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Abstract

Spectral clustering is a modern and well
known method for performing data cluster-
ing. However, it depends on the availability
of a similarity matrix, which in many appli-
cations can be non-trivial to obtain. In this
paper, we focus on the problem of perform-
ing spectral clustering under a budget con-
straint, where there is a limit on the number
of entries which can be queried from the sim-
ilarity matrix. We propose two algorithms
for this problem, and study them theoreti-
cally and experimentally. These algorithms
allow a tradeoff between computational effi-
ciency and actual performance, and are also
relevant for the problem of speeding up stan-
dard spectral clustering.

1 Introduction

Over the past decade, spectral clustering methods have
gained popularity as a method to perform data clus-
tering - one of the most basic tasks of machine learn-
ing. These methods enjoy some important advantages,
such as the ability to cluster non-vectorial data, and
often yield superior empirical performance. Moreover,
they are well-studied and supported theoretically.

To apply spectral clustering, one needs to obtain a
similarity matrix, which quantifies the similarities be-
tween any pair of data objects. However, in many
cases, obtaining the similarity between all data objects
is highly non-trivial. For example, in bioinformat-
ics, clustering often needs to be performed on large-
scale molecular interaction networks (such as protein-
protein or protein-DNA interactions, see for instance
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[22]). Due to the sheer number of possible interac-
tions, measuring all of them reliably is usually infea-
sible. In fields ranging from social network analysis
to sensor networks, obtaining full data on the network
and the relation between its members is often hard
or impossible, and network survey and reconstruction
techniques have received significant attention [5, 11].
Similar problems are encountered in any setting where
the similarity data has to be elicited from human sub-
jects, who are unable or unwilling to provide full in-
formation.

In this paper, we focus on the problem of performing
spectral clustering under a budget constraint. Namely,
a situation where we can only query a limited number
of entries from the similarity matrix, but still wish to
cluster comparably well as if we had the entire matrix
at hand. We propose and study, theoretically and em-
pirically, two algorithms for this task. The first algo-
rithm is a simple and efficient randomized procedure,
with formal performance guarantees. The theoretical
analysis indicates that its performance improves as the
data is more easily clustered. In particular, for well-
clustered data and an n×n similarity matrix, a budget
of Õ(n) (i.e., linear up to logarithmic factors) will suf-
fice. The second algorithm is adaptive, and has better
empirical performance. On the flip side, it is much
more computationally demanding, and without better
theoretical guarantees.

While this is not the main focus of our paper, we note
that our algorithms are also relevant for speeding up
spectral clustering. In particular, using the first al-
gorithm and for well-clustered data, one can perform
spectral clustering in Õ(n) time, as opposed to O(n2)
with standard methods.

1.1 Related Work

There is a huge body of work on spectral clustering
and algorithms to implement it (notable references are
[23, 20, 15, 25]). While most of this work assumes that
the similarity matrix is known, there have been some
lines of work relevant to our setting.
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The problem of scaling or speeding up spectral cluster-
ing (other than simply coming up with efficient eigen-
solvers for the task) has received attention, and some
of the methods used are also implicitly relevant here.
For example, one common approach is to sample and
cluster a small subset of the data objects, with the
clustering result being extended somehow to the orig-
inal dataset. However, most work in this direction is
heuristic and does not provide any performance guar-
antees. More importantly, the choice of the subset is
often based on knowledge of the entire data matrix, an
unrealistic assumption in our setting. A good example
is [27], where the subset is chosen by partitioning the
data space using k-means or random projection trees.
Note that this algorithm is not relevant when we do not
have a-priori access to the entire dataset. Moreover,
due to the partitioning step, the algorithm needs to
assume that the data objects are vectors in Rn, while
our approach only requires the existence of a simi-
larity matrix, which can also apply to non-vectorial
data. In addition, while [27] is noteworthy for provid-
ing performance guarantees, these crucially depend on
the outcome of the partitioning step, which is hard to
formalize without making strong assumptions.

