences. The detailed pregisesented in Sec. 7.



At a technical level, our main result is the following themrewhich characterizes the
exact di;tribution to Whi(;fdg(Ak(Sl)7Ak(Sz)) converges for any appropriate underlying
distributionZ, as well as its expected value.

Theorem 1 Assume? has a bounded probability density functiot )pwhich is continuous
as a function orR" and fulfills the two regularity conditions specified in Sed_&t A, (-) be
the k-means algorithm, and assume that the returned sehtigsc = (cy, ..., Cx), based
on i.i.d samples fron%, converge in probability to some set of k distinct centrqids-
(1, .., pk) Which are a local optimum of \¢). Furthermore, assume thét is invertible
and that Y has full rank for any ie [k]. Then we have that}{Ax(S;), Ax(S2)) converges in
distribution to that of

-
va s | pi( fx) (qw> 0
1<|Zj<k ;u]”#l /*‘J”‘ X— pj Cj— 1 ‘

wherec = (cy,...,0) " ~ A (u, [ 7VIY).
The expected value of this distribution, denotethatal(Ax, 2), is equal to

2 / P(x,i,])
p(x dx, ©)
NI S P
where¥(x,i, j) is defined as
V12 -1 -1y,
(/' )ii (T I~L|*X
H< 0 v1/2> (=i (r~ 1) X u; o

All the integrals can be shown to exist by the assumptionp(en

The asymptotic distribution andstaliAk, 2) allows us to characterize the asymptotic
behavior of clustering stability. The following theoremeexplifies this on a simple empir-
ical estimator of clustering stability. The main differenisetween the following estimator
and those proposed in the literature is that it measuresstende between just a single pair
of clusterings from a pair of independent samples, rathesn #veraging over several pairs
based on subsampling the data. This just makes our resuigelr, because these kind of
bootstrap procedures should only increase the relialfithe estimator, whereas here we
are interested in a 'lower bound’ on reliability.

Theorem 2 Define a clustering stability estimat(ﬁ(ﬁm, as follows: Given a sample of size
3m, split it randomly intaB disjoint subsets $$,S each of size m. Estimate

d% (A (S1), A (S2))//m by computing

1 Sy
= l(XGAk(S[[)J'7X€Ak(SZ)j’7]7éJ)'

Xe
For any distributionZ satisfying the conditions of Thm. 1, assume that for somealees
of k, k # ky, the ratio ofinstalay,, ) andinstalAy,, ) (as defined in Thm. 1) is R 3.
Then we have that:

0.3+ 3log(R
03+300R) o)

where the probability is over a sample of sBm@ used for both estimators, and19 con-
verges td) as m— co. This bound is understood to signify19 if R = co.

Pr (6, am > B, am) <



The theorem implies the following: Suppose we are considexo possible values for
k, designated aks andk,, such that the ratio betweéTsEt(Akm_@) and@t(Aks,_@) is
some reasonably large constant (one can think of it as dvediaunstable model corre-
sponding toky, vs. a relatively stable model correspondinggh Then the probability of
not empirically detectindss as the most stable model has an upper bound which actually
decreases with the sample size, converging to a constam d&pendent on the ratio of
@&Aks.ﬁ) and@luku,@). In this sense, according to the bound, clustering stabil-
ity does not 'break down’ in the large sample regime, and gyemtotic reliability of its
empirical estimation is determined hTsat{Ak,Q). We emphasize that this theorem deals
with the reliability of detecting the most stable model, nitether a stable model is really
a 'good’ model in any other sense.

4 Factors Influencing Stability of Clustering Models

According to Thm. 1, for any distribution satisfying the eesary conditions, the distance
between clusterings (after scaling bym) converges to a generally non-degenerate distribu-
tion, which depends on the underlying distribution and thenber of cluster&. As Thm. 2
shows, this implies that clustering stability does not&kdown’ in the large sample regime,
and its choice of the most 'appropriate’ valuekadventually depends dn/sadAk, ).

Thm. 1 provides an explicit formula fdm/sakiAk,@). Although one can always calcu-
late it for specific cases, it is of much more interest to trgt anderstand what are the gov-
erning factors influencing its value. These factors evdiytaletermine what is considered
by clustering stability as the 'correct’ model, with a Iovuwaforﬁat(Ak, 2). Therefore,
understanding these factors can explain what samplefr@ezeassumptions correspond to
the use of clustering stability, at least in theneans setting that we study. A full analysis of
these factors and their inter-relationships is a completeavor in itself, but several basic
observations can be obtained in a relatively straightfotvmanner. Some simple examples
illustrating expected and unexpected consequences @& theservations will be provided in
the following section.

We will base these observations on two sets of rough but inakly simpler upper
and lower bounds OHSEKAK, 2). These bounds are presented in Thm. 3 and Corollary 1
which follow, and highlight different aspects of this quantSince our main focus in this
section is clarity rather than generality, we will allow salves to assume that the probability
distribution is supported in the unit ball of Euclidean spadeor the same reason, we have
made no particular effort to make the bounds tight.

Theorem 3 mstat(Ab 2) is upper bounded by

(sf20m) [ oo

wherea := minij||pi — pjl, and Amax(A) and Amin(A) denote the smallest and largest
eigenvalues of a matrix A.

2 Relaxing or removing this assumption will only affect multiaitive constants, which might depend on
the regularity conditions we have imposed on the probahiktysity functionp(-).



Also,instabA, 7) is lower bounded by

(o) [, poos

Corollary 1 @t{Ak,@) is upper bounded by

13Vl _ / (x)dx
aVol—16knP | Ju; ik, ; P 7

where Vol := max fC,u p(x)dx denotes the largest cluster with respect to the clustering
induced byu and the underlying distribution, Vo min fcMi p(x)dx denotes the smallest

such cluster, P=sup, i p(x) denotes an upper bound on the probability density along
the limit cluster boundaries, and := min;; || — p|| is a lower bound on the distance
between anyt two limit centroids.

Also, |nstat(Ak7 2) is lower bounded by

)\min(V)
(2 (W-F 16knP/O{) ) /Ui,jFu.,i.j p(X)dX

We will start by considering Corollary 1. The first thing totioe is that the integral
density along the cluster boundariqgf_jmi‘j p(x)dx, seems to play an important role in
determining the instability of a model. According to the eppound, if the density along
the cluster boundaries is zero, we get ﬂﬁt?mk, 2) =0, and thus any such model will
be asymptotically considered as the most stable one. Mergitve same bound implies that
@&Ak, 2) will tend to be small even if the density along the clusterrmaries is small
but not exactly zero. This means that clustering stabiliity tend to consider models with
lower density along the cluster boundaries as more "apatejr

A second observation that can be made is that when facedwatkitferent choices of
k, both of which with low density along the boundaries, bottipper and lower bounds in
Corollary 1 will often tend to be larger for the bigger valiekoTo see this, notice first that
the cluster boundary area, jF,, i j, increases with the number of clusters. Also, if the clus-
ters are reasonably balanced, we should exyedb scale down inversely witk, whereas

Amin(V) scales down at a slower rate, especially in high dimensibsis small enough
to makeknPrelatively negligible, these factors imply that the boumdGorollary 1 will tend
to be larger for the bigger value kf To give a concrete and very simple example (see Fig. 2
for a graphical illustration), consider a uniform distrilan on the cubé—1//n,1//n",
with ky = 2" andk, = 22" (the example can be easily generalized). The optimal cingte
for eachk is a uniform grid partition of the cube (intuitively, we sfiche cube once along
each dimension fok; = 2", and 3 times fok, = 22“). To correspond to the regime of low
density along the boundaries, suppose we slightly modigydistribution, by making the
probability density at thin slivers around the optimal tdwsboundaries to be very small.
Obviously, this does not materially change the optimalteltisg. Comparing how the ele-
ments in the bounds change as we move fkgrto k,, we have thaVol and Vol decrease by
2", a decreases by 2/Amin(V) decreases by22, andf, Fui p(x)dx increases by 3. As

a result, we get that the upper bound in Corollary 1 increbgespproximately 3 2"/2+1,
and the lower bound increases by approximatel233/2.
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Fig. 2 A graphical illustration of the example discussed in the,textn = 2. The shaded areas represent
areas of positive density. Black circles represent cetigrcand lines represent cluster boundaries. For the
same underlying distribution, the left figure represents ptmml clustering withk; = 4 clusters, and the
right figure represents an optimal clustering wkgh= 16 clusters.

