
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011 7907

Online Learning of Noisy Data
Nicoló Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir

Abstract—We study online learning of linear and kernel-based
predictors, when individual examples are corrupted by random
noise, and both examples and noise type can be chosen adversari-
ally and change over time. We begin with the setting where some
auxiliary information on the noise distribution is provided, and
we wish to learn predictors with respect to the squared loss. De-
pending on the auxiliary information, we show how one can learn
linear and kernel-based predictors, using just 1 or 2 noisy copies
of each example. We then turn to discuss a general setting where
virtually nothing is known about the noise distribution, and one
wishes to learn with respect to general losses and using linear and
kernel-based predictors. We show how this can be achieved using
a random, essentially constant number of noisy copies of each ex-
ample. Allowing multiple copies cannot be avoided: Indeed, we
show that the setting becomes impossible when only one noisy copy
of each instance can be accessed. To obtain our results we introduce
several novel techniques, some of which might be of independent
interest.

I. INTRODUCTION

I N many machine learning applications training data are
typically collected by measuring certain physical quanti-

ties. Examples include bioinformatics, medical tests, robotics,
and remote sensing. These measurements have errors that may
be due to several reasons: low-cost sensors, communication
and power constraints, or intrinsic physical limitations. In all
such cases, the learner trains on a distorted version of the actual
“target” data, which is where the learner’s predictive ability is
eventually evaluated. A concrete scenario matching this setting
is an automated diagnosis system based on computed-tomog-
raphy (CT) scans. In order to build a large dataset for training
the system, we might use low-dose CT scans: although the
images are noisier than those obtained through a standard-radi-
ation CT scan, lower exposure to radiation will persuade more
people to get a scan. On the other hand, at test time, a patient
suspected of having a serious disease will agree to undergo a
standard scan.

Manuscript received September 02, 2010; revised December 29, 2010; ac-
cepted July 08, 2011. Date of publication September 08, 2011; date of current
version December 07, 2011. The material in this paper was presented at the
COLT 2010 conference. This work was supported in part by the Israeli Science
Foundation under Grant 590-10 and in part by the PASCAL2 Network of Ex-
cellence under EC Grant 216886.

N. Cesa-Bianchi is with the Dipartimento di Scienze dell’Infor-
mazione, Università degli Studi di Milano, Milano 20135, Italy (e-mail:
nicolo.cesa-bianchi@unimi.it).

S. Shalev-Shwartz is with the Computer Science and Engineering
Department, The Hebrew University, Jerusalem 91904, Israel (e-mail:
shais@cs.huji.ac.il).

O. Shamir is with Microsoft Research New England, Cambridge, MA 02142
USA (e-mail: ohadsh@microsoft.com).

Communicated by T. Weissman, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2011.2164053

In this work, we investigate the extent to which a learning
algorithm for training linear and kernel-based predictors can
achieve a good performance when the features and/or target
values of the training data are corrupted by noise. Note that, al-
though in the noise-free case learning with kernels is generally
not harder than linear learning, in the noisy case the situation is
different due to the potentially complex interaction between the
kernel and the noise distribution.

We prove upper and lower bounds on the learner’s cumulative
loss in the framework of online learning, where examples are
generated by an arbitrary and possibly adversarial source. We
model the measurement error via a random zero-mean pertur-
bation which affects each example observed by the learner. The
noise distribution may also be chosen adversarially, and change
for each example.

In the first part of the paper, we discuss the consequences
of being given some auxiliary information on the noise distri-
bution. This is relevant in many applications, where the noise
can be explicitly modeled, or even intentionally introduced.
For example, in order to comply with privacy issues certain
datasets can be published only after being “sanitized”, which
corresponds to perturbing each data item with enough Gaussian
noise—see, e.g., [1]. In this work we show how to learn from
such sanitized data.

Focusing on the squared loss, we discuss three different set-
tings, reflecting different levels of knowledge about the noise
distribution: known variance bound, known covariance struc-
ture, and Gaussian noise with known covariance matrix. Our
results for these three settings can be summarized as follows:

Known Variance Bound: Linear predictors can be learnt
with two independent noisy copies of each instance (that
is, two independent realizations of the example corrupted
by random noise), and one noisy copy of each target value

.
Known covariance structure: Linear predictors can be
learnt with only one noisy copy of and .
Gaussian distribution with known covariance matrix:
Kernel-based (and therefore linear) predictors can be
learnt using two independent noisy copies of each , and
one noisy copy of . (Although we focus on Gaussian
kernels, we show how this result can be extended, in a
certain sense, to general radial kernels.)

Thus, the positive learning results get stronger the more we
can assume about the noise distribution. To obtain our results,
we use online gradient descent techniques of increasing sophis-
tication. The first two settings are based on constructing unbi-
ased gradient estimates, while the third setting involves a novel
technique based on constructing surrogate Hilbert spaces. The
surrogate space is built such that gradient descent on the noisy
examples in that space corresponds, in an appropriately defined

0018-9448/$26.00 © 2011 IEEE

7908 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

manner, to gradient descent on the noise-free examples in the
original space.

In the second part of the paper we consider linear and kernel-
based learning with respect to general loss functions (and not
just the squared loss as before). Our positive results are quite
general: by assuming just a variance bound on the noise we show
how it is possible to learn functions in any dot-product (e.g.,
polynomial) or radial kernel Hilbert space, under any analytic
convex loss function. Our techniques, which are readily extend-
able to other kernel types as well, require querying a random
number of independently perturbed copies of each example. We
show that this number is bounded by a constant with high prob-
ability. This is in sharp contrast with standard averaging tech-
niques, which attempts to directly estimate the noisy instance,
as these require a sample whose size depends on the scale of the
problem. Moreover, the number of queries is controlled by the
user, and can be reduced at the cost of receiving more examples
overall.

Finally, we formally show in this setting that learning is im-
possible when only one perturbed copy of each example can be
accessed. This holds even without kernels, and for any reason-
able loss function.