Another related line of work concerns efficient low-
rank matrix approximation and matrix reconstruc-
tion/completion. In particular, methods which are
based on matrix sampling are potentially useful for our
setting, if they allow us to reconstruct the entire sim-
ilarity matrix. One particularly well-known approach
involves sampling entire rows or columns from the ma-
trix, and completing the original matrix via techniques
such as the Nyström method [12, 7, 6, 18]. For appli-
cations of this method to clustering, see [10, 21]. In
terms of other approaches, [1] discuss low-rank ma-
trix approximation by uniformly sampling entries i.i.d.
with some small probability p. More recently, there
has been work on applying notions from compressed
sensing, to prove that sampling entries from an ap-
proximately low-rank matrix allows approximate re-
construction [4, 16]. However, all these methods are
problematic for our setting. First of all, these meth-
ods assume that the underlying matrix is approxi-
mately low-rank. In the context of spectral cluster-
ing, this might not hold even for “well-behaved” data
(see Sec. 4). Many of the proposed algorithms use a
non-uniform sampling, where the distribution must be
determined in advance by examining the entire similar-
ity matrix - infeasible when the matrix is initially un-
known. For algorithms based on the Nyström method,
we note that being able to sample entire rows/columns
of the similarity matrix might be unrealistic. Also,
sampling entries i.i.d. is not suitable for a hard bud-
get constraint, since the number of sampled entries
becomes a random quantity in itself, with relatively

large variance. Finally, the guarantees provided for all
these algorithms focus on matrix reconstruction, which
is different than the goal we have in mind here. [10]
and [21], which do discuss these methods in the con-
text of clustering, do not provide formal guarantees.

2 Setting and Notation

We use upper-case letters to denote matrices (e.g., W ),
and the corresponding lower-case letters with indices
to denote entries in the matrix (e.g., wi,j). The ‖·‖
notation denotes spectral norm for matrices, and Eu-
clidean norm for vectors.

We use A to denote the similarity matrix: it is a sym-
metric matrix of size n× n, composed of nonnegative
entries, which we will assume w.l.o.g. to be bounded
in [0, 1]. ai,j denotes the similarity of object i to object
j, and is larger the more similar they are. We assume
for simplicity that ai,i, the “self-similarity” of each ob-
ject i, equals 1 for all i = 1, . . . , n. Rather than having
access to the entire matrix, it is assumed we can only
query at most b entries, where in general b� n2.

This paper deals with spectral clustering, a full survey
of which is beyond our scope (for the interested reader,
an excellent tutorial is provided in [25]). Spectral clus-
tering is based on the spectral properties of the Lapla-
cian of the similarity matrix A. Formally speaking,
we define the Laplacian L of A as L = D − A, where
D is a diagonal matrix with di,i =

∑n
j=1 ai,j (we note

that other definitions of a Laplacian also exist). We
denote the eigenvalues of L, in increasing order, by
λ1 ≤ λ2 ≤ . . ., with associated eigenvectors v1,v2, . . ..
For Laplacians, it always holds that λ1 = 0, with an
associated eigenvector v1 = 1√

n
1. To prevent ambi-

guity, we will assume that v1 always takes this form.
In this paper, we focus on the case of bipartitioning,
e.g., where the data is to be divided into two clusters.
Spectral bipartitioning algorithms are common, and
more clusters may be obtained by recursing. We note
however that our algorithms and some of the theoreti-
cal results are readily extendable to performing k-way
clustering directly - a fuller study of which is left to fu-
ture work. With bipartitioning, the common approach
is to split the data based on thresholding the values of
the 2nd eigenvector of L (e.g., if v2 is the eigenvec-
tor, then one cluster is {j : v2,j ≤ a}, and the other
is {j : v2,j > a} for some a). The idea is that for
well-clustered data, the entries in v2 will be roughly
divided into two level sets, indicating the two clusters
in the data [25]. In our budgeted setting, we cannot
compute L or its eigenvectors precisely, so a major goal
will be to approximate v2 as well as possible.
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3 Results

In this section, we propose and discuss two algorithms
for spectral clustering under a budget constraint. In
both cases, we will focus on the issue of obtaining
an approximation ṽ2 of the unknown 2nd eigenvec-
tor v2. Once we have such an approximation, we can
use thresholding to derive the actual data partition.
The bounds we obtain are in terms of ‖ṽ2 − v2‖: It is
well-known (e.g., [15, 14]) that if ‖ṽ2 − v2‖ � 1, then
under appropriate conditions1, the clusterings induced
by ṽ2 and v2 are very similar. When this happens,
then the output of our algorithm allows us to perform
clustering nearly as well as if we had the entire simi-
larity matrix at hand.