This observation matches a known experimental phenomémnuaiich clusterings tend
to be less stable for highér even in hierarchical clustering settings where more than o
value ofk is acceptable. When the 'correct’ model has, for examplesrg low boundary
density and nice structure compared to all the competingefspthis might overcome any
inherent tendency of instability to increase withHowever, when this is not the case, nor-
malization procedures might be called for, as in (Lange.€tG04). Although one can argue
that this phenomenon is exacerbated by finite sample effgicise the same sample size
is used to measure the clustering stability for differemti@a ofk), we see here that it relies
on factors which do not depend on the sample size, and thusatibe resolved simply by
scaling the sample size with

Turning to Thm. 3 allows us to see in which direction is clasig instability affected
by the local geometry of the limit clustering in the solutgpace. Specifically, recall that
is the Hessian of the objective function at the limit clustei., and thus describes the local
geometry of the objective function around that pointulfepresents a shallow, ill-defined
local optimum of the objective function, then we might expibe eigenvalues af to be
small. From Thm. 3, we see that this will tend to m&ﬁt{Ab@) larger. For the same
reason, a deep and well-defined local optimum will tend to emﬁsalmb@) smaller.
Thus, clustering stability seems to take into account anwlgee shallow and ill-defined
local optimum in terms of the objective function, which isl@ed often a sign of a mismatch
between the model and the data.

Finally, it is important to emphasize that most of the obagons above are concerned
with tendencies, and have no pretensions to universatithé sense that they apply for
every possible clustering setting. In particular, as waemédy pointed out and studied in
(Ben-David and von Luxburg 2008), there definitely existaitons where the density along
the cluster boundaries %ot positively correlated with the model instability. Thusete
observations should be seen as aids in understanding withokiassumptions clustering
stability methods tend to make in choosing the most 'appatgrmodel, rather than as
universal assertions about their behavior.
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Fig. 3 lllustrative examples of the behavior of clustering stailin each column, the upper plot is a repre-
sentative sample from the underlying distribution (in ab&s, a mixture of unit variance Gaussian&#),
while the lower plot is the average valuedif (Ax(S1),Ax(S2)) (empirically averaged over 1000 trials), for
different sample sizes.

5 Examples

To illustrate some of the observations from the previousiegecwe empirically evaluated
the instability measure on a few simple toy examples, wheeeyéhing is well controlled

and easy to analyze. These examples consist of variousnesxtd Gaussians, where the
means algorithm (with 10 random initializations) was usea &asis to estimate the model
stability for different values df. The results are displayed in Fig. 3. We emphasize that these
are just simple illustrations of possible expected and paeted characteristics of clustering
stability in some very limited cases, which can be gleaneahfihe theoretical results above,
and are not meant to be a real empirical study of clusteriggjlgi.

First of all, we see that in all cases considered, the averalge ofd?) (Ax(S1), Ax(S2))
tends to converge to a constant value, which differs basedeonohoice of the model order
k, and clustering stability does not seem to 'break down’ aspda size increases. If we
would have eliminated the scaling by the square root of thepasize in the definition of
d7 (Ax(S1), Ak (S2)), then we would have graphs which converge to zero for allesbfk,
but the ratio between them would have remained more or |esstaat.

The three leftmost columns demonstrate how, for theseqoiatiexamples, the density
along the cluster boundaries seem to play an important m@ierminingﬁt{Ak,@).
In the two leftmost columns = 3 emerges as the most stable model, as the boundaries
between the clusters with= 3 have low density. Howevek,= 3 becomes less stable as the
Gaussians get closer to each other, with higher densitiggeithoundaries between them.
At some point, when the Gaussians become close endugl2 becomes more stable than
k=23.

A different and more unexpected manifestation of this b&hraan be seen in the right-
most plot, which simulates a hierarchical clustering sgttin this case, all three Gaussians
are separated, but one of them is relatively more separatedthe other two. As before,
k=4 is less stable thalkh= 3 andk = 2, but nowk = 2 is the most stable model. Deciding
on k = 2 as the number of clusters in the data is not unreasonaldall(tbat clustering
stability makes no explicit generative assumption on hactbsters look like). However, it
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can indicate that in a hierarchical clustering settingsteting stability might prefer higher
levels of the hierarchy, which may or may not be what we want.

6 A Negative Result on Convergence Rates

After establishing the asymptotic distribution of the ¢krsng distance measures fkr
means clustering, a reasonable next step is exploring whatdf guarantees can be made
on the convergence rate to this asymptotic limit. As a firspstve establish the following
negative result, which demonstrates that without addifi@ssumptions, no universal guar-
antees can be given on the convergence rate. The theorem tethe cas& = 3, but the
proof idea can easily be extended to other valuds &or simplicity, we will also assume
that we use an 'ideak-means algorithm which actually finds the global minimum foe t
objective function given a sample. The setting which we ogerove the theorem is simple
enough so that the rellmeans algorithm can be expected to have a similar behavior.

Theorem 4 For any positive integer g there exists a distributioy such that
d?7}(A3(S1),43(S2)) converges in probability t® as m— oo, but Pr(d7)(A3(S1),A3(S2)) >
v/m/4) is at leastl/3 for some m> my.

The intuition behind the theorem is that for a suitably desi@distribution, an arbitrar-
ily large sample might be needed for the empirically derietedteringc to get 'close’ to the
limit clusteringu. As a result, for that setting and sample size, the central &symptotic
behavior that we have analysed will be a poor approximatitowever, it should be em-
phasized that the setting used in the theorem is highly@atifiand not necessarily typical
of real-world clustering problems. Therefore, finding stiént and empirically verifiable
conditions which do allow finite sample guarantees is of muotdrest.

7 Proofs
7.1 Proof of Thm. 1

Before embarking on the proof, we briefly sketch its outline:

1. Using tools from the statistical theory of Z-estimatorg, characterize the asymptotic
Gaussian distribution of the cluster centro@isn terms of the underlying distribution
2 (Lemma 1). This result reproves the central limit theoremkfoneans due to Pol-
lard (Pollard 1982), but without requiring an algorithm abfe of finding the global
optimum of thek-means objective function.

2. The cluster boundaries are determined by the positiottseodentroids. Hence, we can
derive the asymptotic distribution of these boundariegdrticular, for every boundary
Fei.j, we characterize the asymptotic distribution of the poisénEuclidean distance
between two realizations of this boundary, over drawing @lndtering two indepen-
dent samples. This distance is defined relative to a projectn the hyperplang,, ; ;
(Lemma 2).

