
Learning from Noisy Data under
Distributional Assumptions

Nicolò Cesa-Bianchi
Università degli Studi di Milano
cesa-bianchi@dsi.unimi.it

Shai Shalev Shwartz
The Hebrew University
shais@cs.huji.ac.il

Ohad Shamir
Microsoft Research

ohadsh@microsoft.com

Abstract

We study the framework of online learning, when individual examples are
corrupted by random noise, and both examples and noise type can be cho-
sen adversarially. Previous work has shown that without knowledge of the
noise distribution, it is possible to learn using a random, potentially un-
bounded number of independent noisy copies of each example. Moreover,
it is generally impossible to learn with just one noisy copy per example. In
this paper, we explore the consequences of being given some side informa-
tion on the noise distribution. We consider several settings, and show how
one can learn linear and kernel-based predictors using just one or two noisy
views of each example, depending on the side information provided.

1 Introduction

In a wide variety of machine learning applications, ranging from remote sensing through
bioinformatics to medical tests, one has to deal with data known to be noisy and distorted.
This is particularly common in physically measured data, due to factors such as sensor
quality, communication constraints, or various other physical limitations. Other factors,
such as privacy concerns, may force us deal with intentionally distorted data. In all such
cases, the learner trains on a distorted version of the actual “target” data, which is where
the learner’s predictive ability is actually evaluated.

In [3], a general technique was introduced to deal with learning linear or kernel-based predic-
tors from noisy data, where virtually nothing is known about the noise, except possibly an
upper bound on its variance. Moreover, this was achieved in the challenging online frame-
work, where an all-powerful adversary is able to choose the noise distribution, and change it
on each and every round. This technique works assuming the learner is allowed to query for
independent noisy copies of each example more than once. Moreover, the number of queries
needed is a random quantity. Although the distribution of this random number does not
depend on the scale of the problem, and the number is bounded with high probability, this
is obviously a non-trivial requirement. Unfortunately, multiple queries cannot be avoided in
general: in [3], it was shown that without seeing more than one noisy copy of each instance,
learning becomes impossible, even in a stochastic, non-adversarial setting. However, this
was under the crucial assumption that the learner has no prior knowledge about the noise
distribution it needs to cope with.

While this is sometimes the case, in many applications the learner may actually know
something about the noise distribution, either a-priori or based on previous measurements.
In such cases, the impossibility result of [3] no longer holds. This leads to the central
question dealt with in this paper: can we learn with a smaller, fixed number of queries per
example, if we know something about the noise distribution?

1



Focusing on the squared loss, we discuss three different settings, reflecting different levels of
knowledge about the noise distribution:

• Known variance bound (this is the setting discussed in [3]). We show that one can learn
linear predictors with two independent noisy copies of each instance xt, and one noisy copy
of each target value yt.
• Known covariance structure. We show that one can learn linear predictors with only

one noisy copy of xt and yt. This implies that the impossibility result [3] indeed does not
hold in general, once we know the covariance structure of the noise.
• Gaussian distribution with known covariance matrix. We show that one can even

learn kernel-based predictors, using two independent noisy copies of each xt, and one copy
of yt. In this extended abstract, we focus on Gaussian kernels, but we also outline how our
results can be extended to general radial kernels.

Thus, the positive learning results get stronger the more we can assume about the noise
distribution. We emphasize that although the proposed algorithms are based on a similar
online gradient descent approach, our results include techniques which are very different
than those of [3], and are not just an extension. These techniques are discussed in Section 3,
although we omit the formal proofs in this extended abstract.

2 Framework and Notation

We consider a setting where the goal is to predict values y ∈ R based on instances x ∈ Rd.
We focus on predictors which are either linear (i.e., of the form x 7→ 〈w,x〉), or kernel-based
—i.e., of the form x 7→ 〈w,Ψ(x)〉 where Ψ is a feature mapping into some reproducing
kernel Hilbert space, with associated kernel k(·, ·).
We begin by recalling the standard online learning setting, which for linear predictors and
squared loss is defined as follows (with the obvious changes for kernel-based predictors): at
each round t, the learner picks a predictor wt. The adversary then picks an example (xt, yt),
the learner suffers a loss `(〈wt,xt〉 , yt) = (〈wt,xt〉−yt)2, and the example (xt, yt) is revealed
to the learner. The goal of the learner is to minimize his regret with respect to a fixed convex

set of hypothesesW, namely
∑T
t=1 `(〈wt,xt〉 , yt)−minw∈W

∑T
t=1 `(〈w,xt〉 , yt) . Typically,

one wishes to find a strategy for the learner, such that no matter what is the adversary’s
strategy for choosing examples, the expression above is sublinear in T (implying that the
average regret per round vanishes with T ).