A. Related Work

In the machine learning literature, the problem of learning
from noisy examples, and, in particular, from noisy training in-
stances, has traditionally received a lot of attention—see, for ex-
ample, the recent survey [2]. On the other hand, there are compa-
rably few theoretically-principled studies on this topic. Two of
them focus on models quite different from the one studied here:
random attribute noise in PAC boolean learning [3], [4], and ma-
licious noise [5], [6]. In the first case learning is restricted to
classes of boolean functions, and the noise must be independent
across each boolean coordinate. In the second case an adversary
is allowed to perturb a small fraction of the training examples
in an arbitrary way, making learning impossible in a strong in-
formation-theoretic sense unless this perturbed fraction is very
small (of the order of the desired accuracy for the predictor).

The previous work perhaps closest to the one presented here
is [7], where binary classification mistake bounds are proven for
the online Winnow algorithm in the presence of attribute errors.
Similarly to our setting, the sequence of instances observed by
the learner is chosen by an adversary. However, in [7] the noise
process is deterministic and also controlled by the adversary,
who may change the value of each attribute in an arbitrary way.
The final mistake bound, which only applies when the noiseless
data sequence is linearly separable without kernels, depends on
the sum of all adversarial perturbations.

II. FRAMEWORK AND NOTATION

We consider a setting where the goal is to predict values
based on instances . We focus on predictors which are
either linear—i.e., of the form for some vector ,
or kernel-based—i.e., of the form where is
a feature mapping into some reproducing kernel Hilbert space

(RKHS)1 . In the latter case, we assume there exists a kernel
function that efficiently implements inner
products in that space, i.e., Note that
in fact, linear predictors are just a special case of kernel-based
predictors: we can take to be the identity mapping and let

. Other choices of the kernel allows us to learn
nonlinear predictors over , while retaining much of the com-
putational convenience and theoretical guarantees of learning
linear predictors (see [8] for more details). In the remainder of
this section, our discussion will use the notation of kernel-based
predictors, but everything will apply to linear predictors as well.

The standard online learning protocol is defined as the fol-
lowing repeated game between the learner and an adversary: at
each round , the learner picks a hypothesis .
The adversary then picks an example , composed of a
feature vector and target value , and reveals it to the learner.
The loss suffered by the learner is , where
is a known and fixed loss function. The goal of the learner is to
minimize regret with respect to a fixed convex set of hypotheses

, defined as

Typically, we wish to find a strategy for the learner, such that
no matter what is the adversary’s strategy of choosing the se-
quence of examples, the expression above is sublinear in . In
this paper, we will focus for simplicity on a finite-horizon set-
ting, where the number of online rounds is fixed and known
to the learner. All our results can easily be modified to deal with
the infinite horizon setting, where the learner needs to achieve
sublinear regret for all simultaneously.

We now make the following modification, which limits the in-
formation available to the learner: In each round, the adversary
also selects a vector-valued random variable and a random
variable . Instead of receiving , the learner is given ac-
cess to an oracle , which can return independent realizations
of and . In other words, the adversary
forces the learner to see only a noisy version of the data, where
the noise distribution can be changed by the adversary after each
round. We will assume throughout the paper that and are
zero-mean, independent, and there is some fixed known upper
bound on and for all . Note that if or
are not zero-mean, but the mean is known to the learner, we can
always deduct those means from and , thus reducing to the
zero-mean setting. The assumption that is independent of
can be relaxed to uncorrelation or even disposed of entirely in
some of the discussed settings, at the cost of some added tech-
nical complexity in the algorithms and proofs.

The learner may call the oracle more than once. In fact,
as we discuss later on, being able to call more than once can
be necessary for the learner to have any hope to succeed, when
nothing more is known about the noise distribution. On the other
hand, if the learner calls an unlimited number of times, ,

can be reconstructed arbitrarily well by averaging, and we

1Recall that a Hilbert space is a natural generalization of Euclidean space to
possibly infinite dimensions. More formally, it is an inner product space which
is complete with respect to the norm induced by the inner product.

CESA-BIANCHI et al.: ONLINE LEARNING OF NOISY DATA 7909

are back to the standard learning setting. In this paper we focus
on learning algorithms that call only a small, essentially con-
stant number of times, which depends only on our choice of loss
function and kernel (rather than the horizon , the norm of ,
or the variance of , , which happens with naïve averaging
techniques).

In this setting, we wish to minimize the regret in hindsight
for any sequence of unperturbed data, and in expectation with
respect to the noise introduced by the oracle, namely

(1)
Note that the stochastic quantities in the above expression are
just , where each is a measurable function of the
previous perturbed examples for .
When the noise distribution is bounded or has sub-Gaussian
tails, our techniques can also be used to bound the actual re-
gret with high probability, by relying on Azuma’s inequality or
variants thereof (see for example [9]). However, for simplicity
here we focus on the expected regret in (1).

The regret form in (1) is relevant where we actually wish
to learn from data, without the noise causing a hindrance.
In particular, consider the batch setting, where the examples

are actually sampled i.i.d. from some unknown
distribution, and we wish to find a predictor which minimizes
the expected loss with respect to new examples . Using
standard online-to-batch conversion techniques [9], if we can
find an online algorithm with a sublinear bound on (1), then it
is possible to construct learning algorithms for the batch setting
which are robust to noise. That is, algorithms generating a pre-
dictor with close to minimal expected loss
among all , despite getting only noisy access to the data.
In Appendix A, we briefly discuss alternative regret measures.

In the first part of our paper, we assume that the loss func-
tion is the squared loss . In
the second part of the paper, we deal with more general loss
functions, which are convex in and analytic, in the sense that

for a fixed can be written as , for any in its
domain. This assumption holds for instance for the squared loss

, the exponential loss ,
and “smoothed” versions of loss functions such as the absolute
loss and the hinge loss

(we discuss examples in more details in Section V-B. This
assumption can be relaxed under certain conditions, and this is
further discussed in Section III-C.

Turning to the issue of kernels, we note that the general pre-
sentation of our approach is somewhat hampered by the fact that
it needs to be tailored to the kernel we use. In this paper, we
focus on two important families of kernels:

Dot Product Kernels: the kernel can be written as
a function of . Examples of such kernels
are linear kernels ; homogeneous polynomial
kernels ; inhomogeneous polynomial kernels

; exponential kernels ; binomial
kernels , and more (see for instance [8],
[10]).

Radial Kernels: can be written as a function of
. A central and widely used member of this family

is the Gaussian kernel, for some
.

We emphasize that many of our techniques are extendable to
other kernel types as well.