3.1 Fast Randomized Algorithm

Our first algorithm is a simple and efficient procedure,
where we randomly choose and query only b entries
uniformly at random, setting all other unknown en-
tries to zero, and computing the 2nd eigenvector of
the corresponding Laplacian.

Algorithm 1 Randomized Algorithm

Input: budget b
Sample b entries of A uniformly at random

(without replacement) from {ai,j : i < j}
Construct a matrix Ã, where

ãi,i = 2b/n(n− 1) for all i ∈ {1, . . . , n}
ãi,j = ãj,i = ai,j if ai,j was queried
ãi,j = ãj,i = 0 if ai,j was not queried

Return the 2nd eigenvector ṽ2 of Ã’s Laplacian

In terms of theoretical guarantees, the following theo-
rem bounds the distance between the algorithm’s out-
put, ṽ2, and v2, which is the 2nd eigenvalue of the
Laplacian of the “real” similarity matrix A. As men-
tioned earlier, a small bound on this distance implies,
under appropriate conditions, that both vectors induce
a similar clustering [14].

Theorem 1. Suppose that b ≤ n(n−1)
4 . Let v2 denote

the 2nd eigenvector of L = D−A. Then with probabil-
ity at least 1−δ over the randomness of the algorithm,
it holds that min{‖ṽ2 − v2‖ , ‖(−ṽ2)− v2‖} is at most

4

λ3 − λ2

(
3

√
n5

b2
log

(
4n

δ

)
+

√
n3

b
log

(
4n

δ

))
,

where λ2, λ3 are the 2nd and 3rd smallest eigenvalues
of L. In particular, if b ≥ sn log3/2(4n/δ) for some

1See [15, 14] for a precise formulation. Roughly speak-
ing, we need the data to be reasonably well-clustered, an
assumption we will rely upon anyway later on.

constant s, then the bound takes the form

4n

λ3 − λ2

(
1

s2/3
+

1√
s log(4n/δ)

)
.

The choice for the sign of ṽ2 depends on the eigen-
solver used, and is inconsequential for the purposes of
spectral clustering. Also, the condition on b is merely
to simplify the bound - see Eq. (9) in the supplemen-
tary material for a version without this condition.

The theorem implies that the quality of the algorithm’s
output improves with the size of the budget b, as well
as the eigengap2 λ3−λ2. In fact, this eigengap is well
known to be a measure of how clusterable the data is
(see [25],[20],[14]). Thus, our algorithm has the inter-
esting property that it works better when the data is
“easy” to cluster. In particular, when the data is well-
clustered, λ3 − λ2 can be expected to be on the order
of Ω(n). In that case, ṽ2 will be an excellent approx-
imation to v2, as long as the budget b is on the order
of n log3/2(n). Note that this is close to optimal, since
in order to have any hope in estimating v2, we must
sample at least one entry from most rows/columns,
implying b ≥ Ω(n).

Although this is not our main goal, we note that Algo-
rithm 1 can also be used as a simple way to speed up
standard spectral clustering. This is an important is-
sue, since the runtime of straightforward implementa-
tions of spectral clustering scale cubically with n, thus
precluding their use for large datasets. Indeed, given
a known similarity matrix A, the algorithm’s analysis
implies that spectral clustering can be performed on
a sparsified version of A, without hurting the results
too much. In particular, if the data is well-clustered,
we can sparsify A to have only O(n log3/2(n)) non-zero
entries1. The computationally dominant part of spec-
tral clustering is extracting the first few eigenvectors
of A’s Laplacian, and this can be done very efficiently
if the matrix is sparse. In particular, for a matrix with
Õ(n) non-zero entries as above, which approximates a
matrix with eigengap λ3 − λ2 = Ω(n), we can extract
the eigenvectors (say, by the power method or Lanc-
zos iterations) and perform spectral clustering in Õ(n)
time.