3. We show that the probability mass @f, which switches between clusterand j over
the two independent clusterings, has an asymptotic digioib definable by an integral
involving the distance function above, and the valuep©f on F,; j (Lemma 3 and
Lemma 4). This allows us to formulate the asymptotic distitm ofdf) (A (S1), Ax(S2)),
and its expected value.
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For convenience, we shall use- (e, ..., ex) to denote the random element p.. Also,
we will use the stochastic order notati@y(-) andop(-) (cf. (van der Vaart and Wellner
1996)). Let{Xm} and{Ym} be sequences of random vectors, defined on the same propabili
space. We writéy = Op(Ym) to mean that for each > 0 there exists a real numbketsuch
that P(||Xm|| > M||Ym||) < € if mis large enough. We writ&, = 0p(Ym) to mean that
Pr(||[Xml|| > €][Ym||) — O for eache > 0. Notice that{Yyn} may also be non-random. For
example Xm = 0p(1) means thaky — 0 in probability.

Lemma 1 Under the notation and assumptions of the theorgfme = \/m(c — p) con-
verges in distribution tw, wherev ~ .4 (0, ~VI ~1). As a result| e|| = Op(1//m).

Since proving the lemma requires specific tools and additinotation which we will
not need later on, we present the proof separately in thenaippeNotice that the lemma
allows us to assume that for large enough valuas,afith arbitrarily high probability and
for anyi, j € [k],i # j, the nearest centroid {@ is ¢;, all centroids are distinck; ; is non-
orthogonal toF,; j, and||e| is arbitrarily small. We shall tacitly use these assumpstiom
the remainder of the proof.

Lemma 2 For some jj € [K],i # j, assume that f; ; # 0. For anyx € H,, j, define the
function:

losi = il (%5 -X) - (6~ )
(ki —nj)- (G —cj)

Then if||e]| is smaller than some positive constant which depends only, é(x, ¢, cj)
can be rewritten as

G () (8 +oami+ ier®

Considering the projection dflcj j to H,  j, we have that(x,c;,c;) is the signed Eu-
clidean distance of from the point orHc; j which projects to it (see the left half of Fig. 4).
This is becausé(x, ¢, cj) must satisfy the equation:

i — 1 G+
(<X+€(X,Ci,cj)|z:_Z;|)_ '2 ])'(Ci—cj)zo.

£(X,Gi,Cj) =

Proof We will separate the expression in the definition/0f,c;,c;) into 2 multiplicative
components and analyze them separately. We have that:

<Ci;Cj _x> (G —c¢j) = (%—X) (1= pj) + (e =€)

_ (MJ;MJ' 7X) )+ (Mi‘fz‘ﬂi 7x) (et (em;ej) (i — )
+O([[e]?)-

Notice that the first summand is exactly O (sineeF,, j j), and can therefore be dropped.
After expanding and simplifying, we get that the above isaqol

(i =) €& — (1 —X) - € +O(||e]|) (1)
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As to the second component in the definitior?6f, ¢;, c; ), we have that

i —pill i — pil
(i =) (G =Cj) i = pill>+ (i — ) - (i —€j)
_ 1 _ 1
ol (1 ey o O(Tel)
1 O(lel) ) 14 0([el)
— 1— = 12
|ui—uj|( Tro(le)) = Tui—mll” (12)

assuming|e|| to be small enough. Multiplying Eq. (11) and Eq. (12) giveshes ex-
pression in the lemma. ad

In order to calculate the asymptotic distributiondf(Ax (S1), A (S2)), we need to char-
acterize the distribution of the probability mass@fin the 'wedges’ created between two
boundaries for clusteisj, based on two independent samples (see Fig. 1). For any v gi
boundaries, calculating the probability mass requiresgiration of the underlying density
function p(-) over these wedges, making it very hard to write the distigoudf this prob-
ability mass explicitly. The purpose of the next two lemm&soi derive a more tractable,
asymptotically exact approximation for each such wedgéchvwtiepends only on the values
of p(-) along the boundarf,, ; ;.

We begin with an auxiliary lemma, required for the main Lemdnahich follows. To
state these lemmas, we will need some additional notatmrsdmeH,, ; j, letF CH,,; j be
some finite intersection of half-spaces. For notational’enience, we shall assume w.l.0.g
thatH,, i j is aligned with the axes, in the sense that forxadl H,, ; j, its last coordinate is
0 (it can be easily shown that the regularity conditiongp¢n will still hold). Also, denote

={y € R"1: (y,0) € F}, which is simply then— 1 dimensional representation Bfon
the hyperplane. Finally, for ease of notation, derfgtg,0),ci,c;) for anyy € F’ aslc(y),
wheree =c— p.

Lemma 3 Lete, € be two independent copies®of u, each induced by clustering an inde-
pendent sample of size m. LetB{x € R" : ||x|| < R} be a ball of radius R centered at the
origin. Then we have that

ler(y) ler(y)
Lo ey edelay— [ | [ " piy.0)déay
F'OB " Jle(y) F'NB Jle(y)

where the constants implicit in the r.h.s depend on R.

=o0p(l/vm), (13)

Proof Sincep(-) is a non-negative function, we can rewrite the expressidchéiemma as

. max{le (y . max{7e ( )
L./ Yoy gy [ [T oy opaay),
JF'NB |n{éE JF'NB |n{£E
or
max{fe)
B b(y, ) ply, 0)dedy).
F/nBJmin{Ze (y),7./

By the integral mean value theorem, swn(e) is continuous, we have that the expression
above is equal to:

[ ) = 20 I(ply. &) — ply,0))dy.
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whereE is between the minimum and maximum of B
{Zc(y), 2o (y)}. For simplicity of notation, we will writeSy € [ (y), ¢ (y)].
The expression above is upper bounded in turn by:

L, W) +17a0))  sup [p(y.&)~ p(y.0)ldy.
FinB &yElle ).l ()]

assuming the integral exists. Sineg’ have the same distribution, it is enough to show
existence and analyze the convergence to zero in prolyafoitit

Lol sup [p(y. &)~ py,0)idy. 14
F'ne &elle(y).ler(y)]
This integral can be upper bounded by
sup [Ze(y)l  sup [p(y.&)~P(y,0) | 1dy. (15)
yeFnB &yelle(y)-Ler ()] Fne
SinceB is bounded, we have according to Lemma 2 th#gjf is small enough,

sup_ ()| = O(llel| + [le]®), (16)
yeF

and a similar equation holds fdg(-) with e replaced bye’ in the r.h.s. To make the
equations less cumbersome, we will ignore the higher orter te||2, sincee converges to
0 in probability anyway by Lemma 1 (it is straightforward terify that the analysis below
still holds). From Eq (16) and the sentence which follows,have that
SUR/cr/nB & clie (y &y = O(|l€]|). Sincelle|| converges to zero in probability, this im-
plies thatéy converges to zero in probability, uniformly for agye F’ N B. Moreover,p(-)
is uniformly continuous in the compact domdnand thusp(y, &y) converges uniformly in
probability top(y,0). As a result, we have that

sup  sup  [p(y,§) —p(y,0)| = op(D). 17)
YEF'MBEyelle(y).Ler(y)]

Substituting Eq. (16) and Eq. (17) into Eq. (15), and usirgéct that|e|| = Op(1/,/m),
we get that the expression in Eq. (15) (and hence Eq. (14}\I5/m) as required. O
Lemma 4 For some non-empty,k j, let t(c,c’,i, j) be a random variable, defined as the
probability mass o7 which switches between clustergwith respect to the two clusterings
defined byc,c, induced by independently sampling and clustering a pagashples §S,
each of size m. More formally, define the set-valued randomliar