III. TECHNIQUES

We begin by presenting a high-level and mostly informal
overview of the techniques we use to overcome the noise
present in the data. The first technique we discuss (“stochastic”
online gradient descent) is folklore, and forms a basis for our
learning algorithms. The rest of the techniques are designed to
overcome the noise in the data, and to the best of our knowl-
edge, are novel to the machine learning community. Hence,
they might be of independent interest and applicable to other
learning problems with partial information on the examples.

A. “Stochastic” Online Gradient Descent

There exists a well-developed theory, as well as efficient al-
gorithms, for dealing with the standard online learning setting,
where the example is revealed after each round, and
for general convex loss functions. One of the simplest and most
well known ones is the online gradient descent algorithm due to
Zinkevich [11]. This algorithm, and its “stochastic” extension,
form a basis for our results, and we briefly survey it below.

At the heart of the standard online gradient descent algorithm
is the following observation: for any set of vectors
in some Hilbert space, suppose we define and

, where is a projection operator on a convex
set , and is a suitably chosen step size. Then for any

, it holds that

(2)

where the notation hides dependencies on the norm
of and the norms of . In particular, suppose that we
let be the gradient of with respect to
(we focus on linear predictors here for simplicity). Then by
convexity, the left-hand side (LHS) of (2) is lower bounded
by . Thus, if we
are provided with after each round, we can compute

, perform the update as above, and get an algorithm with
sublinear regret with respect to any predictor of bounded
norm.

In our setting of noisy data, the algorithm described above is
inapplicable, because is unknown and we cannot com-
pute . However, suppose that instead of , we pick random
vectors with bounded variance, such that ,
and use them to update . It turns out that based on (2), one
can still show that

(3)

In our setting of noisy data, we cannot compute , but
suppose we can use the noisy data that we do have, in
order to construct a random bounded-variance vector ,

7910 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

such that . In that case, the LHS of (3)
can be shown to equal . The ex-
pectation here is again with respect to the noisy examples
(recall that is a random vector that depends on the noisy
examples). Applying the same convexity argument as be-
fore, we get an upper bound on the expected regret

. Thus, by
doing updates using , we get an algorithm with a bound on
the regret which scales sublinearly with .

The idea that one can work with random unbiased estimates
of is not new, and has been used in previous work, such as
online bandit learning (see for instance [12]–[14]). Here, we use
this property in a new way, in order to devise algorithms which
are robust to noise.

For linear kernels and losses such as the squared loss, con-
structing such unbiased estimates based on 1 or 2 noisy copies
of each example is not too hard. However, when we discuss non-
linear kernels, constructing an unbiased estimate becomes much
more tricky: rather than a finite-dimensional vector, might
exist in a high or infinite dimensional Hilbert space. Even worse,
due to the nonlinearity of virtually all feature mappings, the un-
biased perturbation of each instance is mapped to a biased
and complicated perturbation of . This leads us to
the next technique.

B. “Parallel Worlds” Online Gradient Descent

The technique described here is the central one we use to learn
with kernel-based predictors and squared loss, in the case where
the noise distribution is fixed and known to be a Gaussian. In the
next subsections, we will describe our techniques for dealing
with unknown noise distribution and more general loss func-
tions, at the cost of more noisy copies per example.

Unlike the “stochastic” online gradient descent approach dis-
cussed in the previous subsection, the approach we discuss here
does not rely directly on constructing unbiased estimates of .
In a nutshell, we construct a surrogate RKHS, with a surrogate
feature mapping , such that for any noisy copy of , and
any fixed instance , it holds that

(4)

where the expectation is with respect to the noise. Thus, “noisy”
inner products in the surrogate RKHS correspond (in expecta-
tion) to “noise-free” inner products in the original RKHS. This
allows us to use the noisy data in order to construct vectors
in the surrogate RKHS with the following interesting property:
if we apply online gradient descent on (using ker-
nels), to get predictors in the RKHS of , then for
any ,

where and are the images of and according to a cer-
tain mapping to the RKHS of , and are the gradients with
respect to the unperturbed examples . Since we applied
online gradient descent in the surrogate RKHS, the LHS is

by (3). Thus, we get that
is , which implies a sublinear regret bound for

. We emphasize that unlike the previous ap-
proaches, the expectation of is not equal to . Indeed, they
live in different mathematical spaces!

A technical issue which needs addressing is that the norm
of has to be related to the norm of the actual predictor we
compare ourselves with. While this cannot be always done, such
a relation does hold if is reasonably “nice”, in a sense which
will be formalized later on.

Constructing a surrogate RKHS as in (4) can be done when
the original RKHS corresponds to a Gaussian kernel. Neverthe-
less, we can extend our results, in a certain sense, to more gen-
eral radial kernels. The basic tool we use is Schoenberg’s the-
orem, which implies that any radial kernel can be written as an
integral of Gaussian kernels of different widths. Using this re-
sult, we can show that one can still construct a surrogate RKHS,
which has the property of (4) with respect to an approximate ver-
sion of our original radial kernel.

C. Unbiased Estimators for Nonlinear Functions

We now turn to discuss our techniques for dealing with the
most general setting: learning kernel-based predictors, with gen-
eral loss functions, and with only a variance bound known on the
noise distribution. At the heart of these techniques lies an appar-
ently little-known method from sequential estimation theory to
construct unbiased estimates of nonlinear and possibly complex
functions.

Suppose that we are given access to independent copies of a
real random variable , with expectation , and some real
function , and we wish to construct an unbiased estimate of

. If is a linear function, then this is easy: just sample
from , and return . By linearity,

and we are done. The problem becomes less trivial when is a
general, nonlinear function, since usually .
In fact, when takes finitely many values and is not a poly-
nomial function, one can prove that no unbiased estimator can
exist (see [15], Proposition 8 and its proof). Nevertheless, we
show how in many cases one can construct an unbiased esti-
mator of , including cases covered by the impossibility
result. There is no contradiction, because we do not construct a
“standard” estimator. Usually, an estimator is a function from a
given sample to the range of the parameter we wish to estimate.
An implicit assumption is that the size of the sample given to it
is fixed, and this is also a crucial ingredient in the impossibility
result. We circumvent this by constructing an estimator based
on a random number of samples.

