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Abstract Clustering Stability methods are a family of widely used model selection tech-
niques for data clustering. Their unifying theme is that an appropriate model should result
in a clustering which is robust with respect to various kindsof perturbations. Despite their
relative success, not much is known theoretically on why or when do they work, or even
what kind of assumptions they make in choosing an ’appropriate’ model. Moreover, recent
theoretical work has shown that they might ’break down’ for large enough samples. In this
paper, we focus on the behavior of clustering stability using k-means clustering. Our main
technical result is an exact characterization of the distribution to which suitably scaled mea-
sures of instability converge, based on a sample drawn from any distribution inRn satisfying
mild regularity conditions. From this, we can show that clustering stability does not ’break
down’ even for arbitrarily large samples, at least for thek-means framework. Moreover,
it allows us to identify the factors which eventually determine the behavior of clustering
stability. This leads to some basic observations about whatkind of assumptions are made
when using these methods. While often reasonable, these assumptions might also lead to
unexpected consequences.

Keywords Clustering, Model Selection, Stability, Statistical Learning Theory

1 Introduction

The important and difficult problem of model selection in data clustering has been the focus
of an extensive literature spanning several research communities in the natural and social
sciences. Since clustering is often used as a first step in thedata analysis process, the ques-
tions of what type of clusters or how many clusters are in the data can be crucial.
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Unfortunately, an objective ’correct’ answer to these questions seldom occurs in prac-
tice. There might be several reasonable ones, depending on the resolution at which we in-
spect the data, and our (usually subjective) definition of what constitutes a cluster. The ill-
posedness of the model selection problem is compounded by the unsupervised nature of the
data, often making it difficult to assess the compatibility of even a single specific model.
These difficulties suggest that the model selection procedure should be carefully chosen to
fit the nature of the problem at hand, and what the practitioner is trying to achieve. For this,
one needs a good grasp of theassumptionsabout the clustering structure that are inherent
to each such procedure. Understanding these assumptions isnot always trivial for general-
purpose model selection methods, which are not tied to specific generative assumptions.

In the past few years, an increasingly popular family of suchmodel selection methods
are those based onclustering stability. The unifying theme of these methods is that an appro-
priate model for the data should result in a clustering whichis robust with respect to various
kinds of perturbations. In other words, if we choose an appropriate clustering algorithm, and
feed it with the ’correct’ parameters (such as the number of clusters, the metric used, etc.),
the clustering returned by the algorithm should not be overly sensitive to the exact structure
of the data.

In particular, we will focus on clustering stability methods which compare the discrep-
ancy or ’distance’ between clusterings of different randomsubsets of our data. These meth-
ods seek a ’stable’ model, in the sense that the value of such distance measures should tend
to be small.

Although these methods have been shown to be rather effective in practice (cf. (Ben-
Hur et al. 2002; Dudoit and Fridlyand 2002; Lange et al. 2004;Levine and Domany 2001;
Smolkin and Ghosh 2003; Bertoni and Valentini 2007)), little theory exists so far to ex-
plain their success, or for which cases are they best suited for. Over the past few years, a
theoretical study of these methods has been initiated, in a framework where the data are
assumed to be an i.i.d sample. However, a fundamental hurdlewas the observation (Ben-
David et al. 2006, 2007) that under mild conditions and for any model choice, the clustering
algorithm should tend to converge to a single solution whichis optimal with respect to the
underlying distribution. As a result, clustering stability might ’break down’ for large enough
samples, since we get approximately the same clustering hypothesis based on each random
subsample, and thus achieve stability regardless of whether the model fits the data or not
(this problem was also pointed out in (Krieger and Green 1999)). It is important to empha-
size that this is not just a theoretical issue. If the scenario above indeed occurs, it implies
that there exists some sample size, which depends on the underlying distribution and hence
may be hard to compute, beyond which we should not trust the results of clustering stability
methods.

A possible solution to this difficulty was proposed in (Shamir and Tishby 2007). In a
nutshell, that paper showed that even when all considered models eventually become com-
pletely stable, therelativestability of each model compared to the other models can some-
times be reliably discerned - even when the sample size increases to infinity. With this more
refined analysis, it was argued that there may be no upper limit to the sample size for which
clustering stability remains meaningful. Although it provided the necessary groundwork,
that paper only rigorously proved this assertion for a single toy example, as a proof-of-
concept.

In this paper, we formally investigate the application of clustering stability to the well
known and populark-means clustering framework, when the goal is to determine the value
of k, or the number of clusters in the data. We consider arbitrarydistributions inRn satis-
fying certain mild regularity conditions, and analyze the behavior of the clustering distance
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measure, scaled by the square root of the sample size. Ratherthan converging to zero in
probability as the sample size increases to infinity, this scaled measure converges to a non-
degenerate distribution which depends on the choice ofk. From this we can show that even
for asymptotically large samples, clustering stability does not become meaningless, in the
sense described earlier, at least for thek-means framework that we study. While the prelim-
inary version of this paper (Shamir and Tishby 2008a) assumed an ideal algorithm, which
finds the global optimum of thek-means objective function, here we extend our results to
the actual algorithm used in practice, which might return a sub-optimal solution. Also, we
note that using different tools, some of the results presented here can be extended to more
general families of clustering frameworks beyondk-means (Shamir and Tishby 2008b).

The asymptotic distribution is also interesting for two additional reasons. The first is
that it can be seen as an approximation which improves as the sample size increases. The
second and more profound reason is that if we are interested in discovering what fundamen-
tal assumptions are implicit in performing model selectionwith clustering stability, these
should not be overly dependent on the sample size used. Therefore, as we look at larger
samples, sample-size-specific effects diminish, and what remains are the more fundamen-
tal characteristics of the method. As a result, the analysisleads to some basic observations
about the factors influencing clustering stability for thek-means framework, which may be
of theoretical and practical interest.

The paper is organized as follows. In Sec. 2, we introduce theproblem setting and the
notation we shall use. The notation is also summarized in table 1. In Sec. 3, we formally
present the results which characterize the asymptotic behavior of clustering stability in the
k-means framework. We build on these results in Sec. 4, where we discuss the factors influ-
encing this behavior, and how do they affect what is considered as a ’stable’ or ’unstable’
model by clustering stability methods. These observationsare illustrated with some simple
examples in Sec. 5. In Sec. 6, we give a negative result about the convergence rates of clus-
tering stability estimators to their asymptotic distribution. Almost all the proofs in the paper
are concentrated in Sec. 7, except for the proof of one of the lemmas, which is placed in an
appendix due to its length and it being conceptually separate from the other results. We end
with conclusions in Sec. 8.

2 Problem Setting and Notation

We refer the reader to Fig. 1 for a graphical illustration of the basic setting, and some of the
notation introduced below. A list of the notation used may befound in table 1.

Denote{1, . . . ,k} as[k]. Vectors will be denoted by bold-face characters.‖ · ‖ will de-
note the Euclidean norm unless stated otherwise.N (µ,Σ) denotes the multivariate normal
distribution with meanµ and covariance matrixΣ .

Let D be a probability distribution onRn, with a bounded probability density function
p(·), which is defined everywhere, and is continuous as a functionon Rn. Assume that the
following two regularity conditions hold:

–
∫

Rn
p(x)‖x‖2dx < ∞ (in words,D has bounded variance).

– There exists a bounded, monotonically decreasing functiong(·) : R → R, such that

p(x) ≤ g(‖x‖) for all x ∈ Rn, and
∫ ∞

r=0
rng(r) < ∞.

The second requirement is purely for technical reasons and can probably be improved.
Nevertheless, it is quite mild, and holds in particular for any distribution that is not heavy-
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tailed or has bounded support. As to the continuity assumption, it should be noted that
our results hold even if we assume continuity solely in some open neighborhood of the
limit cluster boundaries to which our clustering algorithmconverges (to be formally defined
shortly). However, since this somewhat complicates the analysis without leading to novel
insights, we will take this stronger assumption for simplicity.

Let Ak(·) denote the (possibly randomized) standardk-means algorithm, which is given
a sampleS= {xi}m

i=1 ⊆ Rn, sampled i.i.d fromD , and a required number of clustersk, and
returns a set of centroidsc = (c1, . . . ,ck) ∈ Rnk. These will usually be thought of as random
variables, dependent on the randomness of the sample. Recall that thek-means algorithm
attempts to minimize the objective function

Ŵ(c) :=
1
m

m

∑
i=1

min
j∈[k]

‖c j −xi‖2, (1)

via alternating steps of associating each instance to its nearest centroid, and then reposition-
ing the centroids at the center of mass of their respective clusters (for further discussion of
the algorithm and its properties, see for instance (Duda et al. 2001; Hartigan 1975; Steinley
2006)). This procedure is not guaranteed, in general, to findthe global minimum ofŴ(c).

In a statistical setting,̂W(c) can be seen as an empirical approximation of the objective
function with respect to the underlying distribution, defined as

W(c) :=
∫

Rn
p(x)min

j∈[k]
‖c j −x‖2dx. (2)

As discussed earlier, we focus in this paper on the setting where the clustering algorithm
converges to a single solution as the sample size goes to infinity. Again, this solution may
not be the global minimum ofW(c). A bit more formally, we shall assume that as the sample
sizem increases, the centroids returned by the algorithm converges in probability to a single
fixed solutionµ = (µ1, . . . ,µk) ∈ Rnk (up to permutation of the centroids), with centroids
which lie at the center of mass of the clusters with respect tothe underlying distribution:

∀i ∈ [k] µi =

∫

x∈Cµ,i
xp(x)dx

∫

x∈Cµ,i
p(x)dx

.

For simplicity, we will also assume that all these centroidsare distinct (for alli 6= j, µi 6= µ j ).
To avoid ambiguities involving permutation of the centroids, we assume that the number-
ing of the centroids is by some uniform canonical ordering (for example, by sorting with
respect to the coordinates), such that this numbering does not change for sufficiently small
perturbations ofµ.

The basic idea of clustering instability is to measure distances between clusterings,
based on different samples from our data. More formally, we define the (scaled) distance
between two clusteringsAk(S1) andAk(S2), whereS1,S2 are samples of sizem, as

√
m times

the probability that a randomly sampled instance fromD will belong to different clusters in
Ak(S1) andAk(S2). Formally,

dm
D (Ak(S1),Ak(S2)) :=

√
m Pr

x∈D
(x ∈ Ak(S1) j ,x ∈ Ak(S2) j ′ , j 6= j ′). (3)

This definition follows (Ben-David et al. 2006, 2007), and issimilar to what clustering
stability methods attempt to estimate in practice, by computing the proportion of the data
which switches between clusters when the clusteringsAk(S1) andAk(S2) are compared. The
main difference is the additional scaling by

√
m (the ’correct’ scaling factor as will become
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evident later on). This is usually performed by clustering independent subsamples of the
data, and empirically estimating the distance between the resulting clusterings. The average
distance is taken to be the measure of the model instability.Thus, understanding the behavior
of dm

D
(Ak(S1),Ak(S2)) (over drawing and clustering independent samples) is of much interest

in analyzing the behavior of clustering stability.
Any choice of cluster centroidsc = (c1, . . . ,ck) induces a Voronoi partition onRn. For

each cluster centroidci , we denote the interior of its corresponding cluster asCc,i , defined as

Cc,i :=

{

x ∈ R
n : argmin

j∈[k]
‖c j −x‖2 = i

}

.