Q(c,ci,j)={xeR": (xeCciAX€ECyj)V(xeCyjAXxeCsj) } URijUFyj,
so that
tecii= [ pxjdx. (18)
Q(c.cij)
Then{c,c,i, j) is distributed as

L pOoll(x.6i.¢)) ax+-0p(1/vm).

where [x, ¢, c)) is distributed as

: (MX)T(Q_Q/>
. /! .
i — | \X— k] €] — €]
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Proof The right half of Fig. 4 should help to clarify the notationdatihe intuition of the
following proof. Intuitively, the probability mass whichwiiches between clusteisand

j over the two samples is the probability mass%flying 'between’Fgjj andFy ;. A
potential problem is that this probability mass is also et#d by the positions of other
neighboring boundaries. However, the fluctuations of tleekbtional boundaries decrease
asm— oo, and their effect on the probability mass in question beconasgligible. Our goal
is to upper and lower bound the integral in Eq. (18) by expoasswhich are identical up to
0p(1/4/m) terms, giving us the desired result.

As in Lemma 3, we assume thék,;; is aligned with the axes, such that for any
X € Hy, j, its last coordinate is 0. DefinBnax(p,¢,C,i,j) € Hpij as the projection of
Q(c,c,i, j) onH,; ;. By definition ofl(y), 7. (y), any pointx = (y,0) in Fyax(, ¢, ¢, i, j)
has the property that the width @{c, ¢/,i, j) relative toH,, ; j atx is at mos{/c (y) — ¢ (y)|.

Also, let Fin(p,¢,C,i, j) be the subset ofmax(1t,C,C, i, j), such that any poink =
(y,0) in it has the property that the width @j(c,c’,i, j), relative toH,, ; j atXx, is exactly
10c(y) — . (y)]. Since it is formed from intersections of half-spaces, ih&asurable and we
can perform integration with respect to it.

For notational convenience, we will drop most of the paramsefrom now on, as they
should be clear from the context. Lig},,, F/,;, andF’ be then— 1 dimensional projections
of Fmax, Fmin @ndF respectively, by removing the last zero coordinate whichaagume to
characterizéd,, j j. As a result of the definitions, by Fubini's theorem, we hana:t

/Frlnax

Assuming these integrals exist. Our goal will be to show bwih the upper and lower
bounds above are of the form

ler(y)
Lo ey &
Le(y)

T (y)
[ py.6de|dy,  a9)
Le(y)

dyz/Qp(X)dxz/F,

min

/ p(x) [ (x,Gi, ¢})|dx +0p(1/v/m),

Fri

which entails that the 'sandwiched’ integral in Eq. (19) ltzes same form. We will prove
this assertion for the upper bound only, as the proof foraelest bound is almost identical.
As in Lemma 3, we leB be a closed ball of radiuR in R" centered on the origin, and
separately analyze the integral in the upper bound of Eq.with respect to what happens
inside and outside this ball.
By Lemma 2, assuminge|| is small enough, there exists a constant 0 dependent
only onpu, such that

[ey) < allyl +1)(llell +le]1?).

As before, to avoid making our equations too cumbersome hak ignore in the analysis
below the higher order terrfe||?, sincee converges to 0 in probability and therefore it be-
comes insignificant compared ffe||. Also, since we conveniently assume thif; ; passes
through the origin, then any normal to a poinHp ; j N B® lies outsideB. This is not critical
for our analysis (in the general case, we could have simpipe@B as centered on some
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pointinH,; j), but does simplify things a bit. With these observations have that

i

< [ V)~ Ta(y)|supply. £)dy
JFhax B¢ EcR

Toi(y)
/Z p(y,§)d¢ | dy

v)

< / (1Ze(y)| +12e ()]) supp(y, & )dy
JFhaxB® EcR

<allel+]¢) [

Finax"BC (

lyll + 1) supp(y, &)dy
EeR

Sa(lle\lJrHﬁ’ll)/H e X+ DalIx[f)ax

w.j

<alel+]€]) [ (r+Da(r) e *dr

whereg(-) is the dominating function omp(-) assumed to exist by the regularity con-
ditions (see section 2), arglis the surface area of andimensional unit sphere. By the
assumptions og(-) and the fact thafe||, ||€'|| = Op(1//m), we have that
Ler(Y)
/z p(y.§)d¢

/F max 1B )

whereh(R) — 0 asR — . Notice that to reach this conclusion, we did not use any
characteristics of,,, beside it being a subset B, ; ;. Therefore, since
1(x,ci,c;)| < a(llx]| +1)(|[e]| +[|€]|) //m for some constard > 0, a very similar analysis
reveals that

dy = Op (h(R)/v/m) , (20)

Jerge PO (x,6i,¢})[dy = Op (h(R)/v/m).. 21)

We note for later that none of the constants implicit in @) notation, other than
h(R), depend orR. Turning now to what happens inside the ball, we have by LerBithat

fyove

Leaving this equation aside for later, we will now show that

Ler(y)
/~ p(y, &)dé
Le(y)

dy= [ 1) = Fey)Ipy. 0y + 0p(L/ V). (22)
Fhax B

/ |21 (y) = Ze(y)|ply, 0)dy — / [ (y) — e (y)[p(y, 0)dy| = 0p(1/v/M). (23)
Fhax B F'nB
The I.h.s can be upper bounded by

/ e(y) ~ Ze ) IpLy.O)cy
(FhaxAF)NB

<

[ (7l + 1) Dp(y.Ody.
(FhaxAF’)NB

As €, € have the same distribution, we just need to show that

/ e(y)IP(Y. 0)dy = 0p(1/ V). 24)
(FhaxAF)NB
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By Lemma 2, inside the bounded domairByfve have thalt’. (y)| < al||| for some con-
stanta dependent solely op andR (as before, to avoid making the equations too cumber-
some, we ignore terms involving higher powerg|eff). Moreover, since(y,0) is bounded,
we can absorb this bound inécand get that

/ [Ze(y)| p(y.0)dy < alle]| / 1dy, (25)
(FhaxaF')NB (FhaxAF)NB

Note that/< 1dy is a continuous function of, €’ in some neighborhood of 0.

FhaxAF/)NB
Moreover, sinceqn.x = F’ whene = €’ = 0, the integral above is 0 at= ¢’ = 0. Since
|l€ll, ||e]l converge to O in probability, it follows that

1dy = 0p(1).
./(Fr}]aXAF’)ﬂB y=0p(1)

Combining this with Eq. (25), and the fact that| = Op(1/,/m), justifies Eq. (24), and
hence Eq. (23). Combining Eq. (20), Eq. (22) and Eq. (23), etdlat
L dy = [ 17y ~Te(y)] Y- 0)dy +0p(1/ VM) + Op((R)/ Vi)
(26)

By Lemma 2, definition ol (x,ci,bcj), and the fact thaflel|, [|€'|| = Op(1/y/m), we

have that/,(y) — /. (y) is equal to|l (x,i,C})[ +op(([lyll +1)/+/m). This implies that the
distribution of the r.h.s of Eq. (26) is equal to

T (y)
/i p(y, £)dE

e (Y)

L PO-0)11x,61.65) dy+ 0p(1/ V) + Op((R)/ V).
By Eq. (21), this is equal in turn to
L, PY-0)1(x.c1, ¢ ldy+ 0p(1/ VM) + Op((R)/ Vi)

