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Abstract

In many real world applications, the number of examples to
learn from is plentiful, but we can only obtain limited in-
formation on each individual example. We study the pos-
sibilities of efficient, provably correct, large-scale learning
in such settings. The main theme we would like to es-
tablish is that large amounts of examples can compensate
for the lack of full information on each individual exam-
ple. The type of partial information we consider can be
due to inherent noise or from constraints on the type of in-
teraction with the data source. In particular, we describe
and analyze algorithms for budgeted learning, in which the
learner can only view a few attributes of each training ex-
ample (Cesa-Bianchi, Shalev-Shwartz, and Shamir 2010a;
2010c), and algorithms for learning kernel-based predictors,
when individual examples are corrupted by random noise
(Cesa-Bianchi, Shalev-Shwartz, and Shamir 2010b).

Introduction
In recent years, large amounts of data are collected from
various sources and information overload is quickly exac-
erbating. Machine learning can and should play a central
role in analyzing this data and in performing useful infer-
ences based on it. However, in many cases we do not have
full information on each individual example, and most tra-
ditional learning methods are incapable of managing effi-
ciently data sets with partial information. The ability to
manage large amounts of data and furthermore, to harness
the amounts of data into more efficient algorithms is key for
making progress in machine learning at the data revolution
era.

It is a well-known fact that training on more data improves
the accuracy of learning algorithms. In this paper we demon-
strate how one can use more data to compensate for lack of
full information on each individual example.

Many methods have been proposed for dealing with miss-
ing or partial information. Most of the approaches do not
come with formal guarantees on the risk of the resulting
algorithm and are not guaranteed to converge in a poly-
nomial time. The difficulty stems from the exponential
number of ways to complete the missing information. In
the framework of generative models, a popular approach
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is the Expectation-Maximization (EM) procedure (Demp-
ster, Laird, and Rubin 1977). The main drawback of the
EM approach is that it might find sub-optimal solutions.
Even elegant methods that have some convergence guaran-
tees, such as graph based approaches, usually do not scale
well with the size of the dataset —see e.g. (Zhu 2006;
Delalleau, Bengio, and Roux 2005; Zhu and Lafferty 2005).
In contrast, we will propose novel discriminative methods
for dealing with missing information that come with both
statistical and computational convergence guarantees. Fur-
thermore, the main theme we would like to establish is that
even for the purpose of improving computational efficiency,
large amounts of data should be an asset rather than a bur-
den. We shall present cases in which the availability of many
examples compensates for the lack of full information on
each individual example.

Roughly speaking, we use the following techniques for
harnessing the availability of more data:

• Missing information as noise: The lack of full informa-
tion on each individual example can stem from various
reasons. In some situations, the instances are corrupted
by noise. In other situations, the lack of information is
due to constraints on the type of interaction with the data
source. As we will show later, even in such cases, we are
sometimes able to model the missing information as an
additive noise. Viewing the missing information as noise,
it is clear that more data can compensate for the noise by
reducing the variance in the estimate of the quantities of
interest.

• Active acquisition of information: In many applications
we can actively control what partial information we get
for each example. Roughly speaking, given a set of pos-
sible partial views of an example, we will actively pick
a view in a randomized way, so as to construct a noisy
estimate of the entire information contained in the exam-
ple. Put another way, instead of learning using the original
parametrization in which some information is missing, we
construct a different parametrization in which the missing
information is replaced by noise. Therefore, instead of
receiving the exact value of each individual example in a
small set of examples it suffices to get noisy estimates of
the values of a large number of examples. Technically, we
borrow and generalize ideas from the adversarial multi-



armed bandit setting (Auer et al. 2003).
In the next sections we give rigorous meaning to the afore-

mentioned intuitive ideas by analyzing two learning prob-
lems with partial information.

Attribute Efficient Learning
Suppose we would like to predict if a person has some dis-
ease based on medical tests. Theoretically, we may choose
a sample of the population, perform a large number of med-
ical tests on each person in the sample and learn from this
information. In many situations this is unrealistic, since pa-
tients participating in the experiment are not willing to go
through a large number of medical tests. The above example
motivates the learning with partial information scenario in
which there is a hard constraint on the number of attributes
the learner may view for each training example.