Also, we will denoteFc,i, j , for i 6= j, as the boundary face between clustersi and j. Namely,
the points inRn whose two closest cluster centroids areci andc j , and are equidistant from
them:

Fc,i, j :=

{

x ∈ R
n : arg min

a∈[k]
‖ca−x‖2 = {i, j}

}

. (4)

Assumingci ,c j are distinct,Fc,i, j is a (possibly empty) subset of the hyperplaneHc,i, j ,
defined as

Hc,i, j :=

{

x ∈ R
n :

(

x− ci +c j

2

)⊤
· (c1−c2) = 0

}

. (5)

In the paper, we use integrals with respect to both then-dimensional Lebesgue measure,
as well as the(n−1)-dimensional Lebesgue measure. The type of integral we use should
be clear from the context, depending on the set over which we are integrating. For example,
integrals over someCc,i are of the first type, while integrals over someFc,i, j are of the second
type.

The remainder of this section formally defines two matrices which prove to play an
important role in how clustering stability behaves. The first matrix, of sizekn× kn, is the
Hessian of the mappingW(·) at the limit solutionµ, which we shall denote asΓ . This matrix
is composed ofk×k blocksΓi, j for i, j ∈ [k], each such block being of sizen×n. Each block
Γi, j can be shown to be equal to1

Γi, j :=

(

∫

Cµ,i

p(x)dx
)

In−∑
a6=i

2
‖µi −µa‖

∫

Fµ,i,a

p(x)(x−µi)(x−µi)
⊤dx, (6)

if i = j, and fori 6= j it is defined as

Γi, j :=
2

‖µi −µ j‖

∫

Fµ,i, j

p(x)(x−µi)(x−µ j)
⊤dx. (7)

We will use the same block notation later for its inverseΓ −1. We assume that the matrixΓ is
positive definite. This is a mild requirement, because ifµ is a locally optimal solution then
Γ is always positive semidefinite. Cases whereΓ is not strictly positive definite correspond
to singularities which are often pathological (for more discussion on this, see (Radchenko
2004)).

The second matrix we shall need, denoted asV, is equal (up to a constant of 4) to the
covariance matrix ofD with respect to each cluster, assuming the optimal clustering induced

1 This is proven in (Pollard 1982). The definition ofΓ there differs from ours in one of the signs, apparently
due to a small error in that paper (Pollard, personal communication).
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Hµ,1,2

µ1c′1
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µ2
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c′3 c3

c2 c′2
Fc′,1,2Fc,1,2

Hc,1,2 Hc′,1,2

Fig. 1 An illustrative drawing of the setting and notation used. Thicker lines represent the optimalk-means
clustering partition (fork= 3 clusters) with respect to the underlying distribution. Clustering two independent
random samples gives us two random centroid setsc andc′. These induce two different Voronoi partitions of
Rn, and the distance measure is the probability mass in the area which switches between clusters, when we
compare these two partitions (gray area).

[k] {1, . . . ,k}.
N (µ,Σ) Multivariate normal distribution with meanµ and covariance matrixΣ .
D ,p(·) Underlying probability distribution and corresponding density function.
S= (x1, . . . ,xm) Sample of sizem drawn i.i.d fromD .
Ak(·) The standardk-means algorithm.
Ŵ(·) Thek-means objective function w.r.t. an empirical sample (see Eq. (1)).
W(·) Thek-means objective function w.r.t. the underlying distributionD (see Eq. (2)).
c = (c1, . . . ,ck) Cluster centroids, returned by thek-means algorithm based on a random sample.
µ = (µ1, . . . ,µk) Limit cluster centroids to which thek-means algorithm converges in probability.
dm

D
(Ak(S1),Ak(S2)) Scaled stability measure, based on samplesS1,S2 of sizem (see Eq. (3)).

înstab(Ak,D) Expected value of the limit distribution ofdm
D

(Ak(S1),Ak(S2)) (see Eq. (9)).
Cc,i The cluster associated with centroidci .
Fc,i, j The boundary between the clusters associated with centroids ci ,c j (see Eq. (4)).
Hc,i, j The infinite hyperplane containing the cluster boundaryFc,i, j (see Eq. (5)).
Γ Hessian ofW(·) atµ (see Eq. (6),Eq. (7)).
V Per-cluster covariance matrix ofD with respect to clusteringµ (see Eq. (8)).

Table 1 Table of Notation

by µ. More specifically,V is akn×knmatrix, composed ofk diagonal blocksVi of sizen×n
for i ∈ [k] (all other elements ofV are zero), where

Vi := 4
∫

Cµ,i

p(x)(x−µi)(x−µi)
⊤dx. (8)

We shall assume thatVi has full rank for anyi.

3 Asymptotic Behavior of Clustering Stability

In this section, we formally characterize the asymptotic behavior of clustering stability, and
discuss some immediate consequences. The detailed proofs are presented in Sec. 7.
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At a technical level, our main result is the following theorem, which characterizes the
exact distribution to whichdm

D
(Ak(S1),Ak(S2)) converges for any appropriate underlying

distributionD , as well as its expected value.

Theorem 1 AssumeD has a bounded probability density function p(·), which is continuous
as a function onRn and fulfills the two regularity conditions specified in Sec. 2. LetAk(·) be
the k-means algorithm, and assume that the returned set of centroidsc = (c1, . . . ,ck), based
on i.i.d samples fromD , converge in probability to some set of k distinct centroidsµ =
(µ1, . . . ,µk) which are a local optimum of W(·). Furthermore, assume thatΓ is invertible
and that Vi has full rank for any i∈ [k]. Then we have that dm

D
(Ak(S1),Ak(S2)) converges in

distribution to that of

√
2 ∑

1≤i< j≤k

∫

Fµ,i, j

p(x)

‖µi −µ j‖
∣

∣

∣

(

µi −x
x−µ j

)⊤(ci −µi

c j −µ j

)

∣

∣

∣
dx,

wherec = (c1, . . . ,ck)
⊤ ∼ N (µ,Γ −1VΓ −1).

The expected value of this distribution, denoted aŝinstab(Ak,D), is equal to

2√
π ∑

1≤i< j≤k

∫

Fµ,i, j

p(x)
Ψ(x, i, j)
‖µi −µ j‖

dx, (9)

whereΨ(x, i, j) is defined as
∥

∥

∥

∥

∥

(

V1/2
i 0

0 V1/2
j

)

(

(Γ −1)i,i (Γ −1)i, j

(Γ −1) j,i (Γ −1) j, j

)(

µi −x
x−µ j

)

∥

∥

∥

∥

∥

. (10)

All the integrals can be shown to exist by the assumptions onp(·).
The asymptotic distribution and̂instab(Ak,D) allows us to characterize the asymptotic

behavior of clustering stability. The following theorem exemplifies this on a simple empir-
ical estimator of clustering stability. The main difference between the following estimator
and those proposed in the literature is that it measures the distance between just a single pair
of clusterings from a pair of independent samples, rather than averaging over several pairs
based on subsampling the data. This just makes our result stronger, because these kind of
bootstrap procedures should only increase the reliabilityof the estimator, whereas here we
are interested in a ’lower bound’ on reliability.

Theorem 2 Define a clustering stability estimator,θ̂k,3m, as follows: Given a sample of size
3m, split it randomly into3 disjoint subsets S1,S2,S3 each of size m. Estimate
dm

D
(Ak(S1),Ak(S2))/

√
m by computing

1
m ∑

x∈S3

1
(

x ∈ Ak(S1) j ,x ∈ Ak(S2) j ′ , j 6= j ′
)

.

For any distributionD satisfying the conditions of Thm. 1, assume that for some twovalues
of k, ks 6= ku, the ratio ofînstab(Aku,D) and înstab(Aks,D) (as defined in Thm. 1) is R> 3.
Then we have that:

Pr
(

θ̂ks,3m ≥ θ̂ku,3m
)

≤ 0.3+3log(R)

R
+o(1),

where the probability is over a sample of size3m used for both estimators, and o(1) con-
verges to0 as m→ ∞. This bound is understood to signify o(1) if R = ∞.
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The theorem implies the following: Suppose we are considering two possible values for
k, designated asks andku, such that the ratio between̂instab(Aku,D) andînstab(Aks,D) is
some reasonably large constant (one can think of it as a relatively unstable model corre-
sponding toku, vs. a relatively stable model corresponding toks). Then the probability of
not empirically detectingks as the most stable model has an upper bound which actually
decreases with the sample size, converging to a constant value dependent on the ratio of
înstab(Aks,D) and înstab(Aku,D). In this sense, according to the bound, clustering stabil-
ity does not ’break down’ in the large sample regime, and the asymptotic reliability of its
empirical estimation is determined bŷinstab(Ak,D). We emphasize that this theorem deals
with the reliability of detecting the most stable model, notwhether a stable model is really
a ’good’ model in any other sense.

4 Factors Influencing Stability of Clustering Models

According to Thm. 1, for any distribution satisfying the necessary conditions, the distance
between clusterings (after scaling by

√
m) converges to a generally non-degenerate distribu-

tion, which depends on the underlying distribution and the number of clustersk. As Thm. 2
shows, this implies that clustering stability does not ’break down’ in the large sample regime,
and its choice of the most ’appropriate’ value ofk eventually depends on̂instab(Ak,D).

Thm. 1 provides an explicit formula for̂instab(Ak,D). Although one can always calcu-
late it for specific cases, it is of much more interest to try and understand what are the gov-
erning factors influencing its value. These factors eventually determine what is considered
by clustering stability as the ’correct’ model, with a low value for înstab(Ak,D). Therefore,
understanding these factors can explain what sample-size-free assumptions correspond to
the use of clustering stability, at least in thek-means setting that we study. A full analysis of
these factors and their inter-relationships is a complex endeavor in itself, but several basic
observations can be obtained in a relatively straightforward manner. Some simple examples
illustrating expected and unexpected consequences of these observations will be provided in
the following section.

We will base these observations on two sets of rough but conceptually simpler upper
and lower bounds on̂instab(Ak,D). These bounds are presented in Thm. 3 and Corollary 1
which follow, and highlight different aspects of this quantity. Since our main focus in this
section is clarity rather than generality, we will allow ourselves to assume that the probability
distributionD is supported in the unit ball of Euclidean space2. For the same reason, we have
made no particular effort to make the bounds tight.

Theorem 3 înstab(Ak,D) is upper bounded by

(

4

√

2
π

√

λmax(V)

αλmin(Γ )

)

∫

∪i, j Fµ,i, j

p(x)dx

whereα := mini 6= j ‖µi −µ j‖, and λmax(A) and λmin(A) denote the smallest and largest
eigenvalues of a matrix A.

2 Relaxing or removing this assumption will only affect multiplicative constants, which might depend on
the regularity conditions we have imposed on the probabilitydensity functionp(·).
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Also,înstab(Ak,D) is lower bounded by

(

√

2
π

√

λmin(V)

λmax(Γ )

)

∫

∪i, j Fµ,i, j

p(x)dx

Corollary 1 înstab(Ak,D) is upper bounded by

(

13
√

Vol
αVol−16knP

)

∫

∪i, j Fµ,i, j

p(x)dx,

whereVol := maxi
∫

Cµ,i
p(x)dx denotes the largest cluster with respect to the clustering

induced byµ and the underlying distribution, Vol:= mini
∫

Cµ,i
p(x)dx denotes the smallest

such cluster, P:= sup∪i, j Fµ,i, j
p(x) denotes an upper bound on the probability density along

the limit cluster boundaries, andα := mini 6= j ‖µi −µ j‖ is a lower bound on the distance
between any two limit centroids.