We now turn to discuss why Thm. 1 holds. The key
idea is that Algorithm 1 essentially constructs an un-
biased estimate of the actual matrix A (up to scaling).
The analysis is based on the premise that the spectral
properties of Ã reflect those of A well, even if most of
the entries remain unsampled. This premise has been
used in the past to analyze sampling-based spectral

2If desired, the eigengap can also be estimated from Ã
- see the supplementary material for details.



Ohad Shamir, Naftali Tishby

algorithms (such as [1, 2]), and there exists a substan-
tial literature on large deviation bounds for matrices.
However, these works are based on assumptions which
do not hold here - in particular, that the entries of
the random matrix are independent. Indeed, since we
sample a fixed number of entries according to our bud-
get, the event that a certain entry was sampled does
influence the probability that other entries were sam-
pled. Thus, new techniques are required here. The
key observation is that while the matrix entries are
dependent, they have a particular statistical structure,
known as negative dependence, which allows us to ex-
tend relevant large deviation results and apply them to
our setting. Intuitively, negatively dependent random
variables are such that if one subset of the variables
is “large”, then a disjoint subset of the variables must
be “small”. Although not independent, such random
variables enjoy similar concentration of measure be-
havior as independent random variables.

More formally, we say that x1, . . . , xm are negatively
dependent, if for all disjoint subsets I, J ⊆ {1, . . . ,m}
and all non-decreasing functions f, g,

E[f(xi, i ∈ I)g(xj , j ∈ J)]

≤ E[f(xi, i ∈ I)]E[g(xj , j ∈ J)].

We will need the following two useful facts:

Lemma 1. If x1, . . . , xm are negatively dependent:

1. f1(x1), . . . , fm(xm) are negatively dependent for
any non-decreasing functions f1, . . . , fm.

2. E [
∏m
i=1 xi] ≤

∏m
i=1 E[xi].

These facts appear, for instance, in section 3.1 of [9].
Also, we will need the following lemma, whose proof
is a straightforward exercise (see problem 3.1 in [8]):

Lemma 2. Suppose that x1, . . . , xm are random vari-
ables taking values in {0, 1}, such that x1 + . . . + xm
is a fixed constant with probability 1. Then x1, . . . , xm
are negatively dependent.

The rough outline of the proof of Thm. 1 is as follows.
First, in Lemma 3, we establish that the entries of Ã
are negatively dependent. Second, in Lemma 4, we
extend a concentration bound on the spectral norm,
due to [26], from independent entries to negatively
dependent entries. This allows us to bound the de-
viation of A from its empirical estimate. Third, in
Lemma 5, we note that Bernstein’s large deviation in-
equality can be applied to negatively dependent ran-
dom variables (a simpler inequality such as Hoeffding’s
is not strong enough for our purposes here). This al-
lows us to bound the deviation of D from its empir-
ical estimate. Combining the deviations of A and D

provides us with a spectral bound on our estimate of
L. Fourth, in Lemma 6, we use results from matrix
perturbation theory in order to reduce that spectral
bound to a bound on ‖ṽ2 − v2‖. Some of the proofs
are only sketched, with the full proof appearing in the
supplementary material.

Lemma 3. The set of entries {ãi,j : i ≤ j} are nega-
tively dependent.

Proof. Each entry ãi,j equals ai,j x̃i,j , where x̃i,j is an
indicator of whether entry ai,j was sampled. Thus, by
Lemma 1, we only need to show that {x̃i,j : i ≤ j} are
negatively dependent. This follows from Lemma 2.

Lemma 4. Let W̃ be a zero-mean symmetric ran-
dom matrix. Suppose that the matrix entries {w̃i,j :
i ≤ j} are negatively dependent, with each entry hav-
ing a variance of at most σ2 and absolute value at
most3 K with probability 1. Also, assume that each
w̃i,j takes only two possible values ri,j , si,j such that
ri,j < si,j,|ri,j | < |si,j |. Then for any t > 0,

Pr
(
‖W̃‖ ≥ 2σ

√
n+ tn1/3 log(n)

)
≤ 2n1−t/3(σ

2K)1/3 .