Here is the key idea: suppose is any function
continuous on a bounded interval. It is well known that one can
construct a sequence of polynomials , where
is a polynomial of degree , which converges uniformly to on
the interval. If , let

. Now, consider the estimator which draws a
positive integer according to some distribution

, samples for times to get , and returns

CESA-BIANCHI et al.: ONLINE LEARNING OF NOISY DATA 7911

, where we as-
sume . The expected value of this estimator is equal to

Thus, we have an unbiased estimator of .
This technique was introduced in a rather obscure early

1960’s paper [16] from sequential estimation theory, and ap-
pears to be little known. However, we believe this technique is
interesting, and expect it to have useful applications for other
problems as well.

While this may seem at first like a very general result, the vari-
ance of this estimator must be bounded for it to be useful. Unfor-
tunately, this is not true for general continuous functions. More
precisely, let be distributed according to , and let be the
value returned by the estimator of . In [17], it is shown
that if is a Bernoulli random variable, and if for
some integer , then must be times continuously dif-
ferentiable. Since , this means
that functions which yield an estimator with finite variance,
while using a number of queries with bounded variance, must
be continuously differentiable. Moreover, in case we desire the
number of queries to be essentially constant (e.g., choose a dis-
tribution for with exponentially decaying tails), we must have

for all , which implies that should be infinitely
differentiable (in fact, in [17] it is conjectured that must be
analytic in such cases).

Thus, we focus in this paper on functions which are an-
alytic, i.e., they can be written as for ap-
propriate constants . In that case, can simply be
the truncated Taylor expansion of to order , i.e.,

. Moreover, we can pick for any .
So the estimator works as follows: we sample a nonnegative
integer according to , sample

independently times to get , and return
where we set if .2

We have the following:

Lemma 1: For the above estimator, it holds that
. The expected number of samples used by the esti-

mator is , and the probability of it being at least
is . Moreover, if we assume that
exists for any in the domain of interest, then

Proof: The fact that follows from the dis-
cussion above. The results about the number of samples follow

2Admittedly, the event� � � should receive zero probability, as it amounts
to “skipping” the sampling altogether. However, setting �� � �� � � ap-
pears to improve the bound in this paper only in the smaller order terms, while
making the analysis in the paper more complicated.

directly from properties of the geometric distribution. As for the
second moment, equals

The parameter provides a tradeoff between the variance of
the estimator and the number of samples needed: the larger is ,
the less samples we need, but the estimator has more variance.
In any case, the sample size distribution decays exponentially
fast.

It should be emphasized that the estimator associated with
Lemma 1 is tailored for generality, and is suboptimal in some
cases. For example, if is a polynomial function, then
for sufficiently large , and there is no reason to sample from
a distribution supported on all nonnegative integers: it just in-
creases the variance. Nevertheless, in order to keep the presen-
tation uniform and general, we always use this type of estimator.
If needed, the estimator can be optimized for specific cases.

We also note that this technique can be improved in various
directions, if more is known about the distribution of . For in-
stance, if we have some estimate of the expectation and variance
of , then we can perform a Taylor expansion around the esti-
mated rather than 0, and tune the probability distribution
of to be different than the one we used above. These modi-
fications can allow us to make the variance of the estimator ar-
bitrarily small, if the variance of is small enough. Moreover,
one can take polynomial approximations to which are perhaps
better than truncated Taylor expansions. In this paper, for sim-
plicity, we ignore these potential improvements.

Finally, we note that a related result in [17] implies that
it is impossible to estimate in an unbiased manner
when is discontinuous, even if we allow a number of queries
and estimator values which are infinite in expectation. Since
the derivatives of some well-known loss functions (such as
the hinge loss) are discontinuous, estimating their gradient in
an unbiased manner and arbitrary noise appears to be impos-
sible. While our techniques allow us to work with “smoothed”
approximate versions of such losses, the regret guarantees
degrades with the quality of approximation, and this prevents
us from saying anything nontrivial about learning with respect
to the original losses. Thus, if online learning with noise and
such loss functions is at all feasible, a rather different approach
than ours needs to be taken.

7912 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

D. Unbiasing Noise in the RKHS

The second component in our approach to deal with unknown
noise in the kernel setting involves the unbiased estimation of

, when we only have unbiased noisy copies of . Here
again, we have a nontrivial problem, because the feature map-
ping is usually highly nonlinear, so in
general. Moreover, is not a scalar function, so the technique
of Section III-C will not work as-is.

To tackle this problem, we construct an explicit feature map-
ping, which needs to be tailored to the kernel we want to use.
To give a very simple example, suppose we use the homoge-
neous second-degree polynomial kernel .
It is not hard to verify that the function , de-
fined via , is an explicit fea-
ture mapping for this kernel. Now, if we query two indepen-
dent noisy copies , of , we have that the expectation of
the random vector is nothing more than

. Thus, we can construct unbiased estimates of in the
RKHS. Of course, this example pertains to a very simple RKHS
with a finite dimensional representation. By a randomization
technique somewhat similar to the one in Section III-C, we can
adapt this approach to infinite dimensional RKHS as well. In a
nutshell, we represent as an infinite-dimensional vector,
and its noisy unbiased estimate is a vector which is nonzero on
only finitely many entries, using finitely many noisy queries.
Moreover, inner products between these estimates can be done
efficiently, allowing us to implement the learning algorithms,
and use the resulting predictors on test instances.

IV. AUXILIARY INFORMATION ON THE NOISE DISTRIBUTION

In the first part of the paper, we focus on the squared loss,
and discuss the implication of being provided different levels of
auxiliary information on the noise distribution in each round.

The first setting assumes just a known upper bound on the
variance of the noise. For the specific case of linear predictors,
we show one can learn using two noisy copies of each and
one noisy copy of each .

The second setting assumes that the covariance structure of
the noise is known. In that case, we show that one can learn
linear predictors with only one noisy copy of both and .

The third and most complex setting we consider is when the
noise has a fixed Gaussian distribution with known covariance
matrix. We show that one can even learn kernel-based predic-
tors, using two independent noisy copies of each , and one
noisy copy of . We focus on Gaussian kernels, but also show
how the result can be extended, in a certain sense, to general ra-
dial kernels.

Throughout the rest of the paper, we let be a
shorthand for expectation over conditioned on

.