We propose an efficient algorithm for linear regression,
dealing with this partial information problem, and bound the
number of additional training examples sufficient to com-
pensate for the lack of full information on each training ex-
ample. As we said in the introduction, we actively pick
which attributes to observe in a randomized way so as to
construct a “noisy” version of all attributes. We can still
learn despite the error of this estimate because we use a
larger set of noisy training examples.

We start with a formal description of the learning prob-
lem. In linear regression each example is an instance-target
pair, (x, y) ∈ Rd × R. We refer to x as a vector of at-
tributes and the goal of the learner is to find a linear predic-
tor x 7→ 〈w,x〉, where we refer to w ∈ Rd as the predictor.
The performance of a predictor w on an instance-target pair,
(x, y) ∈ Rd × R, is measured by the square loss (〈w,x〉 −
y)2. Following the standard framework of statistical learn-
ing (Haussler 1992; Devroye, Györfi, and Lugosi 1996;
Vapnik 1998), we model the environment as a joint distri-
bution D over the set of instance-target pairs, Rd × R. The
goal of the learner is to find a predictor with low risk, de-
fined as the expected loss: LD(w)

def
= E(x,y)∼D[(〈w,x〉−

y)2]. Since the distribution D is unknown to the learner
he learns by relying on a training set of m examples S =
(x1, y1), . . . , (xm, ym), which are assumed to be sampled
i.i.d. from D. We now distinguish between two scenarios:
• Full information: The learner receives the entire training

set. This is the traditional linear regression setting.
• Partial information: For each individual example,

(xi, yi), the learner receives the target yi but is only al-
lowed to see k attributes of xi, where k is a parameter
of the problem. The learner has the freedom to actively
choose which of the attributes will be revealed, as long as
at most k of them will be given.

A popular approach for learning in the full information case
is the so-called Empirical Risk Minimization (ERM) rule, in
which one minimizes the empirical loss on the training set
over a predefined hypothesis class. For example, the Lasso
algorithm can be shown to be equivalent to ERM with the
hypothesis class being {w : ‖w‖1 ≤ B}, for some param-
eter B. Standard risk bounds for Lasso imply that if ŵ is

its solution, then with probability greater than 1− δ over the
choice of a training set of size m we have

LD(ŵ) ≤ min
w:‖w‖1≤B

LD(w) +O

(
B2

√
ln(d/δ)

m

)
. (1)

In the partial information case, we follow a different ap-
proach. Recall that our goal is to minimize the true risk
LD(w). Had we known the distribution D we could have
minimized LD, e.g., using gradient descent. Since we do
not know D, but can only get samples from it, we adapt a
stochastic gradient descent (SGD) approach. SGD is an it-
erative algorithm where at each step we update the current
solution based on an unbiased estimate of the gradient of the
objective function.

The gradient of LD(w) is the vector E(x,y)∼D[(〈w,x〉 −
y)x]. We now show how to construct an unbiased estimate
of this vector. For simplicity we focus on the case in which
we can view two features per each example. We first sample
a random example (x, y) ∼ D. Then, we estimate the vec-
tor x while viewing a single attribute of it as follows. Pick
an index i uniformly at random from [d] = {1, . . . , d} and
define the estimation to be a vector v such that

vr =

{
d xr if r = i

0 else
. (2)

It is easy to verify that v is an unbiased estimate of x,
namely, E[v] = x where expectation is with respect to the
choice of the index i. When we are allowed to see k > 1
attributes, we simply repeat the above process (without re-
placement) and set v to be the averaged vector.

Next, we show how to estimate the scalar (〈w,x〉 − y)
while again viewing a single attribute of x. Each vector
w can define a probability distribution over [d] by letting
P[i] = |wi|/‖w‖1. Pick j from [d] according to the distribu-
tion defined by w. Using j we estimate the term 〈w,x〉 by
sgn(wj) ‖w‖1 xj . It is easy to verify that the expectation of
the estimate equals 〈w,x〉. Overall, we have shown that if
(x, y) are chosen randomly from D, j is chosen uniformly
at random from [d], and i is chosen according to the distribu-
tion defined by w, then the vector 2(sgn(wj)‖w‖1xj − y)v
is an unbiased estimate of the gradient,∇LD(w).

Combining the above with standard convergence guaran-
tees for SGD we obtain that the risk of the learnt vector sat-
isfies:

LD(w̄) ≤ min
w:‖w‖1≤B

LD(w) +O

(
dB2

√
k

√
ln(m/δ)

m

)
with probability greater than 1−δ over the choice of a train-
ing set of size m.