Also,înstab(Ak,D) is lower bounded by

(

√

λmin(V)

2
(

Vol+16knP/α
)

)

∫

∪i, j Fµ,i, j

p(x)dx.

We will start by considering Corollary 1. The first thing to notice is that the integral
density along the cluster boundaries,

∫

∪i, j Fµ,i, j
p(x)dx, seems to play an important role in

determining the instability of a model. According to the upper bound, if the density along
the cluster boundaries is zero, we get that̂instab(Ak,D) = 0, and thus any such model will
be asymptotically considered as the most stable one. Moreover, the same bound implies that
înstab(Ak,D) will tend to be small even if the density along the cluster boundaries is small
but not exactly zero. This means that clustering stability will tend to consider models with
lower density along the cluster boundaries as more ’appropriate’.

A second observation that can be made is that when faced with two different choices of
k, both of which with low density along the boundaries, both the upper and lower bounds in
Corollary 1 will often tend to be larger for the bigger value of k. To see this, notice first that
the cluster boundary area,∪i, jFµ,i, j , increases with the number of clusters. Also, if the clus-
ters are reasonably balanced, we should expectVol to scale down inversely withk, whereas
√

λmin(V) scales down at a slower rate, especially in high dimensions.If P is small enough
to makeknPrelatively negligible, these factors imply that the boundsin Corollary 1 will tend
to be larger for the bigger value ofk. To give a concrete and very simple example (see Fig. 2
for a graphical illustration), consider a uniform distribution on the cube[−1/

√
n,1/

√
n]n,

with k1 = 2n andk2 = 22n (the example can be easily generalized). The optimal clustering
for eachk is a uniform grid partition of the cube (intuitively, we slice the cube once along
each dimension fork1 = 2n, and 3 times fork2 = 22n). To correspond to the regime of low
density along the boundaries, suppose we slightly modify the distribution, by making the
probability density at thin slivers around the optimal cluster boundaries to be very small.
Obviously, this does not materially change the optimal clustering. Comparing how the ele-
ments in the bounds change as we move fromk1 to k2, we have thatVol and Voldecrease by
2n, α decreases by 2,

√

λmin(V) decreases by 2
√

2, and
∫

∪i, j Fµ,i, j
p(x)dx increases by 3. As

a result, we get that the upper bound in Corollary 1 increasesby approximately 3∗2n/2+1,
and the lower bound increases by approximately 3∗2n−3/2.
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Fig. 2 A graphical illustration of the example discussed in the text, for n = 2. The shaded areas represent
areas of positive density. Black circles represent centroids, and lines represent cluster boundaries. For the
same underlying distribution, the left figure represents an optimal clustering withk1 = 4 clusters, and the
right figure represents an optimal clustering withk2 = 16 clusters.

This observation matches a known experimental phenomenon,in which clusterings tend
to be less stable for higherk, even in hierarchical clustering settings where more than one
value ofk is acceptable. When the ’correct’ model has, for example, a very low boundary
density and nice structure compared to all the competing models, this might overcome any
inherent tendency of instability to increase withk. However, when this is not the case, nor-
malization procedures might be called for, as in (Lange et al. 2004). Although one can argue
that this phenomenon is exacerbated by finite sample effects(since the same sample sizem
is used to measure the clustering stability for different values ofk), we see here that it relies
on factors which do not depend on the sample size, and thus will not be resolved simply by
scaling the sample size withk.

Turning to Thm. 3 allows us to see in which direction is clustering instability affected
by the local geometry of the limit clustering in the solutionspace. Specifically, recall thatΓ
is the Hessian of the objective function at the limit clustering µ, and thus describes the local
geometry of the objective function around that point. Ifµ represents a shallow, ill-defined
local optimum of the objective function, then we might expect the eigenvalues ofΓ to be
small. From Thm. 3, we see that this will tend to makêinstab(Ak,D) larger. For the same

reason, a deep and well-defined local optimum will tend to make înstab(Ak,D) smaller.
Thus, clustering stability seems to take into account and penalize shallow and ill-defined
local optimum in terms of the objective function, which is indeed often a sign of a mismatch
between the model and the data.

Finally, it is important to emphasize that most of the observations above are concerned
with tendencies, and have no pretensions to universality, in the sense that they apply for
every possible clustering setting. In particular, as was recently pointed out and studied in
(Ben-David and von Luxburg 2008), there definitely exist situations where the density along
the cluster boundaries isnot positively correlated with the model instability. Thus, these
observations should be seen as aids in understanding what kind of assumptions clustering
stability methods tend to make in choosing the most ’appropriate’ model, rather than as
universal assertions about their behavior.
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Fig. 3 Illustrative examples of the behavior of clustering stability. In each column, the upper plot is a repre-
sentative sample from the underlying distribution (in all cases, a mixture of unit variance Gaussians inR2),
while the lower plot is the average value ofdm

D
(Ak(S1),Ak(S2)) (empirically averaged over 1000 trials), for

different sample sizesm.

5 Examples

To illustrate some of the observations from the previous section, we empirically evaluated
the instability measure on a few simple toy examples, where everything is well controlled
and easy to analyze. These examples consist of various mixtures of Gaussians, where thek-
means algorithm (with 10 random initializations) was used as a basis to estimate the model
stability for different values ofk. The results are displayed in Fig. 3. We emphasize that these
are just simple illustrations of possible expected and unexpected characteristics of clustering
stability in some very limited cases, which can be gleaned from the theoretical results above,
and are not meant to be a real empirical study of clustering stability.

First of all, we see that in all cases considered, the averagevalue ofdm
D

(Ak(S1),Ak(S2))
tends to converge to a constant value, which differs based onthe choice of the model order
k, and clustering stability does not seem to ’break down’ as sample size increases. If we
would have eliminated the scaling by the square root of the sample size in the definition of
dm

D
(Ak(S1),Ak(S2)), then we would have graphs which converge to zero for all values ofk,

but the ratio between them would have remained more or less constant.

The three leftmost columns demonstrate how, for these particular examples, the density
along the cluster boundaries seem to play an important role in determininĝinstab(Ak,D).
In the two leftmost columns,k = 3 emerges as the most stable model, as the boundaries
between the clusters withk = 3 have low density. However,k = 3 becomes less stable as the
Gaussians get closer to each other, with higher densities inthe boundaries between them.
At some point, when the Gaussians become close enough,k = 2 becomes more stable than
k = 3.

A different and more unexpected manifestation of this behavior can be seen in the right-
most plot, which simulates a hierarchical clustering setting. In this case, all three Gaussians
are separated, but one of them is relatively more separated than the other two. As before,
k = 4 is less stable thank = 3 andk = 2, but nowk = 2 is the most stable model. Deciding
on k = 2 as the number of clusters in the data is not unreasonable (recall that clustering
stability makes no explicit generative assumption on how the clusters look like). However, it
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can indicate that in a hierarchical clustering setting, clustering stability might prefer higher
levels of the hierarchy, which may or may not be what we want.

6 A Negative Result on Convergence Rates

After establishing the asymptotic distribution of the clustering distance measures fork-
means clustering, a reasonable next step is exploring what kind of guarantees can be made
on the convergence rate to this asymptotic limit. As a first step, we establish the following
negative result, which demonstrates that without additional assumptions, no universal guar-
antees can be given on the convergence rate. The theorem refers to the casek = 3, but the
proof idea can easily be extended to other values ofk. For simplicity, we will also assume
that we use an ’ideal’k-means algorithm which actually finds the global minimum of the
objective function given a sample. The setting which we use to prove the theorem is simple
enough so that the realk-means algorithm can be expected to have a similar behavior.

Theorem 4 For any positive integer m0, there exists a distributionD such that
dm

D
(A3(S1),A3(S2)) converges in probability to0 as m→ ∞, but Pr(dm

D
(A3(S1),A3(S2)) >√

m/4) is at least1/3 for some m≥ m0.

The intuition behind the theorem is that for a suitably designed distribution, an arbitrar-
ily large sample might be needed for the empirically derivedclusteringc to get ’close’ to the
limit clusteringµ. As a result, for that setting and sample size, the central limit asymptotic
behavior that we have analysed will be a poor approximation.However, it should be em-
phasized that the setting used in the theorem is highly artificial, and not necessarily typical
of real-world clustering problems. Therefore, finding sufficient and empirically verifiable
conditions which do allow finite sample guarantees is of muchinterest.

7 Proofs

7.1 Proof of Thm. 1

Before embarking on the proof, we briefly sketch its outline:

1. Using tools from the statistical theory of Z-estimators,we characterize the asymptotic
Gaussian distribution of the cluster centroidsc, in terms of the underlying distribution
D (Lemma 1). This result reproves the central limit theorem for k-means due to Pol-
lard (Pollard 1982), but without requiring an algorithm capable of finding the global
optimum of thek-means objective function.

2. The cluster boundaries are determined by the positions ofthe centroids. Hence, we can
derive the asymptotic distribution of these boundaries. Inparticular, for every boundary
Fc,i, j , we characterize the asymptotic distribution of the pointwise Euclidean distance
between two realizations of this boundary, over drawing andclustering two indepen-
dent samples. This distance is defined relative to a projection on the hyperplaneHµ,i, j

(Lemma 2).
3. We show that the probability mass ofD , which switches between clustersi and j over

the two independent clusterings, has an asymptotic distribution definable by an integral
involving the distance function above, and the values ofp(·) on Fµ,i, j (Lemma 3 and
Lemma 4). This allows us to formulate the asymptotic distribution ofdm

D
(Ak(S1),Ak(S2)),

and its expected value.
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For convenience, we shall useǫ = (ǫ1, . . . ,ǫk) to denote the random elementc−µ. Also,
we will use the stochastic order notationOp(·) andop(·) (cf. (van der Vaart and Wellner
1996)). Let{Xm} and{Ym} be sequences of random vectors, defined on the same probability
space. We writeXm = Op(Ym) to mean that for eachε > 0 there exists a real numberM such
that Pr(‖Xm‖ ≥ M‖Ym‖) < ε if m is large enough. We writeXm = op(Ym) to mean that
Pr(‖Xm‖ ≥ ε‖Ym‖) → 0 for eachε > 0. Notice that{Ym} may also be non-random. For
example,Xm = op(1) means thatXm → 0 in probability.

Lemma 1 Under the notation and assumptions of the theorem,
√

mǫ =
√

m(c−µ) con-
verges in distribution tov, wherev ∼ N

(

0,Γ −1VΓ −1
)

. As a result,‖ǫ‖ = Op(1/
√

m).

Since proving the lemma requires specific tools and additional notation which we will
not need later on, we present the proof separately in the appendix. Notice that the lemma
allows us to assume that for large enough values ofm, with arbitrarily high probability and
for any i, j ∈ [k], i 6= j, the nearest centroid toµi is ci , all centroids are distinct,Fc,i, j is non-
orthogonal toFµ,i, j , and‖ǫ‖ is arbitrarily small. We shall tacitly use these assumptions in
the remainder of the proof.

Lemma 2 For some i, j ∈ [k], i 6= j, assume that Fµ,i, j 6= /0. For anyx ∈ Hµ,i, j , define the
function:

ℓ(x,ci ,c j) =
‖µi −µ j‖

(

ci+c j
2 −x

)

· (ci −c j)

(µi −µ j) · (ci −c j)
.

Then if‖ǫ‖ is smaller than some positive constant which depends only onµ, ℓ(x,ci ,c j)
can be rewritten as

1
‖µi −µ j‖

(

µi −x
x−µ j

)⊤(
ǫi

ǫ j

)

+O((‖x‖+1)‖ǫ‖2).