A. Setting 1: Upper Bound on the Variance

We begin with the simplest setting, which is when we only
know that and for some known
constants , . Conditional expectation is used here because
we are assuming the adversary can change the noise distribution
after each round, depending on the realizations of the past noisy

examples. We present an algorithm for learning linear predic-
tors, using exactly two independent noisy copies of the instance

and one noisy copy of the target value . As discussed in
Section III, the algorithm is based on an adaptation of online
gradient descent, and the main requirement is to construct an
unbiased estimate of the gradient . This follows from the fol-
lowing lemma.

Lemma 2: Let be the gradient of
at . Let be an additional independent

copy of , and denote . Under the
above assumptions, if , then and

, where .
Proof: Because of the independence assumption, we have

For the second claim, we have by the independence assumption
that

The following theorem provides a bound on the regret for
Algorithm 1. The proof is provided in Section VIII-A.

Algorithm 1 Learning with Upper Bound on Noise Variance

PARAMETERS: , .

INITIALIZE: .

For

Receive

Receive another independent copy

Theorem 1: Let be the squared loss. For
all assume that , , and that ,

, are mutually independent. If we run Algorithm 1 with
parameters , (where is defined in Lemma
2), then

B. Setting 2: Known Covariance

We now turn to the case where rather than an upper bound
on the variance, we actually know the covariance matrix of the
noise at each round, which we denote as . We assume that

CESA-BIANCHI et al.: ONLINE LEARNING OF NOISY DATA 7913

for all , where denotes the spectral norm. As
to , we can still assume we only have an upper bound on

(with our algorithmic approach, knowing does not
help much).

In this setting, we show it is possible to learn linear predic-
tors, using just a single noisy copy . This is opposed to
the previous subsection, where we needed an additional inde-
pendent copy of . The idea is that if we use just one noisy copy
in our gradient estimate, we need to deal with bias terms. When
the covariance structure is known, we can calculate and remove
these bias terms, allowing an online gradient descent similar to
Algorithm 1 to work. As in Algorithm 1, the basic building block
is a construction of an unbiased estimate of the gradient at
each iteration. See Algorithm 2 for the pseudocode.

Algorithm 2 Learning with Known Noise Covariance

PARAMETERS: , .

INITIALIZE: .

For

Receive

Lemma 3: Let be the gradient of
at . Denote

, where is the covariance matrix of . Then under
the assumptions above, if , , and

, then and , where
.

Proof: Using the zero-mean and independence assump-
tions on , , we have

which implies that . As to the second claim, using
the well-known inequality , we
have

Theorem 2: Let be the squared loss. For
all assume that and are perturbed by independent noise
such that the known covariance matrix of the noise added to

satisfies . Assume further that ,
, and . If we run Algorithm 2

with parameters and , where is defined in
Lemma 3, then

The proof is similar to the proof of Theorem 1, with Lemma 3
replacing Lemma 2. We note that if is known (which requires
knowing a bound on the fourth moment of), then by picking

one can improve the bound to .

C. Setting 3: Gaussian Distribution

The third and most complex setting we consider in this sec-
tion is when the noise is assumed to have a Gaussian distribu-
tion . Clearly, if we know the distribution, then we can
derive upper bounds on the moments of (assuming bounds
are known on the original instances). Thus, the results of
Section IV-B carry through to our setting, and we can learn
linear predictors. However, when we also know the noise has
a specific Gaussian distribution, we can learn the much more
powerful hypothesis class of kernel-based predictors.

Recall that the basic premise of kernel-based learning is that
the data (originally in) is mapped to some reproducing kernel
Hilbert space (RKHS), via a feature mapping , and a linear
predictor is learned in that space. In our original space, this cor-
responds to learning a nonlinear function. Using the well-known
kernel trick, inner products in the RKHS (which
might be infinite-dimensional) can be easily computed via a
kernel function .

While there are many possible kernel functions, perhaps the
most popular one is the Gaussian kernel, defined as

for some (the kernel width). This
corresponds to the inner product in an appro-
priate RKHS. We we will show below how to learn from noisy
data with Gaussian kernels. In Section IV-D, we show how this
can be extended, in a certain sense, to general radial kernels,
i.e., kernels of the form for an appro-
priate real function .

In this subsection, we assume that the noise distribution is
fixed for all . Hence, we may assume w.l.o.g. that is a di-
agonal matrix, with element at row/column . To see why,
notice that there always exists a rotation matrix , such that

has a Gaussian distribution with diagonal covariance ma-
trix. Therefore, instead of learning with respect to ,
we can just learn with respect to , and predict
on any instance by pre-rotating it using . Since we focus
here on rotationally invariant kernels, which depend just on the
Euclidean distance between instances, we have that

for any , . Therefore, the data structure remains
the same in the kernel space, and all our guarantees will still

7914 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

hold. As to , similar to the previous settings, we will only need
to assume that for some known parameter .

The algorithm that we present (Algorithm 3) is based on being
able to receive two independent copies of each instance , as
well as a single independent copy of . As in the linear case, the
learning algorithm that we use relies upon the online gradient
descent technique due to [11], with the main difference being
that instead of using a Gaussian kernel of width , we use a
surrogate kernel, as discussed in Section III.

Algorithm 3 Kernel Learning Algorithm with Gaussian Noise

PARAMETERS: ,

INITIALIZE: for all

For :

Define

Define

Receive , , and independent copy

Let

// is gradient length with respect to at

Let

Let

If // If , then project

Let for all

In order to define the surrogate kernel that we use, consider
the RKHS corresponding to the kernel

(5)

where we assume that is less than and

This can be shown to be a kernel by standard results (see for in-
stance [8]). Note that can be bounded by a constant when

for all (constant noise) and —plausible
when the feature values of observed instances are of order

. Let be the feature mapping corresponding to this
RKHS.

The pseudocode of our algorithm is presented below. For-
mally speaking, it is just applying online gradient descent, using
kernels, in the surrogate RKHS that we constructed. However, it
is crucial to note that the actual output are elements
in the RKHS corresponding to .

Before stating the bound for Algorithm 3 we need an auxiliary
definition. Suppose that is any element in the RKHS of ,

which can be written as for some
. For example, this includes

for any by the representer theorem. Define to be
the angle between and .
In other words, this is the angle between the component due to
positive support vectors, and the component due to the negative
support vectors. If one of the components is zero, define
to be . The main theorem of this section, whose proof is
presented in Section VIII-B, is the following.