Proof. The proof is based on the method described in
section 2 of [26], to which we refer the reader for a
full exposition. In a nutshell, it implies that if one can
upper bound E[Trace(W̃ k)] by 2n(2σ

√
n)k for some

positive even number k (and in particular, when we
take k = (σ/K)1/3n1/6), then the lemma holds.

In [26], this was proved by first observing that
E[Trace(W̃ k)] can be upper bounded by

n∑
i1=1

· · ·
n∑

ik=1

E[w̃i1,i2w̃i2,i3 · · · w̃ik−1,ik w̃ik,i1 ].

The crucial (and only) use of the independence as-
sumption in the proof came here: it was argued
that products containing a particular entry w̃i,j only
once can be discarded, since the entries are inde-
pendent and E[w̃i,j ] = 0. A bit more formally, in-
dependence was used to argue that for any positive
integers q, n1, . . . , nq and any q + 1 distinct entries
w̃i0,j0 , . . . w̃iq,jq from the matrix, it holds that

E

[
w̃i0,j0

q∏
k=1

w̃nk
ik,jk

]
≤ 0. (1)

When the entries are independent, the l.h.s. equals
E[w̃i0,j0 ]

∏q
k=1 E[w̃nk

ik,jk
], which is 0 since E[w̃i0,j0 ] = 0.

3Strictly speaking, for the proof we need to assume
that (σ/K)1/3n1/6 is an even number. This can always be
achieved by making σ or K slightly larger. For simplicity,
we will ignore this issue.
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However, Eq. (1) also holds when the random variables
are negatively dependent, under the conditions of the
lemma. To see why, note that for any n, w̃ni,j is a non-
decreasing function of w̃i,j on its domain {ri,j , si,j},
under the conditions on ri,j , si,j . Using Lemma 1, we
get that

E

[
w̃i0,j0

q∏
k=1

w̃nk
ik,jk

]
≤ E [w̃i0,j0 ]

q∏
k=1

E
[
w̃nk
ik,jk

]
= 0.

Thus, the proof from [26] carries through in our setting
as well.

Lemma 5 (Bernstein’s bound for negatively depen-
dent random variables). Let x1, . . . , xn be a set of
n zero-mean, negatively dependent random variables,
whose variance is at most σ2 and whose absolute value
is at most 1 with probability 1. Then for any ε > 0,

Pr

(∣∣∣∣∣ 1n
n∑
i=1

xi

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− nε2

2(σ2 + ε/3)

)
. (2)

Proof. The standard proof of Bernstein’s inequality
(e.g., [3]) is based on applying Markov’s inequality to
get that Pr( 1

n

∑
i xi > ε) is upper bounded for any t >

0 by E[et
∑

i xi ]/etnε. The key (and only) use of inde-
pendence is in rewriting E[et

∑
i xi ] as

∏
i E[etxi ]. How-

ever, even if x1, . . . , xn are (negatively) dependent,
then Lemma 1 allows us to upper bound E[et

∑
i xi ]

by
∏
i E[etxi ]. The rest of the proof follows verbatim

the standard proof of Bernstein’s inequality.

Lemma 6. Let L, L̃ be the Laplacians of two symmet-
ric matrices A, Ã, whose 2nd eigenvectors are v2, ṽ2

respectively. Suppose that the smallest eigenvalue of L
is simple (i.e., has multiplicity 1). Then choosing the
sign of ṽ2 so that ‖ṽ2 − v2‖ is minimized, it holds that

‖ṽ2 − v2‖ ≤
√

2 min

{
‖L̃− L‖
λ3 − λ2

, 1

}
,

where λ2, λ3 are L’s 2nd and 3rd smallest eigenvalues.

Proof Sketch. Denote 0 = λ1 ≤ λ2 ≤ · · · ≤ λn and
v1,v2, . . . ,vn to be the eigenvalues and eigenvectors of
L, and let 0 = λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃n and ṽ1, ṽ2, . . . , ṽn
to be the eigenvalues and eigenvectors of L̃ (we recall
that a Laplacian is always positive semidefinite and
has a 0 eigenvalue, see [25]).