Considering the projection ofHc,i, j to Hµ,i, j , we have thatℓ(x,ci ,c j) is the signed Eu-
clidean distance ofx from the point onHc,i, j which projects to it (see the left half of Fig. 4).
This is becauseℓ(x,ci ,c j) must satisfy the equation:

((

x+ ℓ(x,ci ,c j)
µi −µ j

‖µi −µ j‖

)

− ci +c j

2

)

· (ci −c j) = 0.

Proof We will separate the expression in the definition ofℓ(x,ci ,c j) into 2 multiplicative
components and analyze them separately. We have that:

(

ci +c j

2
−x
)

· (ci −c j) =

(

µi +µ j + ǫi + ǫ j

2
−x
)

· ((µi −µ j)+(ǫi − ǫ j))

=

(

µi +µ j

2
−x
)

· (µi −µ j)+

(

µi +µ j

2
−x
)

· (ǫi − ǫ j)+

(

ǫi + ǫ j

2

)

· (µi −µ j)

+O(‖ǫ‖2).

Notice that the first summand is exactly 0 (sincex∈Fµ,i, j ), and can therefore be dropped.
After expanding and simplifying, we get that the above is equal to

(µi −x) · ǫi − (µ j −x) · ǫ j +O(‖ǫ‖2) (11)
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As to the second component in the definition ofℓ(x,ci ,c j), we have that

‖µi −µ j‖
(µi −µ j) · (ci −c j)

=
‖µi −µ j‖

‖µi −µ j‖2 +(µi −µ j) · (ǫi − ǫ j)

=
1

‖µi −µ j‖
(

1+
(µi−µ j )·(ǫi−ǫ j )

‖µi−µ j‖2

) =
1

‖µi −µ j‖(1+O(‖ǫ‖))

=
1

‖µi −µ j‖

(

1− O(‖ǫ‖)
1+O(‖ǫ‖)

)

=
1+O(‖ǫ‖)
‖µi −µ j‖

, (12)

assuming‖ǫ‖ to be small enough. Multiplying Eq. (11) and Eq. (12) gives usthe ex-
pression in the lemma. ⊓⊔

In order to calculate the asymptotic distribution ofdm
D

(Ak(S1),Ak(S2)), we need to char-
acterize the distribution of the probability mass ofD in the ’wedges’ created between two
boundaries for clustersi, j, based on two independent samples (see Fig. 1). For any two given
boundaries, calculating the probability mass requires integration of the underlying density
function p(·) over these wedges, making it very hard to write the distribution of this prob-
ability mass explicitly. The purpose of the next two lemmas is to derive a more tractable,
asymptotically exact approximation for each such wedge, which depends only on the values
of p(·) along the boundaryFµ,i, j .

We begin with an auxiliary lemma, required for the main Lemma4 which follows. To
state these lemmas, we will need some additional notation. For someHµ,i, j , letF ⊆Hµ,i, j be
some finite intersection of half-spaces. For notational convenience, we shall assume w.l.o.g
thatHµ,i, j is aligned with the axes, in the sense that for allx ∈ Hµ,i, j , its last coordinate is
0 (it can be easily shown that the regularity conditions onp(·) will still hold). Also, denote
F ′ = {y ∈ Rn−1 : (y,0) ∈ F}, which is simply then−1 dimensional representation ofF on
the hyperplane. Finally, for ease of notation, denoteℓ((y,0),ci ,c j) for anyy ∈ F ′ asℓ̃ǫ(y),
whereǫ = c−µ.

Lemma 3 Letǫ,ǫ′ be two independent copies ofc−µ, each induced by clustering an inde-
pendent sample of size m. Let B= {x ∈ Rn : ‖x‖ ≤ R} be a ball of radius R centered at the
origin. Then we have that

∣

∣

∣

∣

∣

∫

F ′∩B

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)
p(y,ξ )dξ

∣

∣dy−
∫

F ′∩B

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)
p(y,0)dξ

∣

∣dy

∣

∣

∣

∣

∣

= op(1/
√

m), (13)

where the constants implicit in the r.h.s depend on R.

Proof Sincep(·) is a non-negative function, we can rewrite the expression inthe lemma as
∣

∣

∣

∣

∣

∫

F ′∩B

∫ max{ℓ̃ǫ(y),ℓ̃
ǫ′ (y)}

min{ℓ̃ǫ(y),ℓ̃
ǫ′ (y)}

p(y,ξ )dξdy−
∫

F ′∩B

∫ max{ℓ̃ǫ(y),ℓ̃
ǫ′ (y)}

min{ℓ̃ǫ(y),ℓ̃
ǫ′ (y)

p(y,0)dξdy

∣

∣

∣

∣

∣

,

or
∣

∣

∣

∣

∣

∫

F ′∩B

∫ max{ℓ̃ǫ(y),ℓ̃
ǫ′ (y)}

min{ℓ̃ǫ(y),ℓ̃
ǫ′ (y)}

p(y,ξ )− p(y,0)dξdy

∣

∣

∣

∣

∣

.

By the integral mean value theorem, sincep(·) is continuous, we have that the expression
above is equal to:

∣

∣

∣

∣

∫

F ′∩B
|ℓ̃ǫ′(y)− ℓ̃ǫ(y)|(p(y,ξy)− p(y,0))dy

∣

∣

∣

∣

,
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whereξy is between the minimum and maximum of
{ℓ̃ǫ(y), ℓ̃ǫ′(y)}. For simplicity of notation, we will writeξy ∈ [ℓ̃ǫ(y), ℓ̃ǫ′(y)].

The expression above is upper bounded in turn by:
∫

F ′∩B
(|ℓ̃ǫ(y)|+ |ℓ̃ǫ′(y)|) sup

ξy∈[ℓ̃ǫ(y),ℓ̃
ǫ′ (y)]

|p(y,ξy)− p(y,0)|dy,

assuming the integral exists. Sinceǫ,ǫ′ have the same distribution, it is enough to show
existence and analyze the convergence to zero in probability for

∫

F ′∩B
|ℓ̃ǫ(y)| sup

ξy∈[ℓ̃ǫ(y),ℓ̃
ǫ′ (y)]

|p(y,ξy)− p(y,0)|dy. (14)

This integral can be upper bounded by

sup
y∈F ′∩B

|ℓ̃ǫ(y)| sup
ξy∈[ℓ̃ǫ(y),ℓ̃

ǫ′ (y)]

|p(y,ξy)− p(y,0)|
∫

F ′∩B
1dy. (15)

SinceB is bounded, we have according to Lemma 2 that if‖ǫ‖ is small enough,

sup
y∈F ′∩B

|ℓ̃ǫ(y)| = O(‖ǫ‖+‖ǫ‖2), (16)

and a similar equation holds for̃ℓǫ′(·) with ǫ replaced byǫ′ in the r.h.s. To make the
equations less cumbersome, we will ignore the higher order term‖ǫ‖2, sinceǫ converges to
0 in probability anyway by Lemma 1 (it is straightforward to verify that the analysis below
still holds). From Eq. (16) and the sentence which follows, we have that
supy∈F ′∩B,ξy∈[ℓ̃ǫ(y),ℓ̃

ǫ′ (y)] ξy = O(‖ǫ‖). Since‖ǫ‖ converges to zero in probability, this im-

plies thatξy converges to zero in probability, uniformly for anyy ∈ F ′ ∩B. Moreover,p(·)
is uniformly continuous in the compact domainB, and thusp(y,ξy) converges uniformly in
probability top(y,0). As a result, we have that

sup
y∈F ′∩B

sup
ξy∈[ℓ̃ǫ(y),ℓ̃

ǫ′ (y)]

|p(y,ξ )− p(y,0)| = op(1). (17)

Substituting Eq. (16) and Eq. (17) into Eq. (15), and using the fact that‖ǫ‖= Op(1/
√

m),
we get that the expression in Eq. (15) (and hence Eq. (14)) isop(1/

√
m) as required. ⊓⊔

Lemma 4 For some non-empty Fµ,i, j , let t(c,c′, i, j) be a random variable, defined as the
probability mass ofD which switches between clusters i, j with respect to the two clusterings
defined byc,c′, induced by independently sampling and clustering a pair ofsamples S1,S2

each of size m. More formally, define the set-valued random variable

Q(c,c′, i, j) =
{

x ∈ R
n :
(

x ∈Cc,i ∧x ∈Cc′, j
)

∨
(

x ∈Cc′,i ∧x ∈Cc, j
)}

∪Fc,i, j ∪Fc′,i, j ,

so that
t(c,c′, i, j) =

∫

Q(c,c′,i, j)
p(x)dx. (18)

Then t(c,c′, i, j) is distributed as
∫

Fµ,i, j

p(x)|l(x,ci ,c′j)|dx+op(1/
√

m),

where l(x,ci ,c′j) is distributed as

1
‖µi −µ j‖

(

µi −x
x−µ j

)⊤(
ǫi − ǫ

′
i

ǫ j − ǫ
′
j

)

.
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Proof The right half of Fig. 4 should help to clarify the notation and the intuition of the
following proof. Intuitively, the probability mass which switches between clustersi and
j over the two samples is the probability mass ofD lying ’between’ Fc,i, j and Fc′,i, j . A
potential problem is that this probability mass is also affected by the positions of other
neighboring boundaries. However, the fluctuations of theseadditional boundaries decrease
asm→ ∞, and their effect on the probability mass in question becomes negligible. Our goal
is to upper and lower bound the integral in Eq. (18) by expressions which are identical up to
op(1/

√
m) terms, giving us the desired result.

As in Lemma 3, we assume thatHµ,i, j is aligned with the axes, such that for any
x ∈ Hµ,i, j , its last coordinate is 0. DefineFmax(µ,c,c′, i, j) ⊆ Hµ,i, j as the projection of
Q(c,c′, i, j) onHµ,i, j . By definition ofℓ̃ǫ(y), ℓ̃ǫ′(y), any pointx = (y,0) in Fmax(µ,c,c′, i, j)
has the property that the width ofQ(c,c′, i, j) relative toHµ,i, j atx is at most|ℓ̃ǫ(y)− ℓ̃ǫ′(y)|.

Also, let Fmin(µ,c,c′, i, j) be the subset ofFmax(µ,c,c′, i, j), such that any pointx =
(y,0) in it has the property that the width ofQ(c,c′, i, j), relative toHµ,i, j at x, is exactly
|ℓ̃ǫ(y)− ℓ̃ǫ′(y)|. Since it is formed from intersections of half-spaces, it ismeasurable and we
can perform integration with respect to it.

For notational convenience, we will drop most of the parameters from now on, as they
should be clear from the context. LetF ′

max,F
′
min andF ′ be then−1 dimensional projections

of Fmax,Fmin andF respectively, by removing the last zero coordinate which weassume to
characterizeHµ,i, j . As a result of the definitions, by Fubini’s theorem, we have that:

∫

F ′
max

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)
p(y,ξ )dξ

∣

∣

∣

∣

∣

dy ≥
∫

Q
p(x)dx ≥

∫

F ′
min

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)
p(y,ξ )dξ

∣

∣

∣

∣

∣

dy, (19)

Assuming these integrals exist. Our goal will be to show thatboth the upper and lower
bounds above are of the form

∫

Fµ,i, j

p(x)|l(x,ci ,c′j)|dx+op(1/
√

m),

which entails that the ’sandwiched’ integral in Eq. (19) hasthe same form. We will prove
this assertion for the upper bound only, as the proof for the lower bound is almost identical.