Theorem 3: Let be the squared loss. For
all assume that is perturbed by Gaussian noise with known
distribution , where is diagonal, and is perturbed
by arbitrary independent noise with . Let
and be fixed. If we run Algorithm 3 with the kernel
(5) such that , and input parameters

and

then

where and is the
feature mapping induced by the Gaussian kernel with width .
In particular, if , , and , then
the above bound is .

The intuition for is that it measures how well separated
are the training examples: if the “positive” and “negative” ex-
ample groups are not too close together, then the angle between

and will be large, and the
bound will be small. Note that in the RKHS corresponding to
a Gaussian kernel, is always between 0 and , since the
inner product between any two elements and is pos-
itive. In addition, can be shown to be exactly zero if and only
if the positive and negative examples exactly coincide. Overall,
on realistic datasets, assuming there exist some good predictor

with not too small is a pretty mild assumption, if some-
thing interesting can be learned even on the unperturbed data.

D. Extension to General Radial Kernels

The Gaussian kernel we discussed previously is a member of
the family of radial kernels, that is kernels on , which can
be written as a function of . Although the Gaussian
kernel is the most popular member of this family, there are
many other radial kernels, such as and

CESA-BIANCHI et al.: ONLINE LEARNING OF NOISY DATA 7915

for appropriate parameters , , . Thus, a
reasonable question is whether Algorithm 3 and its analysis can
be extended to general radial kernels. The extension we are able
to show is in the following sense: for any radial kernel ,
there exists another radial kernel , which approximates

arbitrarily well, for which one can extend Algorithm
3 and its analysis. Although the approximation parameter is
user-defined, the bound on the regret depends on this param-
eter and deteriorates as the approximation gets better.

Recall from Section III-B that the heart of our approach is
constructing a surrogate RKHS, with surrogate kernel , such
that . In the Gaussian kernel case, the re-
quired surrogate RKHS corresponds to the kernel defined in (5).
To deal with other kernels, constructing an appropriate surro-
gate kernel becomes trickier. Luckily, we can still reduce the
problem, in some sense, to the case of Gaussian kernels. The
key technical result is the following theorem due to Schoenberg
([18], see also [19]), slightly paraphrased and adapted to our
purposes3:

Theorem 4 (Schoenberg’s Theorem): A function is a
radial kernel corresponding to a valid RKHS, if and only if there
exists a finite nonnegative measure on , such that for any

,

This result asserts that, up to normalization factors, radial ker-
nels can be characterized as Laplace transforms of probability
measures on the positive reals. Schoenberg’s Theorem has been
used by Micchelli et al. [20] to prove universality of radial ker-
nels and by Scovel et al. [21] to establish approximation error
bounds. A related result is Bochner’s theorem (see, e.g., [22]),
which characterizes the more general class of shift-invariant ker-
nels as Fourier transforms of multivariate distributions on .

The above theorem implies that we can write inner products
in our RKHS using the approximate kernel

(6)

where is a parameter and is the Gaussian kernel
with kernel width . Note

that this is a valid kernel by the reverse direction of Theorem 4.
If is chosen not too small, then is an excellent approxi-
mation to for all , . The reason why we must settle for
approximations of the radial kernel, rather than the kernel itself,
is the following: for each in the above integral, we construct a
surrogate kernel such that . The sur-
rogate kernel is based on subtracting certain constants from
the kernel width along each dimension, and this cannot be
done if is larger than those constants.

By Fubini’s theorem, we can write (6) as

3To be precise, the theorem here is a corollary of Schoenberg’s theorem,
which discusses necessary and sufficient conditions for ���� �� to be positive
definite, and Mercer’s theorem (see [8]), which asserts that such a function is a
kernel of a valid RKHS.

It turns out that the integral inside the expectation corresponds
to an inner product, in a valid RKHS, between the noisy instance

and . This will be our surrogate kernel for .
To provide a concrete case study, we will outline the results

for the specific radial kernel4

postponing the full technical details and proofs to
Section VIII-C. Just to make our analysis simpler to present,
we assume here that for some parameter , where

(this is a reasonable assumption to make when the
feature values of the original data is).

The approximate kernel we will consider is

(7)

where is a user-defined parameter, which trades
off the quality of the bound on the regret and the similarity of

to . This is a valid kernel by the reverse direc-
tion of Theorem 4 since

Note that is always between 0 and 1, so

Therefore, is an excellent approximation of for
values of not too small (see Fig. 1 for a graphical illustration).
As before, we let denote the feature mapping associated with
the kernel .

The surrogate kernel that we will pick is defined as follows:

(8)

As before, we let denote the feature mapping associated with
this kernel. This is a valid kernel by the reverse direction of
Theorem 4.

Our algorithm looks exactly like Algorithm 3, only that now
we use the new definitions of , above. To state the bound,
recall that for any for some ,
we define to be the angle between and

. The bound takes the following form.

Theorem 5: Let be the squared loss. For
all assume that is perturbed by Gaussian noise with known
distribution , and is perturbed by arbitrary inde-
pendent noise with . Let and

4Note that the scaling factor ��� is the reasonable one to take, when we as-
sume that the attribute values in the instances are on the order of ����.

7916 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

Fig. 1. Comparison of ����� � (solid line) and ����� � (dashed line) as a function of ��� � �, for � � � (left) and � � � (right). Note that for � � �, the two
graphs are visually indistinguishable.

be fixed. If we run Algorithm 3 with the kernel (7) where
, and input parameters

and

then

where and is the feature
mapping induced by the kernel (7).

The proof of the theorem is provided in Section VIII-C.

V. UNKNOWN NOISE DISTRIBUTION

In this part of the paper, we turn to study the setting where we
wish to learn kernel-based predictors, while having no informa-
tion about the noise distribution other than an upper bound on
its variance. This is relevant in cases where the noise is hard to
model, or if it might change in an unexpected or even adversarial
manner. Moreover, we provide results with respect to general
analytic loss functions, which go beyond the squared loss on
which we focused in Section IV. We emphasize that the tech-
niques here are substantially different than those of Section IV,
and do not rely on surrogate kernels. Instead, the techniques
focus on construction of unbiased gradient estimates directly in
the RKHS.