By applying a classical eigenvector perturbation the-
orem due to Davis and Kahan (see section V in [24]),
we have that if [v1,v2] is the subspace spanned by
the first two eigenvectors of L, and Ṽ is the subspace

spanned by the eigenvectors of L̃ whose eigenvalue is
at most λ2, then∥∥∥sin

(
Θ
(

[v1,v2] , Ṽ
))∥∥∥ ≤ ‖L̃− L‖

λ3 − λ2
,

where sin
(

Θ
(

[v1,v2] , Ṽ
))

is the diagonal matrix

with the sines of the canonical angles between the sub-
spaces [v1,v2], Ṽ along the main diagonal. The lemma
follows after several manipulations.

With these lemmas in hand, we can now sketch the
proof of Thm. 1.

Proof sketch of Thm. 1. Let c = n(n−1)
2b , and let D̃, L̃

be the analogues of D,L w.r.t. the matrix Ã. By the
triangle inequality,

‖cL̃− L‖ ≤ ‖cD̃ −D‖+ ‖cÃ−A‖. (3)

We treat each term separately. By Lemma 3, it can
be shown that cÃ − A is a matrix with zero-mean,
negatively dependent entries. By applying Lemma 4,
it can be shown that with probability at least 1− δ,

‖cÃ−A‖ ≤ 2
√
cn+ 3

3
√
c2n log(2n/δ). (4)

Turning to analyze ‖cD̃ − D‖, one can show via
Lemma 5 that with probability at least 1 − δ, if δ is
not too small,

‖cD̃ −D‖ ≤
√

3cn log(2n/δ).

The theorem follows by plugging the above and Eq. (4)
into Eq. (3) with a union bound, applying Lemma 6,
and performing a few more technical steps.

3.2 Adaptive Algorithm

While Algorithm 1 is simple and provably effective, it
is a non-adaptive algorithm, which samples entries uni-
formly at random. Intuitively, a more budget-efficient
strategy might be to query entries one by one, using
already-known entries to adaptively pick the next en-
try to query. This is related to the idea of active learn-
ing, where the learner actively picks which instances
to query for a label, rather than passively receiving
labeled examples. Of course, unlike active learning,
we cannot hope for a dramatic improvement in gen-
eral, since for well-clustered data, the budget required
for Algorithm 1 is already optimal up to logarithmic
factors (see the discussion following Thm. 1). Nev-
ertheless, one might wonder whether a more adaptive
algorithm can lead to improved empirical performance.

Below, we present one such algorithm, which empiri-
cally seems to perform even better than Algorithm 1.
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The idea of the algorithm is as follows: suppose we
already queried a subset of entries, inducing a partial
matrix Â whose Laplacian L̂’s 2nd eigenvector is v̂2.
Now, we need to decide which entry to query next. For
some entries, if we query them and use their value to
update Â, then v̂2 might change a lot. For other en-
tries, querying them might leave v̂2 almost unchanged.
Moreover, as we query more entries, v̂2 will tend to
move closer and closer4 to the 2nd eigenvector of the
“real” Laplacian L. So intuitively, we would like to
query entries which will cause v̂2 to change a lot, hope-
fully moving substantially closer to v2. Unfortunately,
we don’t know the values of the entries beforehand,
so we cannot know in advance which entry will cause
v̂2 to change substantially. However, we can still do
a sensitivity check: if we slightly perturb a certain
unsampled entry âi,j (and simultaneously âj,i in the
same way, since both entries will be updated following
a query), by how much does it change v̂2?

Therefore, at each time step, we can compute the
derivative of v̂2 w.r.t. perturbing each entry, and
query the entry for which the norm of the derivative is
largest. One more twist that we add to the algorithm
is that instead of picking the entry to query according
to the derivative at each step, we alternate between
doing that and picking an entry uniformly at random
from among the remaining unqueried entries. This is
for theoretical as well as practical reasons: Theoreti-
cally, it allows us to prove that the algorithm will never
be much worse than Algorithm 1, in terms of the re-
quired budget. Practically, it enhances the stability
of the algorithm, preventing it from getting ‘stuck’ in
querying a group of unprofitable entries, and ensuring
that Â does not get overly distorted compared to the
actual similarity matrix A. We return to these issues
in Sec. 4.