As in Lemma 3, we letB be a closed ball of radiusR in Rn centered on the origin, and
separately analyze the integral in the upper bound of Eq. (19) with respect to what happens
inside and outside this ball.

By Lemma 2, assuming‖ǫ‖ is small enough, there exists a constanta > 0 dependent
only onµ, such that

|ℓǫ(y)| ≤ a(‖y‖+1)(‖ǫ‖+‖ǫ‖2).

As before, to avoid making our equations too cumbersome, we shall ignore in the analysis
below the higher order term‖ǫ‖2, sinceǫ converges to 0 in probability and therefore it be-
comes insignificant compared to‖ǫ‖. Also, since we conveniently assume thatHµ,i, j passes
through the origin, then any normal to a point inHµ,i, j ∩Bc lies outsideB. This is not critical
for our analysis (in the general case, we could have simply definedB as centered on some
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point inHµ,i, j ), but does simplify things a bit. With these observations, we have that

∫

F ′
max∩Bc

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)
p(y,ξ )dξ

∣

∣

∣

∣

∣

dy

≤
∫

F ′
max∩Bc

|ℓ̃ǫ(y)− ℓ̃ǫ′(y)| sup
ξ∈R

p(y,ξ )dy

≤
∫

F ′
max∩Bc

(|ℓ̃ǫ(y)|+ |ℓ̃ǫ′(y)|) sup
ξ∈R

p(y,ξ )dy

≤ a(‖ǫ‖+‖ǫ′‖)
∫

F ′
max∩Bc

(‖y‖+1) sup
ξ∈R

p(y,ξ )dy

≤ a(‖ǫ‖+‖ǫ′‖)
∫

Hµ,i, j∩Bc
(‖x‖+1)g(‖x‖)dx

≤ a(‖ǫ‖+‖ǫ′‖)
∫ ∞

r=R
(r +1)g(r)∗ern−1dr,

whereg(·) is the dominating function onp(·) assumed to exist by the regularity con-
ditions (see section 2), ande is the surface area of ann dimensional unit sphere. By the
assumptions ong(·) and the fact that‖ǫ‖,‖ǫ′‖ = Op(1/

√
m), we have that

∫

F ′
max∩Bc

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)
p(y,ξ )dξ

∣

∣

∣

∣

∣

dy = Op
(

h(R)/
√

m
)

, (20)

whereh(R) → 0 asR→ ∞. Notice that to reach this conclusion, we did not use any
characteristics ofF ′

max, beside it being a subset ofHµ,i, j . Therefore, since
|l(x,ci ,c′j)| ≤ a(‖x‖+1)(‖ǫ‖+‖ǫ′‖)/√m for some constanta > 0, a very similar analysis
reveals that

∫

F ′∩Bc
p(y,0)|l(x,ci ,c′j)|dy = Op

(

h(R)/
√

m
)

. (21)

We note for later that none of the constants implicit in theOp(·) notation, other than
h(R), depend onR. Turning now to what happens inside the ball, we have by Lemma3 that

∫

F ′
max∩B

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)
p(y,ξ )dξ

∣

∣

∣

∣

∣

dy =
∫

F ′
max∩B

|ℓ̃ǫ′(y)− ℓ̃ǫ(y)|p(y,0)dy+op(1/
√

m). (22)

Leaving this equation aside for later, we will now show that
∣

∣

∣

∣

∫

F ′
max∩B

|ℓ̃ǫ′(y)− ℓ̃ǫ(y)|p(y,0)dy−
∫

F ′∩B
|ℓ̃ǫ′(y)− ℓ̃ǫ(y)|p(y,0)dy

∣

∣

∣

∣

= op(1/
√

m). (23)

The l.h.s can be upper bounded by
∫

(F ′
max△F ′)∩B

|ℓ̃ǫ(y)− ℓ̃ǫ′(y)|p(y,0)dy

≤
∫

(F ′
max△F ′)∩B

(|ℓ̃ǫ(y)|+ |ℓ̃ǫ′(y)|)p(y,0)dy.

As ǫ,ǫ′ have the same distribution, we just need to show that
∫

(F ′
max△F ′)∩B

|ℓ̃ǫ(y)|p(y,0)dy = op(1/
√

m). (24)
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By Lemma 2, inside the bounded domain ofB, we have that|ℓ̃ǫ(y)| ≤ a‖ǫ‖ for some con-
stanta dependent solely onµ andR (as before, to avoid making the equations too cumber-
some, we ignore terms involving higher powers of‖ǫ‖). Moreover, sincep(y,0) is bounded,
we can absorb this bound intoa and get that

∫

(F ′
max△F ′)∩B

|ℓ̃ǫ(y)|p(y,0)dy ≤ a‖ǫ‖
∫

(F ′
max△F ′)∩B

1dy, (25)

Note that
∫

(F ′
max△F ′)∩B

1dy is a continuous function ofǫ,ǫ′ in some neighborhood of 0.

Moreover, sinceF ′
max = F ′ whenǫ = ǫ

′ = 0, the integral above is 0 atǫ = ǫ
′ = 0. Since

‖ǫ‖,‖ǫ‖ converge to 0 in probability, it follows that

∫

(F ′
max△F ′)∩B

1dy = op(1).

Combining this with Eq. (25), and the fact that‖ǫ‖= Op(1/
√

m), justifies Eq. (24), and
hence Eq. (23). Combining Eq. (20), Eq. (22) and Eq. (23), we get that

∫

F ′
max

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)
p(y,ξ )dξ

∣

∣

∣

∣

∣

dy =
∫

F ′∩B
|ℓ̃ǫ′(y)− ℓ̃ǫ(y)|p(y,0)dy+op(1/

√
m)+Op(h(R)/

√
m).

(26)
By Lemma 2, definition ofl(x,ci ,bc′j), and the fact that‖ǫ‖,‖ǫ′‖ = Op(1/

√
m), we

have thatℓ̃ǫ(y)− ℓ̃ǫ′(y) is equal to|l(x,ci ,c′j)|+ op((‖y‖+ 1)/
√

m). This implies that the
distribution of the r.h.s of Eq. (26) is equal to

∫

F ′∩B
p(y,0)|l(x,ci ,c′j)|dy+op(1/

√
m)+Op(h(R)/

√
m).

By Eq. (21), this is equal in turn to

∫

F ′
p(y,0)|l(x,ci ,c′j)|dy+op(1/

√
m)+Op(h(R)/

√
m).

We now use the fact thatRcan be picked arbitrarily. Notice that the first remainder term
has implicit constants which depend onR, but the second remainder term depends onRonly
throughh(R) (recall the development leading to Eq. (20) and Eq. (21)). Therefore, the first
remainder term converges to 0 at a rate faster than 1/

√
m in probability for anyR, and the

second remainder term can be made arbitrarily smaller than 1/
√

m in high probability by
picking R to be large enough, sinceh(R) → 0 asR→ ∞. Thus, for anyδ > 0, we can pick
R so that the remainder terms eventually become smaller thanδ/

√
m with arbitrarily high

probability. As a result, we can replace the remainder termsby op(1/
√

m), with implicit
constants not depending onR, and get that Eq. (26) can be rewritten as

∫

F ′
max

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)
p(y,ξ )dξ

∣

∣

∣

∣

∣

dy =
∫

F ′
p(y,0)|l(x,ci ,c′j)|dy+op(1/

√
m).

This gives us an equivalent formulation of the upper bound inEq. (19). As discussed
immediately after Eq. (19), an identical analysis can be performed for the lower bound
appearing there, and this leads to the result of the lemma. ⊓⊔
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Q(c,c′, i, j)

ℓ(x,ci,c j)

ci

µi

x

c j
µ j

Hc,i, j ,Fc,i, j

Hµ,i, j ,Fµ,i, j

Fµ,i, j

Hµ,i, j

Hc,i, j

Hc′,i, j

Fmin(µ,c,c′, i, j)

Fmax(µ,c,c′, i, j)

Fig. 4 An illustrative drawing of some of the notation and geometrical constructs used in the proof of Thm. 1.
Solid lines represent cluster boundaries with respect to the optimal cluster centroidsµ, while dashed lines
represent cluster boundaries with respect to cluster centroidsc or c′ returned by the clustering algorithm based
on an empirical sample. See the text for more details.

We now turn to prove Thm. 1. Lett(c,c′, i, j) be as defined in Lemma 4. By definition,
dm

D
(Ak(S1),Ak(S2)) is equal to

∑
1≤i< j≤k

√
mt(c,c′, i, j). (27)

By Lemma 4, we have that
√

mt(c,c′, i, j) is of the form

∫

Fµ,i, j

√
mp(x)

‖µi −µ j‖

∣

∣

∣

∣

∣

(

µi −x
x−µ j

)⊤(
ǫi − ǫ

′
i

ǫ j − ǫ
′
j

)

∣

∣

∣

∣

∣

dx+op(1). (28)

By the continuous mapping theorem (van der Vaart and Wellner1996), we have that√
m(ǫi − ǫ

′
i ,ǫ j − ǫ

′
j)
⊤ converges in distribution to(vi − v′i ,v j − v′j)

⊤, wherev,v′ are two
independent copies of the random variable defined in Lemma 1.By standard results on the
distribution of the difference of independent and identically distributed Gaussian random
variables, this distribution is equal to that of

√
2(vi ,v j)

⊤. Moreover, it is not difficult to show
that Eq. (28), ignoring the remainder term, is a continuous function of

√
m(ǫi −ǫ

′
i ,ǫ j −ǫ

′
j)
⊤.

The idea is that it is obviously continuous with the integralrestricted to some fixed ball
around the origin, and the contributions outside the ball can be made arbitrarily small if
the ball is large enough, by the assumptions onp(x) (a similar argument was made in the
proof of Lemma 4). Thus, by the continuous mapping theorem,

√
mt(c,c′, i, j) converges in

distribution to
∫

Fµ,i, j

√
2p(x)

‖µi −µ j‖

∣

∣

∣

∣

∣

(

µi −x
x−µ j

)⊤(vi

v j

)

∣

∣

∣

∣

∣

dx. (29)

Substituting Eq. (29) into Eq. (27), we get convergence in distribution to the one speci-
fied in our theorem.

The only thing remaining is to derive the expected value of this distribution. This is
equal to

E

[

√
2 ∑

1≤i< j≤k

∫

Fµ,i, j

p(x)

‖µi −µ j‖
∣

∣

∣

(

µi −x
x−µ j

)⊤(vi

v j

)

∣

∣

∣
dx

]

.
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By Fubini’s theorem, this is equal to:

√
2 ∑

1≤i< j≤k

∫

Fµ,i, j

p(x)

‖µi −µ j‖
E

[

∣

∣

∣

(

µi −x
x−µ j

)⊤(vi

v j

)

∣

∣

∣

]

dx.

For notational convenience, denoteΣ = Γ −1VΓ −1 as the covariance matrix ofv. The
expression inside the expectation above is normally distributed, as a linear transformation of
a normal random vector. Using standard results on the distribution of such transformations,
and since for any univariatea∼N (0,σ2) it holds thatE[|a|] = σ

√

2/π, we can reduce the
above to

2√
π ∑

1≤i< j≤k

∫

Fµ,i, j

p(x)

‖µi −µ j‖

√

(

µi −x
x−µ j

)⊤(Σi,i Σi, j

Σ j,i Σ j, j

)(

µi −x
x−µ j

)

dx.