A. Algorithm

We present our algorithmic approach in a modular form. We
start by introducing the main algorithm, which contains several
subroutines. Then we prove our two main results, which bound
the regret of the algorithm, the number of queries to the oracle,
and the running time for two types of kernels: dot product and
Gaussian (our results can be extended to other kernel types as
well). In itself, the algorithm is nothing more than a standard on-
line gradient descent algorithm with a standard regret
bound. Thus, most of the proofs are devoted to a detailed discus-
sion of how the subroutines are implemented (including explicit
pseudo-code). In this subsection, we describe just one subrou-
tine, based on the techniques discussed in Section III. The other
subroutines require a more detailed and technical discussion,
and thus their implementation is described as part of the proofs
in Section VIII. In any case, the intuition behind the implemen-
tations and the techniques used are described in Section III.

For the remainder of this subsection, we assume for simplicity
that is a classification loss; namely, it can be written as a func-
tion of . It is not hard to adapt the results below
to the case where is a regression loss (where is a function of

). Another simplifying assumption we will make,
purely in the interest of clarity, is that the noise will be restricted
just to the instance , and not to the target value . In other
words, we assume that the learner is given access to , and to
an oracle which provides noisy copies of . This does not
make our lives easier, since the hard estimation problems relate
to and not (e.g., estimating in an unbiased
manner, despite the nonlinearity of the feature mapping). On
the other hand, it will help to make our results more transparent,
and reduce tedious bookkeeping.

At each round, the algorithm below constructs an object
which we denote as (note that it has no relationship
to used in the previous section). This object has two
interpretations here: formally, it is an element of a reproducing
kernel Hilbert space (RKHS) corresponding to the kernel we
use, and is equal in expectation to . However, in terms

CESA-BIANCHI et al.: ONLINE LEARNING OF NOISY DATA 7917

of implementation, it is simply a data structure consisting of a
finite set of vectors from . Thus, it can be efficiently stored
in memory and handled even for infinite-dimensional RKHS.

Like , has also two interpretations: formally, it
is an element in the RKHS, as defined in the pseudocode. In
terms of implementation, it is defined via the data structures

and the values of at round .
To apply this hypothesis on a given instance , we compute

, where is a sub-

routine which returns the inner product (a
pseudocode is provided as part of the proofs in Section VIII).

We start by considering dot-product kernels; that is, kernels
that can be written as , where

has a Taylor expansion such that
for all —see theorem 4.19 in [8]. Our first result shows what
regret bound is achievable by the algorithm for any dot-product
kernel, as well as characterize the number of oracle queries per
instance, and the overall running time of the algorithm. The
proof is provided in Section VIII-E.

Theorem 6: Assume that the loss function has an analytic
derivative for all in its domain, and
let (assuming it exists). Pick any
dot-product kernel . Finally, assume that

for any returned by the oracle at round ,
for all . Then, for all and , it is
possible to implement the subroutines of Algorithm 4 such that:

1) The expected number of queries to each oracle is

2) The expected running time of the algorithm is

3) If we run Algorithm 4 with

where

then

Algorithm 4 Kernel Learning Algorithm with Noisy Input

: Learning rate , number of rounds ,
sample parameter

:

for all .

for all

// is a data structure which can store a

// variable number of vectors in

Define

Receive oracle and

Let

// Get unbiased estimates of in the RKHS

Let

// Get unbiased estimate of

Let // Perform gradient step

Let

// Compute squared norm, where

returns

If

Let for all

//If squared norm is larger than , then project

We note that the distribution of the number of oracle queries
can be specified explicitly, and it decays very rapidly—see the
proof for details.

The parameter is user-defined, and allows one to perform a
tradeoff between the number of noisy copies required for each
example, and the total number of examples. In other words, the
regret bound will be similar whether many noisy measurements
are provided on a few examples, or just a few noisy measure-
ments are provided on many different examples.

The result pertaining to radial kernels is very similar, and uses
essentially the same techniques. For the sake of clarity, we pro-
vide a more concrete result which pertains specifically to the
most important and popular radial kernel, namely the Gaussian
kernel. The proof is provided in Section VIII-F.

Theorem 7: Assume that the loss function has an analytic
derivative for all in its domain, and let

(assuming it exists). Pick any Gaussian
kernel for some . Fi-
nally, assume that for any returned by the
oracle at round , for all . Then for all and

it is possible to implement the subroutines of Algorithm
4 such that

7918 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

1) The expected number of queries to each oracle is

2) The expected running time of the algorithm is

3) If we run Algorithm 4 with

where

then

As in Theorem 6, note that the number of oracle queries has a
fast decaying distribution. Also, note that with Gaussian kernels,

is usually chosen to be on the order of the example’s squared
norms. Thus, if the noise added to the examples is proportional
to their original norm, we can assume that , and
thus appearing in the bound is also bounded by a constant.

As previously mentioned, most of the subroutines are
described in the proofs section, as part of the proof of
Theorem 6. Here, we only show how to implement the

subroutine, which returns the gra-
dient length estimate . The idea is based on the technique
described in Section III-C. We prove that is an unbiased
estimate of , and bound . As discussed
earlier, we assume that is analytic and can be written as

.

Subroutine 1

Sample nonnegative integer according to

Let

// Get unbiased estimate of in the RKHS

Return

Lemma 4: Assume that , and that

returns for all , .

Fig. 2. Absolute loss, hinge loss, and analytic approximations. For the absolute
loss, the line represents the loss as a function of �������� � �. For the hinge
loss, the lines represent the loss as a function of � ��������.

Denote the output of the subroutine above as , and define
. Then for any given

it holds that and

where the expectation is with respect to the randomness of Sub-
routine 1.

Proof: The result follows from Lemma 1, where cor-
responds to the estimator , the function corresponds to ,
and the random variable corresponds to (where

is random and is held fixed). The term in
Lemma 1 can be upper bounded as

B. Loss Function Examples

Theorems 6 and 7 both deal with generic loss functions
whose derivative can be written as , and the regret
bounds involve the functions . Below, we
present a few examples of loss functions and their corresponding

. As mentioned earlier, while the theorems in the previous
subsection are in terms of classification losses (i.e., is a func-
tion of), virtually identical results can be proven for
regression losses (i.e., is a function of), so we
will give examples from both families. Working out the first two
examples is straightforward. The proofs of the other two appear
in Section VIII-G. The loss functions in the last two examples
are illustrated graphically in Fig. 2.

Example 1: For the squared loss function,
, we have .