The pseudo-code of our algorithm is presented as Al-
gorithm 2. We note that in each even iteration, the
algorithm indeed computes the squared norm of the
derivative of the Laplacian’s 2nd eigenvector. The full
technical derivation is presented in the supplementary
material, and is based on a combination of techniques
used in [17] and [19].

Compared to Algorithm 1, it should be emphasized
that Algorithm 2 is much more computationally de-
manding, since a full eigendecomposition is required
every other iteration (requiring O(n3) flops in general).
On the other hand, it tends to have better empirical
performance, as discussed in Sec. 4.

In terms of implementation, we note that one can di-

4The distance does not necessarily decrease monotoni-

cally, but it is possible to show that ‖L̂−L‖, which can be
used to upper bound ‖v̂2 − v2‖, decreases monotonically.

Algorithm 2 Adaptive Algorithm

Input: budget b.

Initialize Â = 2b
n(n−1)In (In is the identity matrix)

Initialize S = {(i, j) ∈ {1, . . . , n}2 : i < j}
For t = 1, 2, . . . , b

If t is odd, pick (i, j) uniformly at random from S
If t is even:

- Compute eigenvalues and eigenvectors

{λ̂1, . . . , λ̂n}, {v̂1, . . . , v̂n} of Â’s Laplacian
- For l = 1, . . . , n, let ûl = v̂l/(λk − λl)
if λk 6= λl, and 0 otherwise

- (i, j) := argmax
(i,j)∈S

(v̂k,i − v̂k,j)2
n∑
l=1

(ûl,i − ûl,j)2

Let âi,j = ai,j , âj,i = aj,i , S = S \ (i, j)

Return 2nd eigenvector of the Laplacian of Â.

rectly compute a matrix whose (i, j)-th entry equals
the squared derivative norm w.r.t. perturbation in en-
try (i, j). Depending on the programming language
and libraries used, this can be more efficient than loop-
ing through all i, j and computing the derivative for
each one. This derivative matrix equals

(R−R>) ◦ (R−R>) ◦
(
S + S> − 2UU>

)
,

where ◦ is entry-wise product, R = v̂k1
>, S =

(
∑n
l=1 ûl ◦ ûl)1>, and U is the square matrix whose l-

th column is ûl. Deriving this expression is a straight-
forward technical exercise.

Other than that, there are a few other ways to make
the implementation of Algorithm 2 somewhat more ef-
ficient. In particular, note that at each iteration, we
perform an eigendecomposition of the Laplacian from
scratch. This is potentially wasteful, since the Lapla-
cian changes only by a few entries at each round, so
we should be able to use the eigendecomposition from
the previous iteration to compute the updated eigen-
decomposition quickly. Indeed, there are several rel-
evant algorithms for solving updated eigendecompo-
sition problems (see [13]). However, to the best of
our knowledge, all these algorithms still require O(n3)
flops, so the saving is only in the constant of the O(·)
notation.

In terms of theoretical guarantees, analyzing Algo-
rithm 2 is considerably more complex than Algo-
rithm 1. While leaving a fuller theoretical study of
Algorithm 2 to future work, we can still show the fol-
lowing “sanity check” theorem. Its proof is sketched
below, and presented in the supplementary material.

Theorem 2. For any budget size b, the guarantees of
Thm. 1 for Algorithm 1, with a budget of size b, also
hold for Algorithm 2, with a budget of size 2b.

This theorem should be intuitively plausible, since Al-
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gorithm 2 does the same things as Algorithm 1 at 1/2
of the iterations (i.e., uniform sampling). However,
the proof is not completely straightforward, since the
random sampling steps are interleaved and influenced
by the derivative steps.

Proof Sketch. A key component of the proof is the fol-
lowing observation: Let L̂ be the Laplacian of the ma-
trix Â during some point in the run of algorithm 2, let
L̂′ be the Laplacian of the matrix obtained from Â by
setting some entry pairs âi,j , âj,i to 0 in an arbitrary

manner. Then it holds that ‖L̂− L‖ ≤ ‖L̂′ − L‖.

To see why this is true, it is enough to consider the
case where a single entry pair âi,j , âj,i is set to 0, and
then repeat the argument. In this case, it is easy to
verify that for any vector v,

v>(L̂− L)v − v>(L̂′ − L)v = âi,j(vi − vj)2.