We now use the fact th& can be picked arbitrarily. Notice that the first remaindemte
has implicit constants which depend Bnbut the second remainder term dependRamly
throughh(R) (recall the development leading to Eg. (20) and Eq. (21)gr&fore, the first
remainder term converges to 0 at a rate faster tha/ndin probability for anyR, and the
second remainder term can be made arbitrarily smaller thgmilin high probability by
picking R to be large enough, sind€R) — 0 asR — . Thus, for anyd > 0, we can pick
R so that the remainder terms eventually become smallerdiigfm with arbitrarily high
probability. As a result, we can replace the remainder temnep(1/./m), with implicit
constants not depending &)and get that Eq. (26) can be rewritten as

‘/FI4'I ax

This gives us an equivalent formulation of the upper boun&dn (19). As discussed
immediately after Eq. (19), an identical analysis can bdopered for the lower bound
appearing there, and this leads to the result of the lemma. ad

Cer(y)
Lo ety &)

e dy = [, pLy,0)11(x.61 ¢} dy+ op(1/ ).
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Fig. 4 Anillustrative drawing of some of the notation and geometigoastructs used in the proof of Thm. 1.
Solid lines represent cluster boundaries with respecteaatitimal cluster centroidg, while dashed lines
represent cluster boundaries with respect to clusteraielstr or ¢’ returned by the clustering algorithm based
on an empirical sample. See the text for more details.

We now turn to prove Thm. 1. Léfc,c,i, j) be as defined in Lemma 4. By definition,
d?(Ak(S1), Ak (S2)) is equal to

NGLCEAR) 27)
1<i<)<k
By Lemma 4, we have thaymt(c,c'.i, j) is of the form
R N
/ Vmp) (“' X) (6_' E}) dx+0p(1). (28)
Fuaj i = gl | \X— #j €]~ €j

By the continuous mapping theorem (van der Vaart and Well8&6), we have that
VM(ei — €f,€j — €}) " converges in distribution tévi — v{,v; — V)", wherev,V' are two
independent copies of the random variable defined in LemrBy $tandard results on the
distribution of the difference of independent and iderlycdistributed Gaussian random
variables, this distribution is equal to that@®(vi,vj) ". Moreover, it is not difficult to show
that Eq. (28), ignoring the remainder term, is a continuomstion of/m(e; — €/, €j — e/j )
The idea is that it is obviously continuous with the integesdtricted to some fixed ball
around the origin, and the contributions outside the balil lbea made arbitrarily small if
the ball is large enough, by the assumptionspgx) (a similar argument was made in the
proof of Lemma 4). Thus, by the continuous mapping theorgmt(c,c’,i, j) converges in

distribution to
.
() )
X—Hj Vij

Substituting Eq. (29) into Eq. (27), we get convergence stritiution to the one speci-
fied in our theorem.
The only thing remaining is to derive the expected value & thstribution. This is

equal to
L T i
ﬁK%«/m,- ||:£XLJ~||‘ (5 - uxl> G;) ‘dx} '

dx. (29)

iy i — |

/ V2p(x)
.

E
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By Fubini’s theorem, this is equal to:

p(x)
Y o T

1<i< )<k’ m,

() ()l

For notational convenience, dendfe= "~V —1 as the covariance matrix of The
expression inside the expectation above is normally Oisted, as a linear transformation of
a normal random vector. Using standard results on the ligioin of such transformations,
and since for any univariate~ .4 (0, d?) it holds thatf[|a|] = o+/2/, we can reduce the
above to

E / (le Z' J) < —X)
\/Tl l<|<J<k i ||‘ i JH X L J Il ]‘] X : J

The final form ofinstal{, ) is achieved by rewriting as (VY/2r -1)T (v1/2r -1),
and simplifying.

7.2 Proof of Thm. 2

The proof is composed of several lemmas. The key insighaisthie asymptotic distribution
of d7)(Ax(S1),Ax(S2)), perhaps surprisingly, turns out to be a certain non-stargtminorm
of a Gaussian random vector. Using theorems on seminormaugstgn measures allows us
to bound the probability of7} (A (S1), Ax(S2)) being much larger or much smaller than its
expectation, and thus bound the probability that the ewgldiglustering stability estimator
will return deceiving results.

Lemma 5 The asymptotlc distribution offf{Ax(S1), Ax(S2)) is equal to that of &/), where
~ .4 (0,F I ~1) and ) is a continuous seminorm @M.

Proof Denotev = (vi,...,vn) wherev; € R". By Thm. 1, the asymptotic distribution of
d7(Ax(S1), Ax(S2)) is equal to

V2 Z/ 7‘( X)T<Vi>‘dx (30)
1<i<j<k Fuij I = pjll TAX— 1] Vi ’

whereyv is as defined in the lemma. It is quite straightforward tofyethat the expression
is indeed a seminorm on homogeneity and the triangle inequality are immediatd,itis
clear that Eq. (30) is always non-negative. As to continditysome arbitraryw € R", and
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letv + e be a small perturbation of Then we have that

Z / fp ‘( X)T(ViJrei)’dx
1<i<j<k Freij H“I p’]” X— 1 Vitej

T A
a2
1<i<j<k” Fu.i.j H/‘I /‘J” X—pj Vi

T
B
1<iTj<k’ Fui Hﬂl Bl TAX = pj €j

V2p(x) ( )‘
T — gl I\ =

< s(v) + /
1§igjgk Fuij lpi—

V2p(x)
< s(v)+ e 1<i;<k/mi,; Tl (el +2]|x[)dx

S(V+e)

which by the regularity conditions op(-), is upper bounded bs(v) +C||¢|| for some con-
stantC. Therefore, we get tha(v + €) — s(v) < C||¢|| for anyv. . By an appropriate sub-
stitution, this immediately implies thatv) — s(v+ €) < C||¢|| as well. Therefore, for any,
|s(v+€) —s(v)| < CJlg]|, which converges to zero &— 0, hences(+) is indeed continu-
ous. |

Lemma 6 Letv be a normally distributed random vector ', whose covariance matrix
has full rank. Let &) be a seminorm o®" which is not0 by identity, and leb € (1/2,1)
be a free parameter. Introduce the following two paramevengch depend o:

_ _ _(erf-1(9))2
2(1 99) bp—1_0+ > exp( (Girlf (8)°)
log(1%) Verf+(6)

Then for any Me such that Mlg > 1 andeag < 1, it holds that

ag =1+

)

(1+Mbg)/2
Pr(s(v) > ME[s(v))) < 0 <1 69>

and
Pr(s(v) < eE[s(v)]) < erf(erf-1(8)age).

Proof To prove the lemma, we will need two auxiliary results frora tiberature on Gaus-
sian measures. For completeness, we present these twis iesloby, in the form in which
they apply to our setting. The first theorem, due to Borel, Imayound as theorem Il1.3 in
(Milman and Schechtman 1986). The second theorem is a diingdication of theorem 1
in (Latata and Oleszkiewicz 1999). A small note about notatfor anyA C R", and any
scalart > 0, we lettA:= {x:x/t € A}.

Theorem 5 (Borel) Letv be a zero mean Gaussian random vector, and l&t R" be a
symmetric convex set such thfv € A) = 6 > 1/2. Then for any t> 1,

v <o(150)""
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Theorem 6 (Latata and Oleszkiewicz) etv be a zero mean Gaussian random vector, and
let AC R" be a symmetric convex closed set. For any &, let n(x) be the probability of a
standard normal random variable to lie jr-x,x]. Let a> 0 be such thaPr(v € A) = n(a).
Then forany0 <t <1,

Pr(v e tA) <n(ta).