Following [3], we now make the following twist, which limits the information available to
the learner: In each round, the adversary also picks a vector-valued random variable nxt
and random variable nyt . Instead of receiving (xt, yt), the learner is given access to one
or two independent copies of x̃t and ỹt, where x̃t = xt + nxt , and ỹt = yt + nyt . In other
words, the adversary forces the learner to see only a noisy version of the data, where the
noise distribution can change from round to round in a possibly adversarial manner. We
assume throughout the paper that nxt and nyt are zero-mean and independent. If E[nxt ] and
E[nyt ] are not zero, and are known to the learner, we can always reduce to the zero-mean
case by deducting E[nxt ] and E[nyt ] from x̃t and ỹt. The independence can be relaxed to
uncorrelation or even disposed of entirely in some of the discussed settings, at the cost of
some added technical complexity in the algorithms and proofs.

In [3], it was assumed that nothing is known about nxt and nyt , other than an upper bound
on the variance. In this paper, we consider settings where some side information on the
distribution of nxt , n

y
t is provided to the learner.

In this framework, our goal is to minimize the expected regret in hindsight with respect to
the unperturbed data, namely

E

[
T∑
t=1

`(〈wt,xt〉 , yt)− min
w∈W

T∑
t=1

`(〈w,xt〉 , yt)

]
(1)

where the expectation is with respect to the noise introduced into the data. Using online-
to-batch conversion techniques (e.g., [1]), one can easily convert an online algorithm with a

2



sublinear regret in Eq. (1), to a learning algorithm in the batch statistical setting, in which
the training set is corrupted by noise. Namely, the learner receives corrupted versions of
examples {xt, yt}Tt=1 sampled i.i.d. from some unknown distribution, and we wish to find a
predictor minimizing the expected loss Ex,y[`(〈w,x〉 , y)] overW, in spite of the noise in the
training data. Also, one can easily extend our techniques to obtain high-probability bounds
on the actual regret.

3 Overview of Techniques

We begin by presenting a high-level and informal overview of the techniques we use to get
our results.

A fundamental method we use in all our settings is the online gradient algorithm due to
Zinkevich [4]. At its heart is the following observation: for any set of vectors ∇1, . . . ,∇T ,
suppose we define w1 = 0 and wt+1 = P (wt − ηt∇t), where P (·) is a projection operator
on a convex set W, and ηt is a suitably chosen scalar value. Then for any u ∈ W, it holds
that

T∑
t=1

〈wt − u,∇t〉 = O(
√
T ) (2)

where the O(·) notation hides dependencies on the norms of u and∇t. In particular, suppose
that we let ∇t be the gradient of `(wt,xt, yt) w.r.t. wt. Then by convexity, the left-hand

side of Eq. (2) is lower bounded by
∑T
t=1 `(〈wt,xt〉 , yt)−

∑T
t=1 `(〈u,xt〉 , yt). Thus, if we are

provided with (xt, yt) after each round, we can compute ∇t, perform the update as above,
and get an algorithm with sublinear regret with respect to any predictor u of bounded norm.

3.1 “Stochastic” Online Gradient Descent

In our setting of noisy data, the algorithm described above is irrelevant, because (xt, yt) is
unknown and we cannot compute ∇t. However, one can deal with it as follows. Suppose
that instead of ∇t, we pick random vectors ∇̃t. It turns out that based on Eq. (2), one can

still show that E
[∑T

t=1〈wt−u, ∇̃t〉
]

= O(
√
T ), where the O(·) notation hides dependencies

on the norm of u and E
[
‖∇̃t‖2

]
for all t. In particular, in our noisy data setting, we

cannot compute ∇t, but suppose we can use the noisy data that we do have, in order to
construct a random vector ∇̃t, such that E[∇̃t] = ∇t. In that case, the left-hand side can

be shown to equal E
[∑T

t=1 〈wt − u,∇t〉
]
. The expectation here is again w.r.t. the noisy

examples (note that wt is a random vector that depends on the noisy examples). Applying

the same convexity trick as before, we get an O(
√
T ) upper bound on the expected regret

E
[∑T

t=1 `(〈wt,xt〉 , yt) −
∑T
t=1 `(〈u,xt〉 , yt)

]
. Thus, by doing updates using ∇̃t, we get an

algorithm with a sublinear regret bound. The only technical issue is how to construct
unbiased estimates ∇̃t using the noisy data.