It is interesting to compare the bound for our algorithm to
the Lasso bound in the full information case given in (1). As
it can be seen, to achieve the same level of risk, the partial
information algorithm needs a factor of d2/k more examples
than the full information Lasso. This quantifies the intuition
that a larger number of examples can compensate for the
lack of full information on each individual example.

Below, we present some of the experimental results ob-
tained on the MNIST digit recognition dataset (Cun et



Figure 1: Full Information vs. Partial Information Setting.

al. 1998) (see (Cesa-Bianchi, Shalev-Shwartz, and Shamir
2010a) for a fuller experimental study). To demonstrate the
hardness of our setting, we provide in Figure 1 below some
examples of images from the dataset, in the full informa-
tion setting and the partial information setting. The upper
row contains six images from the dataset, as available to a
full-information algorithm. A partial-information algorithm,
however, will have a much more limited access to these im-
ages. In particular, if the algorithm may only choose k = 4
pixels from each image, the same six images as available to
it might look like the bottom row of Figure 1.

Figure 2 exemplifies the type of results we obtain, on
the dataset composed of “3 vs. 5”, where all the 3 dig-
its were labeled as −1 and all the 5 digits were labeled as
+1. We ran four different algorithms on this dataset: a sim-
ple baseline algorithm which predicts based on the empiri-
cal covariance matrix (see (Cesa-Bianchi, Shalev-Shwartz,
and Shamir 2010a) for full details), our algorithm discussed
above (denoted as AER), as well as ridge regression and
Lasso for comparison. Both ridge regression and Lasso were
run in the full information setting: Namely, they enjoyed
full access to all attributes of all examples in the training set.
The Baseline algorithm and AER, however, were given ac-
cess to only 4 attributes from each training example. The
X-axis represents the cumulative number of attributes seen
by each algorithm. When we compare the algorithms in this
way, we see that our AER algorithm is achieves excellent
performance for a given attribute budget, significantly bet-
ter than the other L1-based algorithms, and even compara-
ble to full-information ridge regression. However, while the
full-information algorithms require all the information about
each individual example, the AER algorithm can deal with
partial information in each example.

Kernel-Based Learning from Noisy Data
In many machine learning applications training data are typ-
ically collected by measuring certain physical quantities.
Examples include bioinformatics, medical tests, robotics,
and remote sensing. These measurements have errors that
may be due to several reasons: sensor costs, communication
constraints, privacy issues, or intrinsic physical limitations.
In all such cases, the learner trains on a distorted version of
the actual “target” data, which is where the learner’s predic-
tive ability is eventually evaluated. In this work we inves-
tigate the extent to which a learning algorithm can achieve
a good predictive performance when training data are cor-
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Figure 2: Test regression error over increasing prefixes of the
training set for “3 vs. 5”. The results are averaged over 10 runs.

rupted by noise with unknown distribution.
We consider the problem of learning kernel-based pre-

dictors (Cristianini and Shawe-Taylor 2004; Schölkopf and
Smola 2002). The kernel trick has had tremendous impact
on machine learning theory and algorithms over the past
decade. Unlike the standard setting, each time we sample
a training example (x, y) we are given access to y and to
unbiased noisy measurements of x. In a recent work (Cesa-
Bianchi, Shalev-Shwartz, and Shamir 2010b) we have de-
signed a general technique for learning kernel-based predic-
tors from noisy data, where virtually nothing is known about
the noise, except possibly an upper bound on its variance.

As in the attribute efficient learning problem described
in the previous section, we rely on stochastic gradient es-
timates. However, due to the use of kernels, the construc-
tion of unbiased estimates here is much more involved. At
the heart of these techniques lies an apparently little-known
method from sequential estimation theory to construct unbi-
ased estimates of non-linear and complex functions.