The final form ofînstab(Ak,D) is achieved by rewritingΣ as(V1/2Γ −1)⊤(V1/2Γ −1),
and simplifying.

7.2 Proof of Thm. 2

The proof is composed of several lemmas. The key insight is that the asymptotic distribution
of dm

D
(Ak(S1),Ak(S2)), perhaps surprisingly, turns out to be a certain non-standard seminorm

of a Gaussian random vector. Using theorems on seminorms of Gaussian measures allows us
to bound the probability ofdm

D
(Ak(S1),Ak(S2)) being much larger or much smaller than its

expectation, and thus bound the probability that the empirical clustering stability estimator
will return deceiving results.

Lemma 5 The asymptotic distribution of dm
D

(Ak(S1),Ak(S2)) is equal to that of s(v), where
v ∼ N (0,Γ −1VΓ −1) and s(·) is a continuous seminorm onRnk.

Proof Denotev = (v1, . . . ,vn) wherevi ∈ Rn. By Thm. 1, the asymptotic distribution of
dm

D
(Ak(S1),Ak(S2)) is equal to

√
2 ∑

1≤i< j≤k

∫

Fµ,i, j

p(x)

‖µi −µ j‖
∣

∣

∣

(

µi −x
x−µ j

)⊤(vi

v j

)

∣

∣

∣
dx, (30)

wherev is as defined in the lemma. It is quite straightforward to verify that the expression
is indeed a seminorm onv: homogeneity and the triangle inequality are immediate, and it is
clear that Eq. (30) is always non-negative. As to continuity, fix some arbitraryv ∈ Rn, and
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let v+ ǫ be a small perturbation ofv. Then we have that

s(v+ ǫ) = ∑
1≤i< j≤k

∫

Fµ,i, j

√
2p(x)

‖µi −µ j‖
∣

∣

∣

(

µi −x
x−µ j

)⊤(vi + ǫi

v j + ǫ j

)

∣

∣

∣
dx

≤ ∑
1≤i< j≤k

∫

Fµ,i, j

√
2p(x)

‖µi −µ j‖
∣

∣

∣

(

µi −x
x−µ j

)⊤(vi

v j

)

∣

∣

∣
dx

+ ∑
1≤i< j≤k

∫

Fµ,i, j

√
2p(x)

‖µi −µ j‖
∣

∣

∣

(

µi −x
x−µ j

)⊤(
ǫi

ǫ j

)

∣

∣

∣
dx

≤ s(v)+ ∑
1≤i< j≤k

∫

Fµ,i, j

√
2p(x)

‖µi −µ j‖

∥

∥

∥

∥

∥

(

µi −x
x−µ j

)⊤
∥

∥

∥

∥

∥

‖ǫ‖dx

≤ s(v)+‖ǫ‖ ∑
1≤i< j≤k

∫

Fµ,i, j

√
2p(x)

‖µi −µ j‖
(‖µ‖+2‖x‖)dx,

which by the regularity conditions onp(·), is upper bounded bys(v)+C‖ε‖ for some con-
stantC. Therefore, we get thats(v+ ǫ)− s(v) ≤C‖ε‖ for anyv,ǫ. By an appropriate sub-
stitution, this immediately implies thats(v)−s(v+ǫ)≤C‖ε‖ as well. Therefore, for anyv,
|s(v + ǫ)− s(v)| ≤ C‖ε‖, which converges to zero asε → 0, hences(·) is indeed continu-
ous. ⊓⊔

Lemma 6 Let v be a normally distributed random vector inRn, whose covariance matrix
has full rank. Let s(·) be a seminorm onRn which is not0 by identity, and letθ ∈ (1/2,1)
be a free parameter. Introduce the following two parameterswhich depend onθ :

aθ = 1+
2(1−θ)

log
( θ

1−θ
) , bθ = 1−θ +

1−exp(−(erf−1(θ))2)√
πerf−1(θ)

.

Then for any M,ε such that Mbθ > 1 andεaθ < 1, it holds that

Pr(s(v) > ME[s(v)]) ≤ θ
(

1−θ
θ

)(1+Mbθ )/2

,

and
Pr(s(v) < εE[s(v)]) ≤ erf(erf−1(θ)aθ ε).

Proof To prove the lemma, we will need two auxiliary results from the literature on Gaus-
sian measures. For completeness, we present these two results below, in the form in which
they apply to our setting. The first theorem, due to Borel, maybe found as theorem III.3 in
(Milman and Schechtman 1986). The second theorem is a directimplication of theorem 1
in (Latała and Oleszkiewicz 1999). A small note about notation: for anyA ⊆ Rn, and any
scalart > 0, we lettA := {x : x/t ∈ A}.

Theorem 5 (Borel) Let v be a zero mean Gaussian random vector, and let A⊆ Rn be a
symmetric convex set such thatPr(v ∈ A) = θ > 1/2. Then for any t> 1,

Pr(v /∈ tA) ≤ θ
(

1−θ
θ

)(1+t)/2

.
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Theorem 6 (Latała and Oleszkiewicz)Letv be a zero mean Gaussian random vector, and
let A⊆ Rn be a symmetric convex closed set. For any x> 0, let n(x) be the probability of a
standard normal random variable to lie in[−x,x]. Let a> 0 be such thatPr(v ∈ A) = n(a).
Then for any0≤ t ≤ 1,

Pr(v ∈ tA) ≤ n(ta).

In the proof, we will apply the two theorems above on (closed)balls around the origin
with respect tos(·), namely sets of the form{x ∈ Rn : s(x) ≤ a} for somea > 0. The fact
that these are symmetric and convex sets is immediate from the standard definition of a
seminorm. In Lemma 5, we have also shown thats(·) is a continuous function fromRn to
R. Since the sets we are considering are pre-images, under thecontinuous functions(·), of
closed sets of the form[0,a]⊆ R, we have that they are closed as well. This justifies our use
of the two theorems above.

We now turn to the proof itself. Sinces(v) is a seminorm of a Gaussian random vector,
its distribution functionF(t) = Pr(s(v) ≤ t) is absolutely continuous, except possibly at the
single point inf{t ≥ 0|F(t) > 0} (see for example (Hoeffman-Jørgensen et al. 1979)). Also,
we assume thatv is non-degenerate ands(·) is not identically zero, therefore Pr(s(v) ≤ t)
is arbitrarily small for small enought > 0. As a result, for anyθ ∈ (1/2,1), there is a
corresponding positive parameter medθ such that

Pr(s(v) ≤ medθ ) = θ .

Notice that the set{v : s(v) ≤ medθ} is exactly a closed ball of radius medθ around the
origin, with respect tos(·). Applying Thm. 5 and Thm. 6, we get that

Pr(s(v) > Mmedθ ) ≤ θ
(

1−θ
θ

)(1+M)/2

(31)

Pr(s(v) ≤ εmedθ ) ≤ erf(erf−1(θ)ε). (32)

It remains to convert these bounds on the deviation from medθ to the deviation from
E[s(v)]. To achieve this, we need to upper and lower boundE[s(v)]/medθ . By substitution
of variables, we have thatE[s(v)] is equal to

∫ ∞

0
Pr(s(v) > t)dt = medθ

∫ ∞

0
Pr(s(v) > Mmedθ )dM.

Using Eq. (31), this can be upper bounded by

medθ

(

1+
∫ ∞

1
θ
(

1−θ
θ

)(1+M)/2

dM

)

,

which after straightforward computations leads toE[s(v)]≤medθ aθ , whereaθ is as defined
in the lemma.

In a similar manner, we can writeE[s(v)] as
∫ ∞

0
1−Pr(s(v) ≤ t)dt = medθ

∫ ∞

0
1−Pr(s(v) ≤ εmedθ )dε,

which is lower bounded in term, using Eq. (32), by

medθ

∫ 1

0
1−erf(erf−1(θ)ε)dε
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Again by straightforward computations, we reach the conclusion thatE[s(v)] ≥ medθ bθ ,
wherebθ is as defined in the lemma.

Therefore, we have that ifMbθ > 1, then Pr(s(v) > ME[s(v)]) is upper bounded by

Pr(s(v) > Mbθ medθ ) ≤ θ
(

1−θ
θ

)(1+Mbθ )/2

.

The other bound in the lemma is derived similarly. ⊓⊔

We can now turn to the proof of Thm. 2. By Lemma 5, bothdm
D

(Aks(S1),Aks(S2)) and
dm

D
(Aku(S1),Aku(S2)) converge in distribution tos(vku) ands(vks), wherevku,vks are Gaus-

sian random variables (non-degenerate by the assumptions on Γ andV). By a union bound
argument and the definition of convergence in distribution,we have that for any fixed num-
berc,

Pr(dm
D (Aku(S1),Aku(S2)) ≤ 1.1dm

D (Aks(S1),Aks(S2)))

≤ Pr(dm
D (Aku(S1),Aku(S2)) ≤ c)+Pr(1.1dm

D (Aks(S1),Aks(S2)) ≥ c)

≤ Pr(s(vku) ≤ c)+Pr(1.1s(vks) ≥ c)+o(1). (33)

We will first treat the simple case whereR = ∞, corresponding tôinstab(Aks,D) = 0

and înstab(Aku,D) > 0. In that case, we have thats(vks) = 0 with probability 1, whereas
s(vku) ≤ c with arbitrarily small probability if we pickc > 0 small enough. As a result, the
expression above iso(1) as required.

Turning now to the case ofR< ∞, note that the combination of Lemma 5 and Lemma 6
allows us to upper bound the probability thats(vku) is smaller than its expectation by a
factor ε < 1, and upper bound the probability thats(vks) is larger than its expectation by
some factorM > 1, provided thatε,M satisfy the conditions specified in Lemma 6.

Therefore, if we chooseM and ε so that 1.1M/ε ≤ R, whereR is as defined in the
lemma, we get that Eq. (33) above is upper bounded by

θ1

(

1−θ1

θ1

)((1+M)bθ1
)/2

+erf(erf−1(θ2)aθ2ε)+o(1) (34)

for anyθ1,θ2 ∈ (1/2,1). Choosing different values for them (as well as the choice ofappro-
priateM,ε) leads to different bounds, with a trade off between the tightness of the constants,
and minimality requirements onR(which stem from the requirements onM,ε by Lemma 6).
Choosingθ1 = 0.9, θ2 = 0.8, M = 2log(R)/(bθ1 log(θ1/(1− θ1))), ε = 1.1M/R, and us-
ing the fact that erf(x) ≤ (2/

√
π)x for anyx≥ 0, we get that Eq. (33) is upper bounded by

(0.3+3log(R))/R+o(1) for anyR> 3.
Assume the event

dm
D (Aku(S1),Aku(S2)) > 1.1dm

D (Aks(S1),Aks(S2)), (35)

occurs. Recall that the quantities in Eq. (35) depend on the unknown underlying distribu-
tion D , and therefore cannot be calculated directly. Instead, we empirically estimate these
quantities (divided by

√
m to be exact), as defined in the theorem statement, to get the sta-

bility estimatorsθ̂ku,3m and θ̂ks,3m. Thus, even if Eq. (35) occurs, it is still possible that
θ̂ku,3m ≤ θ̂ks,3m, and we wish to upper bound the probability for this occurring.