In particular, if we pick v to be the maximal eigenvec-
tor of (L̂ − L), and v′ to be the maximal eigenvector
of (L̂′ − L), then

‖L̂′ − L‖ − ‖L̂− L‖ = v′>(L̂− L)v′ − v>(L̂′ − L)v

≥ v>(L̂− L)v − v>(L̂′ − L)v = âi,j(v̂i − v̂j)2 ≥ 0.

With this observation at hand, the basic idea of the
proof of Thm. 2 is that after running Algorithm 2
with a budget size 2b, the matrix Â always includes
b revealed entries which “look” as if they were sam-
pled uniformly without replacement. Notice that these
entries might not be the entries queried in the even it-
erations of Algorithm 2, since these were performed
on a matrix with some entries already revealed in a
non-random manner. A careful formalization of this
intuition, combined with the observation above, leads
to the theorem statement.

4 Experiments

In this section, we present a preliminary empirical
study of our algorithms. We followed [14] in choos-
ing and constructing the datasets, since that paper
also studied spectral bi-partitioning under uncertainty
(although in their case, it dealt with data perturba-
tion). The datasets consist of several artificial datasets
(see Fig. 1), and 5 real datasets taken from the UCI
repository (see Fig. 2). Compared to [14], we made
two changes in choosing the datasets: one is that we
created several variants of the 2D Gaussian dataset,
with increasing distances between the centers, to bet-
ter study how the algorithms degrade with the hard-
ness of the clustering task. The other change is in
dropping the UCI breast dataset, since even with the

full similarity matrix, we were unable to spectral clus-
ter it in a satisfactory manner. Clearly, if clustering is
too hard with the full data, one cannot hope to do well
with only partial data. For the real datasets, we chose
either 300 random examples or the entire dataset if it
was smaller. The similarity matrix was constructed
with a Gaussian kernel.

For each dataset, we studied 4 algorithms. Two of
them are Algorithm 1 and Algorithm 2 from this pa-
per. For comparison, we also applied the Nyström
method, as described in [10]. This method is based on
uniformly sampling entire rows of the matrix, and thus
might be potentially useful for our setting, in cases
where querying for entire rows is not unrealistic. Fi-
nally, we also studied a ”Derivatives Only” variant of
Algorithm 2, where entries were always picked accord-
ing to the derivative criterion, rather than alternating
between that and picking an entry randomly. Each al-
gorithm was ran on increasing budget sizes (i.e. it was
allowed to incrementally query additional entries). Af-
ter obtaining the 2nd eigenvector estimate, the cluster
partitioning was done by thresholding the values of the
2nd eigenvector with respect to the mean value. The
performance of each algorithm was measured in terms
of misclustering rate. In other words, we measured
the proportion of data objects which were clustered
differently, compared to spectral clustering of the full
similarity matrix. Each algorithm was ran 5 times over
each dataset, and we report the averaged results.

From the results plotted in Fig. 1 and Fig. 2, one can
clearly see that both Algorithm 1 and 2 perform quite
well, with satisfactory results obtained based on seeing
just a small portion of the matrix entries. Moreover,
Algorithm 2, which adaptively chooses which entries to
query, tends to perform better than Algorithm 1. The
Nyström-based algorithm sometimes performs rather
well, but in other cases performs very badly. This
should not be surprising. The reason is that the
Nyström method is based on a low-rank assumption
for the similarity matrix. Specifically, it assumes that
the small number of rows given as input essentially
span all other rows. This works well when the sim-
ilarity matrix is, say, approximately block diagonal,
and the data is separated into two tight clusters in
Euclidean space. However, when the data structure
is more complex (e.g., in the two concentric circles
dataset, and some of the other datasets), the method
should not be expected to perform well. Finally, the
variant of Algorithm 2, which did not choose entries
randomly at all, tends to be less stable and often worse
than Algorithm 2.
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Figure 1: Results for artificial datasets. Above each graph is a representation of the dataset used. Note that the
X-axis is not uniform across the plots.
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Figure 2: Results for datasets from the UCI repository. Note that the X-axis is not uniform across the plots.
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