This is the basic learning mechanism in the first two settings we consider, in Section 4. This
technique already appears in [3] (as well as previous work in other settings, e.g., [2]), and
our main contribution for these two settings is the observation that it can be done with
one or two noisy copies of each example, under appropriate distributional assumptions. The
third setting we consider, for kernel-based predictors (Section 5), is where the main technical
novelty of this paper lies, as it requires a rather different approach than that of [3]. This
approach is discussed below.

3.2 “Parallel Worlds” Online Gradient Descent

With kernels, one assumes that the predictors lie in some reproducing kernel Hilbert space
(RKHS), in which inner products can be efficiently computed using a kernel function. In-
stances are mapped into that space using a feature mapping Ψ. In [3], learning was achieved

by constructing an unbiased estimate ∇̃t of ∇t in the RKHS, but that required a random
number of noisy copies of each example. Here, we take the following very different approach:

3



we construct a surrogate RKHS, with a surrogate feature mapping Ψ̂, such that for any noisy
copy x̃t of xt, and any fixed instance a, it holds that

E
[
〈Ψ̂(a), Ψ̂(x̃t)〉

]
= 〈Ψ(a),Ψ(xt)〉 (3)

where the expectation is with respect to the noise. Thus, “noisy” inner products in the
surrogate RKHS correspond (in expectation) to “clean” inner products in the original RKHS.

This allows us to use the noisy data in order to construct vectors ∇̂t in the surrogate RKHS
with the following interesting property: if we apply Zinkevich’s algorithm on ∇̂1, . . . , ∇̂T
(using kernels), to get predictors ŵ1, . . . , ŵT in the RKHS of Ψ̂, then for any û, it holds

that E
[∑T

t=1〈ŵt − û, ∇̂t〉
]

= E
[∑T

t=1 〈wt − u,∇t〉
]
, where wt and u are certain mappings

of each ŵt and û to the RKHS of Ψ, and ∇t are the gradients w.r.t. the unperturbed
examples (xt, yt). But the left-hand side is O(

√
T ), since we applied Zinkevich’s algorithm

in the surrogate RKHS. Thus, we get that E
[∑T

t=1 〈wt − u,∇t〉
]

is O(
√
T ), which implies a

sublinear regret bound for w1, . . . ,wT . We emphasize that unlike the approach used for the
other settings, E[∇̂t] is not equal to ∇t. Indeed, they live in different mathematical spaces!
Thus, this is a different approach rather than an extension of the technique discussed in
Subsec. 3.1.

A technical issue which needs addressing is that the norm of û has to be related to the norm
of the actual predictor u we compare ourselves with. While this cannot be always done,
such a relation does hold if u is reasonably “nice”, in a sense which will be formalized later.

4 Setting 1+2: Knowledge on the Covariance

We begin with the simplest setting, which is when we only know that E[‖x̃t‖2] ≤ B2
x̃ and

E
[
ỹ2
t

]
≤ B2

ỹ for some parameters1 Bx̃, Bỹ. While this is a similar setting to that discussed

in [3], the results there focus on learning with general kernels and loss functions, using a
random number of independent noisy copies of each example. Here, we present an algorithm
for learning linear predictors, using exactly two independent noisy copies of the instance xt
and one noisy copy of the target value yt. As discussed in Section 3, the algorithm is based
on an adaptation of the online convex optimization algorithm due to [4], and the main
requirement is to construct an unbiased estimate of the gradient ∇t. The following theorem
provides a regret bound for Algorithm 1 (left).

Algorithm 1 Linear Regression with Noise.