In the proof, we will apply the two theorems above on (clodeal)s around the origin
with respect tos(-), namely sets of the formix € R" : s(x) < a} for somea > 0. The fact
that these are symmetric and convex sets is immediate frenstdndard definition of a
seminorm. In Lemma 5, we have also shown t{at is a continuous function frorR" to
R. Since the sets we are considering are pre-images, undeotiieuous functiors(-), of
closed sets of the for®,a] C R, we have that they are closed as well. This justifies our use
of the two theorems above.

We now turn to the proof itself. Sincgv) is a seminorm of a Gaussian random vector,
its distribution functiorF (t) = Pr(s(v) <t) is absolutely continuous, except possibly at the
single point inft > O|F (t) > O} (see for example (Hoeffman-Jgrgensen et al. 1979)). Also,
we assume that is non-degenerate arsf-) is not identically zero, therefore @&(v) <t)
is arbitrarily small for small enough> 0. As a result, for anyd € (1/2,1), there is a
corresponding positive parameter rpesiich that

Pr(s(v) < medy) =

Notice that the sefv : s(v) < medy} is exactly a closed ball of radius mgéround the
origin, with respect te(-). Applying Thm. 5 and Thm. 6, we get that

(1+M)/2
1- 9> (31)

Pr(s(v) > Mmedy) < 6 ( A
Pr(s(v) < emedy) < erf(erf 1(0)e). (32)
It remains to convert these bounds on the deviation fromgntedhe deviation from

E[s(v)]. To achieve this, we need to upper and lower boBfefv)] /medy. By substitution
of variables, we have th#[s(v)] is equal to

/ Pr(s(v) >t) dt—medg/ Pr(s(v) > Mmed)dM.
Using Eg. (31), this can be upper bounded by
meds <1+/ 0 <199>(1+M 2dM> |
which after straightforward computations lead&{s(v)] < medyag, whereay is as defined

in the lemma.
In a similar manner, we can writé[s(v)] as

/ 1-Pr(s <t)dt_med9/ 1—Pr(s(v) < emedy)de

which is lower bounded in term, using Eq. (32), by

1
medp /O 1—erf(erf 1(0)¢)de
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Again by straightforward computations, we reach the casioluthatE[s(v)] > medybg,
wherebg is as defined in the lemma.
Therefore, we have thatMbg > 1, then P¢s(v) > ME[s(v)]) is upper bounded by

1_ g\ (1+Mbg)/
P(()>Mbgmec[9)<9( 5 ) .

The other bound in the lemma is derived similarly. ad

We can now turn to the proof of Thm. 2. By Lemma 5, bdff{ Ay, (S1), Ax, (S2)) and
d?} (A, (S1), Ax, (S2)) converge in distribution te(vy,) ands(vy,), wherev,, vy, are Gaus-
sian random variables (non-degenerate by the assumptiohsandV). By a union bound
argument and the definition of convergence in distributwea have that for any fixed num-
berc,

Pr(d3 (Ax, (S1), Ak, (S2)) < 1.
< PH(d (A, (S1), Ak, (S2)) <
< Pr(s(vk,) < c)+ Pr(1.1s(vy,

1d5 (Ax, (S1), A (S2)))
C) + Pr(1.1d7 (A, (S1), Ak, (S2)) = ©)
s) = ¢)+0o(1). (33)

We will first treat the simple case wheRe= o, corresponding tchrTsEt(Aks,Q) =0
and@mmg) > 0. In that case, we have thsvy,) = 0 with probability 1, whereas
S(vi,) < ¢ with arbitrarily small probability if we pickc > 0 small enough. As a result, the
expression above i%1) as required.

Turning now to the case & < o, note that the combination of Lemma 5 and Lemma 6
allows us to upper bound the probability thsdty,) is smaller than its expectation by a
factor e < 1, and upper bound the probability theit,) is larger than its expectation by
some factoM > 1, provided that, M satisfy the conditions specified in Lemma 6.

Therefore, if we choos# and ¢ so that 11M/e < R, whereR is as defined in the
lemma, we get that Eq. (33) above is upper bounded by

1— @ (Mg, )/ »
61 ( A ) +erf(erf™*(62)ag,€) +0(1) (34)
forany 6y, 6; € (1/2,1). Choosing different values for them (as well as the choicppiro-
priateM, €) leads to different bounds, with a trade off between thettigbs of the constants,
and minimality requirements dR(which stem from the requirements bh € by Lemma 6).
Choosingf; = 0.9, 6 = 0.8, M = 2log(R)/(bg, 0g(61/(1 - 61))), € = 1.IM/R, and us-
ing the fact that ef) < (2//m)x for anyx > 0, we get that Eq. (33) is upper bounded by
(0.3+3log(R))/R+0(1) for anyR > 3.

Assume the event

A5 (Ak, (S1), Ak, (S2)) > 1.1d5 (A, (S1), Ak (S2)), (35)

occurs. Recall that the quantities in Eq. (35) depend on th@awn underlying distribu-
tion &, and therefore cannot be calculated directly. Instead, wgirgcally estimate these
quantities (divided by/mto be exact), as defined in the theorem statement, to getdhe st
b|||ty estlmator59ku am and Ok am- Thus, even if Eq. (35) occurs, it is still possible that
ekugm < 6 <,3m, and we wish to upper bound the probability for this occugrin

Notice that conditioned on the event in Eq. (?)&QF’:gm andéksjgm are nothing more than
plug-in estimators oflf}) (A, (S1), Ak, (S2))/vMmanddy) (Ax, (S1), Ak, (S2))//Mrespectively,
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based on an i.i.d sample of sime Since these quantities decrease witha standard Ho-
effding bound would not apply. However, we have by Thm. 2 ingi@ir and Tishby 2007)
that concentration of measure still occurs, and the prdibathat 6, sm < B am. condi-
tioned on the event in Eq. (35), ®1) (namely, converges to 0 @3 — «). Therefore, the
probability that Eq. (35) does not occur, or that it does odxu the empirical comparison
of these quantities fail, i€0.3+ 3log(R))/R+ o(1) as required.

7.3 Proof of Thm. 3

Letting A be some real symmetric matrix, we will ugA|| to denote its operator norm.

We will start by bounding¥(x, i, j) in the definition ofinstal{A,, ) (Eq. (10)). Since
bothV andl” are real symmetric matrices, we have that

(foz v-‘f/z) (éﬁiizzz éﬁiiz:a) ()
(f i—_u);) H '

Vl/2 - ni — X
0 vl/2 X—hj
Substituting this into the definition cmhstat(Ak, 2) in Eq. (9), we get an upper bound

—X A
R <w N
of the form
(X M)H

Amln F) HIM HJH

W(xJ,j):‘

Amll’l

2 / vV Amax(V ‘
\/ﬁ1<l<j<k Fri

)

/F YV Amax p(X)dX

/\mln a

2
<
Vit
wherea = min; j || — pj ||, and the last transition is due to the assumption that thelulis
tion is supported in the unit ball (hence we can assume]jtkiat|ui|, ||| are all at most

1). Simplifying, we get the upper bound in the theorem.
Turning to the lower bound and repeating the same technigeiget that

()

Substituting this into the definition dxh/sat(Ak,@) in Eqg. (9), we get a lower bound of

the form
P
Fuij

\/ﬁ1<,<,<k /\max’_) HMl MJH

Wix,i,j) > YAmnlV) \

Amax(
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Since||(pi — X, X — pj)|| is minimized forx = (ui + pj)/2, we can lower bound the expres-

sion above by
2 / VAmin(V) i o(x)dx |
\/ﬁ1<|<1<k Fri )\max ) f

Simplifying, we get the lower bound in the theorem.