Suppose that we are given access to independent copies
of a real random variable X , with expectation E[X], and
some real function f , and we wish to construct an unbiased
estimate of f(E[X]). If f is a linear function, then this is
easy: just sample x from X , and return f(x). By linearity,
E[f(X)] = f(E[X]) and we are done. The problem be-
comes less trivial when f is a general, non-linear function,
since usually E[f(X)] 6= f(E[X]). In fact, when X takes
finitely many values and f is not a polynomial function, one
can prove that no unbiased estimator can exist (see (Paninski
2003), Proposition 8 and its proof). Nevertheless, we show
how in many cases one can construct an unbiased estimator
of f(E[X]), including cases covered by the impossibility re-
sult. There is no contradiction, because we do not construct
a “standard” estimator. Usually, an estimator is a function
from a given sample to the range of the parameter we wish to
estimate. An implicit assumption is that the size of the sam-
ple given to it is fixed, and this is also a crucial ingredient in
the impossibility result. We circumvent this by constructing
an estimator based on a random number of samples.

Here is the key idea: suppose f : R → R is any func-



tion continuous on a bounded interval. It is well known that
one can construct a sequence of polynomials (Qn(·))∞n=1,
where Qn(·) is a polynomial of degree n, which converges
uniformly to f on the interval. If Qn(x) =

∑n
i=0 γn,ix

i,
let Q′n(x1, . . . , xn) =

∑n
i=0 γn,i

∏i
j=1 xj . Now, con-

sider the estimator which draws a positive integer N ac-
cording to some distribution Pr(N = n) = pn, sam-
ples X for N times to get x1, x2, . . . , xN , and returns
1
pN

(
Q′N (x1, . . . , xN )−Q′N−1(x1, . . . , xN−1)

)
, where we

assume Q′0 = 0. The expected value of this estimator is
equal to:

E
N,x1,...,xN

[(
Q′N (x1, . . . , xN )−Q′N−1(x1, . . . , xN−1)

)
pN

]

=

∞∑
n=1

(
Qn(E[X])−Qn−1(E[X])

)
= f(E[X]) .

Thus, we have an unbiased estimator of f(E[X]).
This technique appeared in a rather obscure early 1960’s

paper (Singh 1964) from sequential estimation theory, and
appears to be little known outside of that community. How-
ever, we believe this technique is interesting, and expect it
to have useful applications for other problems as well.

Getting back to our main problem of learning kernel-
based predictors from noisy data, in (Cesa-Bianchi, Shalev-
Shwartz, and Shamir 2010b) we propose a learning algo-
rithm which is parameterized by a user-defined parameter p.
This parameter allows one to perform a tradeoff between the
number of noisy copies required for each example, and the
total number of examples. In other words, the performance
will be similar whether many noisy measurements are pro-
vided on a few examples, or just a few noisy measurements
are provided on many different examples. Therefore, sim-
ilarly to attribute efficient learning, we can compensate for
partial information on each individual example (correspond-
ing to a small number of noisy measurements) with the re-
quirement of having a large number of different examples.

Discussion
It is well-known that more examples can lead to more accu-
rate predictors. In this work we study how more examples
can also compensate for missing information on each indi-
vidual example. The main idea of our technique is to model
missing information as noise (sometimes, by using active
exploration). By doing so, more data can reduce the noise
variance, enabling us to compensate for the noise.

Other than the possible applications already discussed,
additional reasons might prevent the learner from training on
full information examples. For example, individual records
in a medical database typically can not be fully disclosed for
privacy reasons. In such situations, privacy-preserving tech-
niques ensure that the information released about the data is
enough to learn an accurate predictor, but not sufficient to
recover any individual example —see (Chaudhuri and Mon-
teleoni 2009). Again, the price to pay is the need to use
a number of training examples larger than that required to
learn a predictor with the same accuracy, but disregarding
any privacy concerns.

There may be additional techniques that allows one to ex-
ploit the availability of many examples in a non-trivial way.
For example, one can sometimes reduce the running time
of a learning algorithm by replacing the original hypothe-
sis class with a different, larger hypothesis class which has
more structure. The price we need to pay is significantly
more data, since from the statistical point of view, it is much
harder to learn the new hypothesis class. This technique has
been used in (Kakade, Shalev-Shwartz, and Tewari 2008) for
the problem of online categorization with limited feedback.
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The Indian Journal of Statistics 26(1):93–96.
Vapnik, V. N. 1998. Statistical Learning Theory. Wiley.
Zhu, X., and Lafferty, J. 2005. Harmonic mixtures: combin-
ing mixture models and graph-based methods for inductive
and scalable semi-supervised learning. In ICML.
Zhu, X. 2006. Semi-supervised learning literature survey.