Upper bound on variance Known covariance
Parameters: η,Bw

Initialize: w1 = 0
For t = 1, 2, . . . , T

Receive (x̃t, ỹt)
Receive another independent copy x̃′t
∇̃t = 2(〈wt, x̃t〉 − ỹt)x̃′t
w′ = wt − η∇̃t
wt+1 = min{1, Bw/‖w′‖}w′

Parameters: η,Bw

Initialize: w1 = 0
For t = 1, 2, . . . , T

Receive (x̃t, ỹt)

∇̃t = 2(〈wt, x̃t〉 − ỹt)x̃t − Σtwt

w′ = wt − η∇̃t
wt+1 = min{1, Bw/‖w′‖}w′

Theorem 1 Assume that E[‖x̃t‖2] ≤ B2
x̃, E

[
ỹ2
t

]
≤ B2

ỹ , and x̃t, x̃
′
t, ỹt are mutually inde-

pendent. Then if we run Algorithm 1 (left) with parameters Bw, η = Bw

/√
GT , where

G = 4(B2
wB

2
x̃ + B2

ỹ)B2
x̃, the expected regret w.r.t. any w with norm not greater than Bw is

at most Bw

√
GT .

1Strictly speaking, this is an upper bound on the raw second moment, not the variance. However,
it is easily implied by assuming a bound on the noise variance, and the norm of the unperturbed
data.

4



We now turn to the case where rather than an upper bound on the variance, we actually
know the covariance matrix of the noise at each round, which we denote as Σt. We assume
that ‖Σt‖ ≤ BΣ for all t, where ‖·‖ denotes the spectral norm. As to ỹt, we can still assume
we only have an upper bound B2

ỹ on E[ỹ2
t ] (with our algorithmic approach, knowing E[ỹ2

t ]

does not help much).

In this setting, we show it is possible to learn linear predictors, using just a single noisy copy
(x̃t, ỹt). This is opposed to the earlier setting, where we needed an additional independent
copy of x̃t. The idea is that if we use just one noisy copy in our gradient estimate, we need
to deal with bias terms. When the covariance structure is known, we can calculate and
remove these bias terms, allowing an online gradient descent similar to Algorithm 1 (left)
to work. See Algorithm 1 (right) for the pseudocode. The regret bound obtained is similar
in flavor to Theorem 1, and is skipped for brevity.

5 Setting 3: Gaussian Distribution

The final and most complex setting we consider is when the noise is assumed to have a
Gaussian distribution N (0,Σ). Clearly, if we know the distribution, then we can derive
upper bounds on the moments of x̃t (assuming bounds are known on the original instances
xt). Thus, the results of the previous section carry through to our setting, and we can learn
linear predictors. However, when we also know the noise has a specific Gaussian distribution,
we can learn the much more powerful hypothesis class of kernel-based predictors.

While there are many possible kernel functions, perhaps the most popular one is the Gaus-

sian kernel, defined as k(x,x′) = exp(−‖x− x′‖2 /s2) for some s2 (the kernel width). This
corresponds to the inner product 〈Ψ(x),Ψ(x′)〉 in an appropriate RKHS. We we will show
below how to learn from noisy data with Gaussian kernels, but note that our techniques can
also be extended to general radial kernels, i.e., kernels of the form k(x,x′) = f(‖x− x′‖)
for an appropriate real function f .

In this section, we assume that the noise distribution is fixed for all t. Hence, we may assume
w.l.o.g. that Σ is a diagonal matrix, with element σ2

i at row/column i. As to ỹt, similar to
the previous settings, we will only need to assume that E[ỹ2

t ] ≤ B2
ỹ for some parameter Bỹ.

The algorithm that we present (Algorithm 2) is based on being able to receive two indepen-
dent copies of each instance x̃t, as well as a single independent copy of ỹt. As in the linear
case, the learning algorithm that we use is based on online gradient descent, with the main
twist being that instead of using a Gaussian kernel of width s2, we use a surrogate kernel,
as discussed in Section 3. This surrogate is defined as

k̂(x,x′) = R2
Σ,s,d exp

(
−

d∑
i=1

(xi − x′i)2

s2 − 2σ2
i

)
, where RΣ,s,d =

(
d∏
i=1

s2

s2 − 2σ2
i

)1/4

. (4)

This can be shown to be a kernel by standard results. Note that we generally assume that
2 ‖Σ‖ = 2 maxi σ

2
i < s2 for all i. Moreover, RΣ,s,d can be bounded by a constant when

σi = O(1) for all i (constant noise) and s2 = Θ(d) —plausible when the feature values of
instances x provided are of order Θ(1).

Denote Ψ̂ to be the feature mapping corresponding to this RKHS. The pseudocode of our
algorithm is presented below. Formally speaking, it is just applying Zinkevich’s algorithm,
using kernels, in the surrogate RKHS that we constructed. However, it is crucial to note
that the actual output are elements w1,w2, . . . in the RKHS corresponding to Ψ.