Notice that conditioned on the event in Eq. (35),θ̂ku,3m andθ̂ks,3m are nothing more than
plug-in estimators ofdm

D
(Aku(S1),Aku(S2))/

√
manddm

D
(Aks(S1),Aks(S2))/

√
m respectively,
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based on an i.i.d sample of sizem. Since these quantities decrease withm, a standard Ho-
effding bound would not apply. However, we have by Thm. 2 in (Shamir and Tishby 2007)
that concentration of measure still occurs, and the probability that θ̂ku,3m ≤ θ̂ks,3m, condi-
tioned on the event in Eq. (35), iso(1) (namely, converges to 0 asm→ ∞). Therefore, the
probability that Eq. (35) does not occur, or that it does occur but the empirical comparison
of these quantities fail, is(0.3+3log(R))/R+o(1) as required.

7.3 Proof of Thm. 3

LettingA be some real symmetric matrix, we will use‖A‖ to denote its operator norm.

We will start by boundingΨ(x, i, j) in the definition ofînstab(Ak,D) (Eq. (10)). Since
bothV andΓ are real symmetric matrices, we have that

Ψ(x, i, j) =

∥

∥

∥

∥

∥

(

V1/2
i 0

0 V1/2
j

)

(

(Γ −1)i,i (Γ −1)i, j

(Γ −1) j,i (Γ −1) j, j

)(

µi −x
x−µ j

)

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

(

V1/2
i 0

0 V1/2
j

)∥

∥

∥

∥

∥

∥

∥

∥

∥

(

(Γ −1)i,i (Γ −1)i, j

(Γ −1) j,i (Γ −1) j, j

)∥

∥

∥

∥

∥

∥

∥

∥

(

µi −x
x−µ j

)∥

∥

∥

∥

≤
√

λmax(V)λmax(Γ −1)

∥

∥

∥

∥

(

µi −x
x−µ j

)∥

∥

∥

∥

=

√

λmax(V)

λmin(Γ )

∥

∥

∥

∥

(

µi −x
x−µ j

)∥

∥

∥

∥

.

Substituting this into the definition of̂instab(Ak,D) in Eq. (9), we get an upper bound
of the form

2√
π ∑

1≤i< j≤k









∫

Fµ,i, j

√

λmax(V)

λmin(Γ )

∥

∥

∥

∥

(

µi −x
x−µ j

)∥

∥

∥

∥

‖µi −µ j‖
p(x)dx









≤ 2√
π ∑

1≤i< j≤k

[

∫

Fµ,i, j

√

λmax(V)

λmin(Γ )

2
√

2
α

p(x)dx

]

,

whereα = mini, j ‖µi −µ j‖, and the last transition is due to the assumption that the distribu-
tion is supported in the unit ball (hence we can assume that‖x‖,‖µi‖,‖µ j‖ are all at most
1). Simplifying, we get the upper bound in the theorem.

Turning to the lower bound and repeating the same technique,we get that

Ψ(x, i, j) ≥
√

λmin(V)

λmax(Γ )

∥

∥

∥

∥

(

µi −x
x−µ j

)∥

∥

∥

∥

.

Substituting this into the definition of̂instab(Ak,D) in Eq. (9), we get a lower bound of
the form

2√
π ∑

1≤i< j≤k









∫

Fµ,i, j

√

λmin(V)

λmax(Γ )

∥

∥

∥

∥

(

µi −x
x−µ j

)∥

∥

∥

∥

‖µi −µ j‖
p(x)dx









.
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Since‖(µi −x,x−µ j)‖ is minimized forx = (µi +µ j)/2, we can lower bound the expres-
sion above by

2√
π ∑

1≤i< j≤k

[

∫

Fµ,i, j

√

λmin(V)

λmax(Γ )

1√
2

p(x)dx

]

.

Simplifying, we get the lower bound in the theorem.

7.4 Proof of Corollary 1

Thm. 3 gave us upper and lower bounds on̂instab(Ak,D) in terms of the maximal and
minimal eigenvalues ofV andΓ . From this, we will derive Corollary 1 by bounding these
eigenvalues.

We will start by upper boundingλmax(V). SinceV is a block diagonal matrix, we have
thatλmax(V) = maxi∈[k] λmax(Vi), whereVi is block i in V (see Eq. (8)). By the definition of
Vi and a straightforward application of the Cauchy-Schwartz inequality, we have that

λmax(Vi) = max
y:‖y‖=1

y⊤Viy ≤ 4

(

max
x∈Cµ,i

‖x−µi‖2
)

∫

Cµ,i

p(x)dx ≤ 16
∫

Cµ,i

p(x)dx.

and therefore

λmax(V) ≤ 16max
i

∫

Cµ,i

p(x)dx (36)

We now wish to lower boundλmin(Γ ). By the definition ofΓ (Eq. (6) and Eq. (7)), it
can be decomposed as the difference of two matricesJ andN. J is akn×kndiagonal matrix,
composed ofk segments of the form

(

∫

Cµ,i

p(x)dx
)

In,

In being the unit matrix of sizen×n. N is akn×knblock matrix, composed ofk×k blocks.
Each block(i, j) is of the form

Ni,i := ∑
a6=i

2
‖µi −µa‖

∫

Fµ,i,a

p(x)(x−µi)(x−µi)
⊤dx

and fori 6= j it is

Ni, j := − 2
‖µi −µ j‖

∫

Fµ,i, j

p(x)(x−µi)(x−µ j)
⊤dx.

By Weyl’s theorem (cf. (Horn and Johnson 1985)), we have that

λmin(Γ ) = λmin(J−N) ≥ λmin(J)−λmin(N) ≥ λmin(J)−ρ(N),

whereρ(N) is the spectral radius ofN. SinceJ is a diagonal matrix, its eigenvalues corre-
spond to the elements on the diagonal, and thereforeλmin(J) is at least mini

∫

Cµ,i
p(x)dx. As

to ρ(N), since the spectral radius lower bounds any matrix norm, we can upper boundρ(N)
by, say, the maximum column sum matrix norm ofN (defined as maxj ∑kn

i=1 |ni, j |, whereni, j
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are the entries ofN). From the definition ofN and the assumption of the distribution sup-
ported on the unit ball, this norm forN can be (very roughly) upper bounded by 16knP/α,
whereP = sup∪i, j Fi, j

p(x) andα = mini, j ‖µi −µ j‖. As a result, we get that

λmin(Γ ) ≥ min
i

∫

Cµ,i

p(x)dx−16knP/α.

Finally, we turn to upper boundλmax(Γ ). Again applying Weyl’s theorem, we have that

λmax(Γ ) = λmax(J−N) ≤ λmax(J)+λmax(N) ≤ λmax(J)+ρ(N).

As we have seen above, we can roughly upper boundρ(N) by 16knα, and we can upper
boundλmax(J) by maxi

∫

Cµ,i
p(x)dx. As a result, we get that

λmax(Γ ) ≤ max
i

∫

Cµ,i

p(x)dx+16knP/α.

Substituting the bounds we have derived above into Thm. 3 andsimplifying gives us the
corollary.

7.5 Proof of Thm. 4

To prove the theorem, we will borrow a setting discussed in (Linder 2002) for a different
purpose.

Let ∆ be some small positive constant (say∆ < 0.1). Consider the parameterized family
of distributions{Dε} (whereε ∈ (0,1/4)) on the real line, which assigns probability mass
(1− ε)/4 to x = −1 andx = −1−∆ , and(1+ ε)/4 to x = 1 andx = 1+ ∆ . Any such
distribution satisfies the requirements of Thm. 1, except continuity. However, as mentioned
in Sec. 2, the theorem only requires continuity in some region around the boundary points,
so we may ignore this difficulty. Alternatively, we may introduce continuity by convolution
with a small local smoothing operator. For anyε, it is easily seen thatdm

Dε
(Ak(S1),Ak(S2))

converges to 0 in probability, since the boundary points between the optimal clusters have
zero density.

Let A1
m,ε denote the event where for a sample of sizem drawn i.i.d fromDε , there are

more instances on{−1−∆ ,−1} than on{1,1+ ∆}. Also, let A2
m,ε denote the event that

for a sample of sizem drawn i.i.d fromDε , there are more instances on{1,1+ ∆} than
on {−1−∆ ,−1}. Finally, letBm,ε denote the event that every point in{−1−∆ ,−1,1,1+
∆} is hit by at least one instance from the sample. Clearly, ifA1

m,ε ∩Bm,ε occurs, then the
optimal cluster centers for the sample are{−1−∆ ,−1,1+∆ ′} for some∆ ′ ∈ [0,∆ ], and if
A2

m,ε ∩Bm,ε occurs, then the optimal cluster centers for the sample are{−1−∆ ′,1,1+ ∆}
for some∆ ′ ∈ [0,∆ ].

By Slud’s inequality (see (Anthony and Bartlet 1999)), for any Bernoulli random vari-
able X such thatE[X] = p ≤ 1/2, and any whole numbera such thata/m ≤ 1− p, if
X1, . . . ,Xm arem i.i.d copies ofX, then

Pr

(

1
m

m

∑
i=1

Xi ≥
a
m

)

≥ 1−Φ
(
√

m
p(1− p)

( a
m
− p
)

)

,

whereΦ(·) is the cumulative normal distribution function. The probability of the event
A1

m,ε is equal to the probability of a success rate of more than halfin m Bernoulli trials,
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whose probability of success is(1− ε)/2. Using the theorem above, we get after a few
straightforward algebraic manipulations that

Pr(A1
m,ε) ≥ 1−Φ

(

4√
m

+2ε
√

m

)

. (37)

The probability of the eventA2
m,ε is equal to the probability of a success rate of less

than half inm Bernoulli trials, whose probability of success is(1− ε)/2. By a standard
normal approximation argument, we have that for large enough values ofm, and for any
ε ∈ (0,1/4), it holds that

Pr(A2
m,ε) ≥ 1/2. (38)

Finally, it is straightforward to show that Pr(Bm,ε) is arbitrarily close to 1 uniformly for
any ε, if m is large enough. Combining this with Eq. (37), Eq. (38) and the easily proven
formula Pr(A∩B)≥ Pr(A)−Pr(B∁) for any two eventsA,B, we get that by choosing a large
enough sample sizem> m0, and an appropriate valueε, it holds that

Pr(A1
m,ε ∩Bm,ε),Pr(A2

m,ε ∩Bm,ε) ≥ 1/2−ν

for an arbitrarily smallν > 0. For that choice ofm,ε, if we draw and cluster two independent
samplesS1,S2 of sizem from Dε , then the probability that eventA1

m,ε ′ ∩Bm,ε occurs for one

sample, andA2
m′,ε ∩Bm,ε occurs for the second sample, is at least 2(1/2−ν)2, or at least 1/3

for a small enoughν . Note that in this case, we get the two different clusteringsdiscussed
above, and

dm
Dε (A3(S1),A3(S2)) =

√
m(1+ ε2)

4
>

√
m

4
.

So with a probability of at least 1/3 over drawing and clustering two independent sam-
ples, the distance between the clusterings is more than

√
m/4, as required.

8 Conclusions

In this paper, we analyzed the method of clustering stability for model order selection in the
k-means framework, based on an explicit characterization ofits asymptotic behavior. We
concluded that this method does not ’break down’ in the largesample regime, in the sense
that even when the sample size goes to infinity and the model becomes stable for any choice
of k, these stability estimators still tell us something meaningful, rather than just returning
random noise. Based on these results, we made some observations on the factors which may
tend to make a model ’stable’ or ’unstable’. Such observations are particularly useful for
understanding what kind of assumptions are implicitly made, when one uses the clustering
stability method. These factors appear to constitute reasonable requirements from a ’cor-
rect’ model, and accords with clustering stability workingsuccessfully in many situations.
However, they also imply that clustering stability might sometimes behave unexpectedly, for
example in hierarchical clustering situations, as illustrated in section 5.