7.4 Proof of Corollary 1

Thm. 3 gave us upper and lower boundsﬁ;t?t(Ak,.@) in terms of the maximal and
minimal eigenvalues of andl". From this, we will derive Corollary 1 by bounding these
eigenvalues.

We will start by upper boundingdmax(V ). SinceV is a block diagonal matrix, we have
thatAmax(V) = maXxc Amax(Vi), WhereV is blocki in V (see Eqg. (8)). By the definition of
Vi and a straightforward application of the Cauchy-Schwamtgjuality, we have that

Amax(M) = max yTViy < 4 ( max |\x7ui||2) / p(x)dx < 16/ p(X)dx
y:llyll=1 X€Cpji Cpii Cpi

and therefore

Amax(V) < 16max |  p(x)dx (36)
i Cuji

We now wish to lower boundin(I"). By the definition ofl” (Eq. (6) and Eq. (7)), it
can be decomposed as the difference of two matdeeglN. J is akn x kndiagonal matrix,
composed ok segments of the form

(/C“‘i p(x)dx) In,

In being the unit matrix of siza x n. N is aknx knblock matrix, composed & x k blocks.
Each block(i, j) is of the form

_y 2 o
M _;‘l””i_uaH.FMap(x)(X pi) (X—pi) dx

and fori # j itis
2

Nji=—7———
Y i = el e

PX) (X — i) (X — pj) " dx.

By Weyl's theorem (cf. (Horn and Johnson 1985)), we have that
Amin(r) = )\min(J - N) > /\min(J) - )\min(N) > )‘min(J) - P(N)7

wherep(N) is the spectral radius d&f. SinceJ is a diagonal matrix, its eigenvalues corre-
spond to the elements on the diagonal, and therefsgJ) is at least minfcﬂ_i p(x)dx. As
to p(N), since the spectral radius lower bounds any matrix norm,ameupper boung(N)
by, say, the maximum column sum matrix norm\b{defined as quz}‘21 [ni.j|, wheren; j
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are the entries o). From the definition oN and the assumption of the distribution sup-
ported on the unit ball, this norm fdt can be (very roughly) upper bounded bykh®/a,
whereP = SUR,, p(x) anda = min; j || — pjl|. As a result, we get that

Amin(lF) > min/ p(x)dx — 16knP/a.
i Cuii

Finally, we turn to upper bountinax(I" ). Again applying Weyl's theorem, we have that

Amax(") = Amax(d = N) < Amax(J) + Amax(N) < Amax(Jd) +p(N).

As we have seen above, we can roughly upper bquit) by 16&na, and we can upper
boundAmax(J) by maxfcwi p(x)dx. As a result, we get that

Amax(l") < m,aX/ p(x)dx+ 1eknP/a.
i Jey,

Substituting the bounds we have derived above into Thm. Zemnplifying gives us the
corollary.

7.5 Proof of Thm. 4

To prove the theorem, we will borrow a setting discussed inder 2002) for a different
purpose.

Let A be some small positive constant (gay 0.1). Consider the parameterized family
of distributions{D; } (wheree € (0,1/4)) on the real line, which assigns probability mass
(1-¢)/4tox=—-1andx=—-1—-A, and(1+¢)/4 tox=1 andx= 1+ A. Any such
distribution satisfies the requirements of Thm. 1, exceptinaity. However, as mentioned
in Sec. 2, the theorem only requires continuity in some mregimund the boundary points,
so we may ignore this difficulty. Alternatively, we may intace continuity by convolution
with a small local smoothing operator. For agyit is easily seen thal?} (Ax(S1),Ax(S2))
converges to 0 in probability, since the boundary pointsvben the optimal clusters have
zero density.

Let AL, denote the event where for a sample of sizdrawn i.i.d fromZ,, there are
more instances ofi—1— A, —1} than on{1,1+A}. Also, letAZ,, denote the event that
for a sample of sizen drawn i.i.d from Z, there are more instances ¢, 1+ A} than
on{—1—A,—1}. Finally, letBy, ¢ denote the event that every pointfrl—A,-1,1,1+
At} is hit by at least one instance from the sample. Clearl&,ﬁtc N Bme occurs, then the
optimal cluster centers for the sample &rel — A, —1,1+ A’} for someA’ € [0,A], and if
A,2mE N Bme occurs, then the optimal cluster centers for the sampld-afe- A’, 1,1+ A}
for someA’ € [0,A].

By Slud’s inequality (see (Anthony and Bartlet 1999)), fay&ernoulli random vari-
able X such thatE[X] = p < 1/2, and any whole numbea such thata/m < 1— p, if
Xi1,...,Xm aremi.i.d copies ofX, then

pr(éﬁlx zi) 21¢(\/m<;p)>’

where®(-) is the cumulative normal distribution function. The prottibof the event
A,lm is equal to the probability of a success rate of more thanihatfi Bernoulli trials,



27

whose probability of success {4 — €)/2. Using the theorem above, we get after a few
straightforward algebraic manipulations that

4

v/m
The probability of the evenAﬁLs is equal to the probability of a success rate of less

than half inm Bernoulli trials, whose probability of success(k— €)/2. By a standard

normal approximation argument, we have that for large ehowdues ofm, and for any
€€ (0,1/4), it holds that

Pr(ALe) >1-@ ( + 2s¢n?) . (37)

Pr(Az,) > 1/2. (38)
Finally, it is straightforward to show that @B ¢) is arbitrarily close to 1 uniformly for
any ¢, if mis large enough. Combining this with Eq. (37), Eq. (38) arel ¢lasily proven
formula P(ANB) > Pr(A) — Pr(BE) for any two event#\, B, we get that by choosing a large
enough sample siza > my, and an appropriate valug it holds that

Pr(A%'Ls N Bmﬁe), Pr(Afz'n,e N Bm,g) > 1/2 -V

for an arbitrarily smalb > 0. For that choice af, ¢, if we draw and cluster two independent
samplesS;, S of sizemfrom &, then the probability that eveAﬁ]_g, N Bm¢ occurs for one

sample, anmfmg NBme occurs for the second sample, is at legdy2 — v)?, or at least 13
for a small enouglv. Note that in this case, we get the two different clusteridigsussed

above, and .
m(1+¢ m
 (hs(1). s (&) = VI EE) o VT
So with a probability of at least/B over drawing and clustering two independent sam-

ples, the distance between the clusterings is more {frap, as required.

8 Conclusions

In this paper, we analyzed the method of clustering stgbidit model order selection in the
k-means framework, based on an explicit characterizatiotsasymptotic behavior. We
concluded that this method does not 'break down’ in the |aayaple regime, in the sense
that even when the sample size goes to infinity and the modehbes stable for any choice
of k, these stability estimators still tell us something meghih rather than just returning
random noise. Based on these results, we made some obses\atti the factors which may
tend to make a model ’stable’ or 'unstable’. Such obserwatiare particularly useful for
understanding what kind of assumptions are implicitly madeen one uses the clustering
stability method. These factors appear to constitute redse requirements from a ’'cor-
rect’ model, and accords with clustering stability workisigccessfully in many situations.
However, they also imply that clustering stability mightsetimes behave unexpectedly, for
example in hierarchical clustering situations, as illatgd in section 5.