Before stating the bound for Algorithm 2 we need an auxiliary definition. Suppose that

u is any element in the RKHS of Ψ, which can be written as
∑T
t=1 atΨ(xt) for some

a1, . . . , am ≥ 0 (for example, this includes argminw:‖w‖≤Bw

∑T
t=1 `(〈wt,Ψ(xt)〉 , yt) for any

Bw > 0 by the representer theorem). Define βu to be the angle between
∑
t:at>0 atΨ(xt)

and −
∑
t:at<0 atΨ(xt) (in other words, the angle between the component due to positive

support vectors, and the component due to the negative support vectors). If one of the
components is zero, define βu to be π/2. The main theorem is the following.

5



Algorithm 2 Kernel Learning Algorithm with Gaussian Noise N (0,Σ)

Parameters: W, η
Initialize: αi := 0 for all i = 1 . . . T
For t = 1, . . . , T :

Define ŵt =
∑t−1
i=1 αiΨ̂(x̃i), and define wt =

∑t−1
i=1 αiΨ(x̃i)

Receive ỹt, x̃t, and independent copy x̃′t
Let g̃t := 2

(∑t−1
i=1 αik̂(x̃i, x̃

′
t)− ỹt

)
//g̃t is gradient length w.r.t. Ψ̂(x̃′t) at ŵt

Let αt := −ηg̃t
Let rt :=

∑t
i=1

∑t
j=1 αiαj k̂(x̃i, x̃j)

If rt > W 2, let αi := αi
W√
rt

for all i = 1, . . . , t

Theorem 2 Assume that the noise introduced into xt has a known distribution N (0,Σ),
with Σ diagonal and 2 ‖Σ‖ ≤ s2 (where s2 is the kernel width), and that the noise introduced
into yt is independent with E[ỹ2

t ] ≤ B2
ỹ . Let Bw > 0, β ∈ (0, π/2] be fixed. Then if we

run Algorithm 2 with any W ≥
√

5BwRΣ,s,d

sin(β) , and η = W/2R
√

(W 2R2
Σ,s,d +B2

ỹ)T , then

for all u with ‖u‖ ≤ Bw, βu ≥ β, it holds that the expected regret w.r.t. u is at most

2WRΣ,s,d

√
(W 2R2

Σ,s,d +B2
ỹ)T . In particular, if s2 = Ω(d), ‖Σ‖ = O(1), and Bỹ = O(1),

then the expected regret is at most O(W 2
√
T ).

The intuition for βu is that it measures how well separated are the training examples: if
the “positive” and “negative” example groups are not too close together, then the angle
between

∑
t:at>0 atΨ(xt) and −

∑
i:at<0 atΨ(xt) will be large, and the bound will be small.

Note that in the RKHS corresponding to a Gaussian kernel, βu is always between 0 and π/2,
since the inner product between any two elements Ψ(x) and Ψ(x′) is positive. In addition,
βu can be shown to be exactly zero if and only if the positive and negative examples exactly
coincide. Overall, on realistic datasets, assuming there exist some good predictor u with βu
not too small is a rather mild assumption, if something interesting can be learned even on
the unperturbed data.

Finally, we note that the techniques we use here can be extended, in a certain sense, to the
large family of radial kernels, that is kernels on x,x′ which can be written as a function of

‖x− x′‖, such as exp(−‖x− x′‖ /s) and (1 + ‖x− x′‖2 /m)−α for appropriate s,m, α. The
key idea is to reduce the problem to the Gaussian kernel case, using Schoenberg’s theorem,
which implies that any radial kernel can be written as an integral over Gaussian kernels.
Constructing a surrogate kernel for each of these Gaussian kernels (as in Eq. (4)) and
integrating leads to a surrogate kernel which enjoys the properties required for Algorithm 2
to work with the desired radial kernel. We skip the details in this extended abstract.

References

[1] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-
line learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057,
September 2004.

[2] A. Flaxman, A. Tauman Kalai, and H. McMahan. Online convex optimization in the
bandit setting: gradient descent without a gradient. In Proceedings of SODA, pages
385–394, 2005.

[3] Shai Shalev-Shwartz Nicolò Cesa-Bianchi and Ohad Shamir. Online learning of noisy
data with kernels. In Proceedings of COLT, 2010.

[4] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the Twentieth International Conference on Machine Learning, 2003.

6