Although it is possible to extend some of the results presented here to more general
clustering frameworks, beyondk-means (see (Shamir and Tishby 2008b)), the most obvious
challenge is to extend our analysis from the asymptotic domain to the finite sample size
domain. Showing that clustering stability does not ’break down’ in the large sample regime
might have theoretical and practical relevance, but leavesopen the question of why clus-
tering stability can work well for small finite samples. One route to achieve this might be
through finite sample guarantees, but as demonstrated in Thm. 4, additional assumptions are
needed for such results.
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9 Appendix - Proof of Lemma 1

As discussedd in Sec. 7, we devote this appendix to reprove Pollard’s central limit theorem
for k-means (Pollard 1982) under the weaker assumption that the algorithm we work with
is non-ideal, and might return locally optimal solutions. This is achieved by using more
modern tools from empirical process theory, and specifically from the area ofZ-estimators.
Intuitively, a Z-estimator is any statistical estimator, which works by trying to zero a function
or a set of functions based on a sample. For example, suppose that m instances are drawn
i.i.d from some distribution onR. Then the sample mean can be seen as a Z-estimator: given
a samplex1, . . . ,xm, it returns a valuêθ which zeros the functionΛm(θ) = ∑m

i=1(θ −xi). For
a full formal treatment of Z-estimators, see (van der Vaart and Wellner 1996). To prove the
lemma, we will apply a general central limit theorem for Z-estimators, due to van der Vaart.
This result (which appears for instance as Thm. 3.3.1 in (vander Vaart and Wellner 1996)) is
very general, and we will quote it below as applied to the specific setting where both the data
and the hypothesis class reside in Euclidean spaces. In particular, this allows us to ignore
some technical conditions which hold trivially in a finite-dimensional setting.

Theorem 7 (van der Vaart)Let{Λm}∞
m=1 andΛ be a sequence of random maps and a fixed

map, respectively, between a subsetΘ of some Euclidean space, into some other Euclidean
space. Let(cm)∞

m=1 be a sequence of random vectors, which satisfyΛm(bcm) = 0 for all m.
Assume that as m→ ∞,

‖√m(Λm(cm)−Λ(cm))−√
m(Λm(µ)−Λ(µ))‖

1+
√

m‖c−µ‖ → 0 (39)

in probability, and that the sequence
√

m(Λm(µ)−Λ(µ)) converges in distribution to a
vector-valued random variable Z. Furthermore, assume thatΛ(·) is differentiable atµ
with an invertible derivativeΛ̇µ. If Λ(µ) = 0, and(cm) converges in probability toµ, then√

m(c−µ) converges in distribution to−Λ̇−1
µ

Z,

We will apply the theorem wherecm is the set of centroids returned by the algorithm
based on a random sample, andµ is the limit set of clustering to which we converge. We
will drop themsuperscript when it is obvious from context.

The first step will be to cast thek-means algorithm as a Z-estimator, using a construct
which appears in (Pollard 1982). For this, define for anyi ∈ [k] the following function from
Rnk×Rn to Rn:

∆i(c,x) :=

{

2(ci −x) x ∈Cc,i

0 otherwise

The factor of 2 is not really necessary, but would be convenient later for directly citing
certain results from (Pollard 1982) without the need to convert constants.

Furthermore, assumingx1, . . . ,xm is a sample drawn i.i.d fromD , define the random
mapΛm(·) = (Λ1

m(·), . . . ,Λ k
m(·)) and the deterministic mapΛ(·) = (Λ1(·), . . . ,Λ k(·)) as

Λ i
m(c) :=

1
m

m

∑
j=1

∆i(c,x j) , Λ i(c) :=
∫

Rn
∆i(c,x)p(x)dx.

for any i ∈ [k].
The key insight is that given an empirical sample of sizem, our k-means clustering

algorithm always returns a solution ofc such thatΛm(c) = 0. This is a consequence of
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the fact that in ak-means clustering, each centroid lies at the center of mass of its respective
cluster. It can be easily verified that such a solution zerosΛm(·). Thus, thek-means algorithm
can indeed be viewed as a certain type of Z-estimator.

With this construct in hand, we need to verify that the conditions of Thm. 7 indeed
hold. Proving thatΛ(c) is differentiable, and deriving its form, is a purely technical exercise
in multivariate calculus, which may be found as lemmaC in (Pollard 1982). The resulting
matrix is exactlyΓ , which we have defined in Eq. (6) and Eq. (7). Showing that thisis in
fact the Hessian of thek-means objective function is also proven in (Pollard 1982).

Thus, the only thing really left to show is that Eq. (39) indeed holds in our case. Notice
that it is enough to show that

‖√m(Λ i
m(c)−Λ i(c))−√

m(Λ i
m(µ)−Λ i(µ))‖

1+
√

m‖c−µ‖ → 0

for any i ∈ [k]. A relatively simple sufficient condition for this (impliedby lemma 3.3.5 in
(van der Vaart and Wellner 1996)) is the following: For any clusteri ∈ [k], any coordinate
j ∈ {1, . . . ,n}, set of centroidsc, and instancex, let ∆ j

i (c,x) be the projection of∆i(c,x) on
its j-th coordinate. Then for Eq. (39) to hold, it is sufficient to show that for someδ > 0,
any i ∈ [k], and any coordinatej ∈ {1, . . . ,n}, the set of functions

{∆ j
i (c, ·)−∆ j

i (µ, ·)}‖c−µ‖<δ

is aDonsker class. Intuitively, a set of real functions{ f (·)} (with any probability distribution
D) is called Donsker if it satisfies a uniform central limit theorem. Without getting too much
into the details, this means that if we samplem elements i.i.d fromD , then( f (x1)+ . . .+
f (xm))/

√
m converges in distribution (asm→ ∞) to a Gaussian random variable, and the

convergence is uniform over allf (·) in the set, in an appropriately defined sense.
We use the fact that ifF = { f (·)} and G = {g(·)} are Donsker classes, then so is

F ·G = { f (·)g(·)}, and that any subset of a Donsker class is also Donsker (see section 2.10
in (van der Vaart and Wellner 1996)). This allows us to reducethe problem to showing that
for any i, j, the following two function classes, fromRn to R, are Donsker:

{ci, j −x j}‖c−µ‖<δ , {1Cc,i (·)}‖c−µ‖≤δ . (40)

The first class is composed of linear functions with bounded offsets inRn, which is well
known to be Donsker. The second class is composed of indicator functions for any possible
cluster in a clustering induced byc close enough toµ. Since each cluster is composed of
an intersection of at mostk(k−1)/2 halfspaces inRn (wherek,n are fixed quantities), this
class is known to have finite VC-dimension, and hence is also Donsker. These and related
results can be found for instance in (Dudley 1999).

Thus, we have shown that for the settings assumed in our theorem, Eq. (39) holds. We
now return to deal with the other ingredients required to apply Thm. 7.

Considering the asymptotic distribution of
√

m(Λm(µ)−Λ(µ)), sinceΛ(µ) = 0 by
assumption, we have that for anyi ∈ [k], it is equal to

(√
mΛ1

m(µ), . . . ,
√

mΛ k
m(µ)

)

=

(

1√
m

m

∑
j=1

∆1(µ,x j), . . . ,
1√
m

m

∑
j=1

∆k(µ,x j)

)

. (41)

wherex1, . . . ,xm is the sample by whichΛm is defined. The r.h.s of Eq. (41) is a sum of
identically distributed, independent random variables with zero mean and bounded variance
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(by the assumptions on the underlying distribution), normalized by
√

m. As a result, by the
standard central limit theorem, each

√
m(Λ i

m(µ)−Λ i(µ)) converges in distribution to a zero
mean Gaussian random vector, with covariance matrix

Vi = 4
∫

Cµ,i

p(x)(x−µi)(x−µi)
⊤dx.

Moreover, it is easily verified from the definitions that Cov(∆i(µ,x),∆i′(µ,x)) = 0 for
any i 6= i′. Therefore,

√
m(Λm−Λ)(µ) converges in distribution to a zero mean Gaussian

random vector, whose covariance matrixV is composed ofk diagonal blocks(V1, . . . ,Vk),
all other elements ofV being zero.

Applying Thm. 7, we now get that
√

m(c−µ) converges in distribution toΓ −1Z, where
Z ∼ N (0,V). This asymptotic distribution can also be written asN (0,Γ −1VΓ −1).
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S. Ben-David, D. Ṕal, and H.-U. Simon. Stability of k-means clustering. InProceedings of the Twentieth
Annual Conference on Computational Learning Theory, pages 20–34, 2007.

A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based method for discovering structure in clustered data.
In Pacific Symposium on Biocomputing, pages 6–17, 2002.

A. Bertoni and G. Valentini. Model order selection for biomolecular data clustering.BMC Bioinformatics, 8
((Suppl 2):S7), 2007.

R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classification. Wiley, second edition, 2001.
R. Dudley. Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics. Cambridge

University Press, 1999.
S. Dudoit and J. Fridlyand. A prediction-based resampling method for estimating the number of clusters in a

dataset.Genome Biology, 3(7), 2002.
J. Hartigan.Clustering Algorithms. Wiley, 1975.
J. Hoeffman-Jørgensen, L. A. Shepp, and R. Dudley. On the lower tail of gaussian seminorms.The Annals

of Probability, 7(2):319–342, 1979.
R. A. Horn and C. R. Johnson.Matrix Analysis. Cambridge University Press, 1985.
A. Krieger and P. Green. A cautionary note on using internal cross validation to select the number of clusters.

Psychometrika, 64(3):341–353, 1999.
T. Lange, V. Roth, M. L. Braun, and J. M. Buhmann. Stability-based validation of clustering solutions.Neural

Computation, 16(6):1299–1323, June 2004.
R. Latała and K. Oleszkiewicz. Gaussian measures of dilatations of convex symmetric sets.Annals of

Probability, 27(4):1922–1938, 1999.
E. Levine and E. Domany. Resampling method for unsupervised estimation of cluster validity. Neural

Computation, 13(11):2573–2593, 2001.
T. Linder. Principles of nonparametric learning, chapter 4: Learning-theoretic methods in vector quanti-

zation. Number 434 in CISM Courses and Lecture Notes (L. Gyorfied.). Springer-Verlag, New York,
2002.

V. D. Milman and G. Schechtman.Asymptotic Theory of Finite Dimensional Normed Spaces. Springer, 1986.
D. Pollard. A central limit theorem for k-means clustering.The Annals of Probability, 10(4):919–926,

November 1982.
P. Radchenko.Asymptotics Under Nonstandard Conditions. PhD thesis, Yale University, 2004.



31

O. Shamir and N. Tishby. Cluster stability for finite samples. In Advances in Neural Information Processing
Systems 21, 2007.

O. Shamir and N. Tishby. Model selection and stability ink-means clustering. InProceedings of the Twenty
First Annual Conference on Computational Learning Theory, 2008a.

O. Shamir and N. Tishby. On the reliability of clustering stability in the large sample regime. InAdvances in
Neural Information Processing Systems 22, 2008b.

M. Smolkin and D. Ghosh. Cluster stability scores for microarray data in cancer studies.BMC Bioinformatics,
36(4), 2003.

D. Steinley. K-means clustering: A half-century synthesis.British journal of mathematical & statistical
psychology, 59(1):1–34, 2006.

A. W. van der Vaart and J. A. Wellner.Weak Convergence and Empirical Processes : With Applications to
Statistics. Springer, 1996.