Although it is possible to extend some of the results preskhere to more general
clustering frameworks, beyoridmeans (see (Shamir and Tishby 2008b)), the most obvious
challenge is to extend our analysis from the asymptotic diorttathe finite sample size
domain. Showing that clustering stability does not 'bread’ in the large sample regime
might have theoretical and practical relevance, but leapen the question of why clus-
tering stability can work well for small finite samples. Omaite to achieve this might be
through finite sample guarantees, but as demonstrated in4 fadditional assumptions are
needed for such results.
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9 Appendix - Proof of Lemma 1

As discussedd in Sec. 7, we devote this appendix to reprolarés central limit theorem
for k-means (Pollard 1982) under the weaker assumption thatigbeitam we work with
is non-ideal, and might return locally optimal solutionid is achieved by using more
modern tools from empirical process theory, and specifi¢edim the area oZ-estimators
Intuitively, a Z-estimator is any statistical estimatohiah works by trying to zero a function
or a set of functions based on a sample. For example, suppat®a instances are drawn
i.i.d from some distribution of. Then the sample mean can be seen as a Z-estimator: given
a sample, . .., Xm, it returns a valu@ which zeros the functionm(6) = 3" 1(6 —x;). For

a full formal treatment of Z-estimators, see (van der Vaad Wellner 1996). To prove the
lemma, we will apply a general central limit theorem for Zkesitors, due to van der Vaart.
This result (which appears for instance as Thm. 3.3.1 in ¢eavaart and Wellner 1996)) is
very general, and we will quote it below as applied to the djpesetting where both the data
and the hypothesis class reside in Euclidean spaces. licyart this allows us to ignore
some technical conditions which hold trivially in a finité¥gensional setting.

Theorem 7 (van der Vaart)Let{Am}n_; andA be a sequence of random maps and a fixed
map, respectively, between a sub®abf some Euclidean space, into some other Euclidean
space. Letc™);»_, be a sequence of random vectors, which safgfgbcn) = 0 for all m.
Assume that as m» o,

[V An(e) = A (M) — V() ~ A )|
L+ Ve ul ° 39

in probability, and that the sequenggm(Am(p) — A () converges in distribution to a
vector-valued random variable Z. Furthermore, assume #hed is differentiable atu
with an invertible derivative\,. If A(x) = 0, and(c™) converges in probability te, then
v/m(c— p) converges in distribution te/\;lz,

We will apply the theorem where" is the set of centroids returned by the algorithm
based on a random sample, gads the limit set of clustering to which we converge. We
will drop them superscript when it is obvious from context.

The first step will be to cast themeans algorithm as a Z-estimator, using a construct
which appears in (Pollard 1982). For this, define for aayk] the following function from
R x R" to R™:

Ai(Cx) = 2(ci—x) xeCqj
T o otherwise

The factor of 2 is not really necessary, but would be converiaer for directly citing
certain results from (Pollard 1982) without the need to eshwonstants.

Furthermore, assuming, ...,Xm is a sample drawn i.i.d fronw, define the random
mapAm(:) = (AL(),...,AK(-)) and the deterministic map(-) = (AL(),...,AX(.)) as

Al(c) := % iAi(c,x,-) . Allc):= /RnAi(C’X) p(x)dx.
=

for anyi € [K].
The key insight is that given an empirical sample of sizeour k-means clustering
algorithm always returns a solution ofsuch thatAn(c) = 0. This is a consequence of
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the fact that in &-means clustering, each centroid lies at the center of nfatssrespective
cluster. It can be easily verified that such a solution z&rgs). Thus, thek-means algorithm
can indeed be viewed as a certain type of Z-estimator.

With this construct in hand, we need to verify that the cdodi& of Thm. 7 indeed
hold. Proving that\ (c) is differentiable, and deriving its form, is a purely teataliexercise
in multivariate calculus, which may be found as lem@an (Pollard 1982). The resulting
matrix is exactlyl", which we have defined in Eq. (6) and Eq. (7). Showing thatithia
fact the Hessian of thkemeans objective function is also proven in (Pollard 1982).

Thus, the only thing really left to show is that Eq. (39) indémlds in our case. Notice
that it is enough to show that

IV/M(Am(©) = A'(€) — vM(Am(p) ATl
1+ vmie—pl|

for anyi € [K]. A relatively simple sufficient condition for this (impligay lemma 3.3.5 in
(van der Vaart and Wellner 1996)) is the following: For anysteri < [k], any coordinate
j € {1,...,n}, set of centroids, and instance, letA/(c,x) be the projection of(c,x) on
its j-th coordinate. Then for Eq. (39) to hold, it is sufficient twows that for somed > 0,
anyi € [k], and any coordinatge {1,...,n}, the set of functions

{A)(c) =) (1) Y jo_p) <

is aDonsker classintuitively, a set of real function§f () } (with any probability distribution
2) is called Donsker if it satisfies a uniform central limit dtrem. Without getting too much
into the details, this means that if we sampielements i.i.d fromz, then(f(x1) +...+
f(xm))/+/m converges in distribution (a®m — ) to a Gaussian random variable, and the
convergence is uniform over &l -) in the set, in an appropriately defined sense.

We use the fact that if7 = {f(-)} and¥ = {g(-)} are Donsker classes, then so is
F -4 ={f()g(-)}, and that any subset of a Donsker class is also Donsker (sées2.10
in (van der Vaart and Wellner 1996)). This allows us to redihesproblem to showing that
for anyi, j, the following two function classes, fro" to R, are Donsker:

{cij =X} e-pl<s » {leei()}je—p|<s- (40)

The first class is composed of linear functions with boundéskts inR", which is well
known to be Donsker. The second class is composed of inditatotions for any possible
cluster in a clustering induced lyclose enough tq. Since each cluster is composed of
an intersection of at mo&(k — 1) /2 halfspaces ifR" (wherek, n are fixed quantities), this
class is known to have finite VC-dimension, and hence is alsosRer. These and related
results can be found for instance in (Dudley 1999).

Thus, we have shown that for the settings assumed in ourdhedtq. (39) holds. We
now return to deal with the other ingredients required tdyappm. 7.

Considering the asymptotic distribution @fm(Am(u) — A(w)), sinceA(u) = 0 by
assumption, we have that for any [K], it is equal to

1 1
(\/WV\nlq(u)y--~7\/ﬁV\r'fq(u)) = <\/mjzlﬂl(ﬂvxj)v”w\/mglﬂk(ﬂ’xj)) . (4D

wherexy,...,Xn is the sample by whicl\y, is defined. The r.h.s of Eq. (41) is a sum of
identically distributed, independent random variablethwero mean and bounded variance
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(by the assumptions on the underlying distribution), ndized by ,/m. As a result, by the
standard central limit theorem, eagim(A},(p) —A'(ie)) converges in distribution to a zero
mean Gaussian random vector, with covariance matrix

V=4 [ PO pu) (x— ) .

Moreover, it is easily verified from the definitions that QAu ., X), Ay (ue, X)) = 0O for
anyi #i’. Therefore,,/m(Am—A)(u) converges in distribution to a zero mean Gaussian
random vector, whose covariance matixs composed ok diagonal blockgVy, ..., V),
all other elements of being zero.

Applying Thm. 7, we now get thaym(c— ) converges in distribution t6 ~1Z, where
Z ~ ./ (0,V). This asymptotic distribution can also be written.4§0, ~VI 1),

Acknowledgements The authors wish to thank Gideon Schechtman and Leonid Kawitdr for providing
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