CESA-BIANCHI et al.: ONLINE LEARNING OF NOISY DATA 7919

Example 2: For the exponential loss function,

we have

.

Example 3: Recall that the standard absolute loss is defined as
. Consider a “smoothed” ab-

solute loss function , defined as an antideriva-
tive of for some (see proof for exact analytic
form). Then we have that

Example 4: Recall that the standard hinge loss is defined
as . Consider
a “smoothed” hinge loss , defined as an an-
tiderivative of for some (see proof
for exact analytic form). Then we have that

For any , the loss function in the last two examples is convex,
and, respectively, approximate the absolute loss
and the hinge loss arbitrarily well for
large enough . Fig. 2 shows these loss functions graphically
for . Note that need not be large in order to get a good
approximation. Also, we note that both the loss itself and its
gradient are computationally easy to evaluate.

Finally, we remind the reader that as discussed in
Section III-C, performing an unbiased estimate of the gra-
dient for nondifferentiable losses directly (such as the hinge
loss or absolute loss) appears to be impossible in general. On
the flip side, if one is willing to use a random number of queries
with polynomially decaying rather than exponentially-decaying
tails, then one can achieve much better sample complexity re-
sults, by focusing on loss functions (or approximations thereof)
which are only differentiable to a bounded order, rather than
fully analytic. This again demonstrates the tradeoff between the
number of examples, and the amount of information that needs
to be gathered on each example.

VI. ARE MULTIPLE NOISY COPIES NECESSARY?

The positive results discussed so far are mostly based on
getting more than one noisy copy per example. However, one
might wonder if this is really necessary. In some applications
this is inconvenient, and one would prefer a method which
works when just a single noisy copy of each example is made
available. Moreover, in the setting of known noise covariance
(Section IV-B), for linear predictors and squared loss, we
needed just one noisy copy of each example in order to
learn. Perhaps a similar result can be obtained even when the
noise distribution in unknown?

In this subsection we show that, unfortunately, such a method
cannot be found. Specifically, we prove that if the noise distribu-
tion is unknown, then under very mild assumptions, no method
can achieve sublinear regret, when it has access to just a single
noisy copy of each instance (even when is known). On
the other hand, for the case of squared loss and linear kernels,
we know that we can learn based on two noisy copies of each
instance (see Section IV-A). So without further assumptions,
the lower bound that we prove here is indeed tight. It is an in-
teresting open problem to show improved lower bounds when
nonlinear kernels are used, or when the loss function is more
complex.

Theorem 8: Let be a compact convex subset of , and let
satisfies the following: (1) it is bounded from

below; (2) it is differentiable at 0 with . For any
learning algorithm which selects hypotheses from and is al-
lowed access to a single noisy copy of the instance at each round
, there exists a strategy for the adversary such that the sequence

of predictors output by the algorithm satisfies

with probability 1.
Note that condition (1) is satisfied by virtually any loss func-

tion other than the linear loss, while condition (2) is satisfied
by most regression losses, and by all classification calibrated
losses, which include all reasonable losses for classification (see
[23]).

The intuition of the proof is very simple: the adversary
chooses beforehand whether the examples are drawn i.i.d.
from a distribution , and then perturbed by noise, or drawn
i.i.d. from some other distribution without adding noise.
The distributions , and the noise are designed so that the
examples observed by the learner are distributed in the same
way irrespective of which of the two sampling strategies the
adversary chooses. Therefore, it is impossible for the learner
accessing a single copy of each instance to be statistically
consistent with respect to both distributions simultaneously.
As a result, the adversary can always choose a distribution on
which the algorithm will be inconsistent, leading to constant
regret.

To prove the theorem, we use a more general result which
leads to nonvanishing regret, and then show that under the as-
sumptions of Theorem 8, the result holds. The proof of the result
is given in Section VIII-I.

Theorem 9: Let be a compact convex subset of and
pick any learning algorithm which selects hypotheses from
and is allowed access to a single noisy copy of the instance at
each round . If there exists a distribution over a compact subset
of such that

(9)

7920 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

are disjoint, then there exists a strategy for the adversary such
that the sequence of predictors output by the
algorithm satisfies

with probability 1.
Another way to phrase this theorem is that the regret cannot

vanish, if given examples sampled i.i.d. from a distribution, the
learning problem is more complicated than just finding the mean
of the data. Indeed, the adversary’s strategy we choose later on
is simply drawing and presenting examples from such a distri-
bution. Below, we sketch how we use Theorem 9 in order to
prove Theorem 8. A full proof is provided in Section VIII-H.

We construct a very simple one-dimensional distribution,
which satisfies the conditions of Theorem 9: it is simply
the uniform distribution on , where is the vector

. Thus, it is enough to show that

(10)

are disjoint, for some appropriately chosen . Assuming the
contrary, then under the assumptions on , we show that the first
set in (10) is inside a bounded ball around the origin, in a way
which is independent of , no matter how large it is. Thus, if
we pick to be large enough, and assume that the two sets in
(10) are not disjoint, then there must be some such that both

and have a subgradient of zero at
. However, this can be shown to contradict the assumptions on

, leading to the desired result.

VII. CONCLUSIONS AND FUTURE WORK

We have investigated the problem of learning, in an online
fashion, linear and kernel-based predictors when the observed
examples are corrupted by noise. We have shown bounds
on the expected regret of learning algorithms under various
assumptions on the noise distribution and the loss function
(squared loss, analytic losses). A key ingredient of our results is
the derivation of unbiased estimates for the loss gradients based
on the possibility of obtaining a small but random number
of independent copies of each noisy example. We also show
that accessing more than one copy of each noisy example is a
necessary condition for learning with sublinear regret.

There are several interesting research directions worth pur-
suing in the noisy learning framework introduced here. For in-
stance, doing away with unbiasedness, which could lead to the
design of estimators that are applicable to more types of loss
functions, for which unbiased estimators may not even exist. Bi-
ased estimates may also help in designing improved estimates
for kernel learning when the noise distribution is known, but
not necessarily Gaussian. Another open question is whether our
lower bound (Theorem 8) can be improved when nonlinear ker-
nels are used.

VIII. PROOFS

A. Proof of Theorem 1

First, we use the following lemma that can be easily adapted
from [11].

Lemma 5: Let be a sequence of vectors. Let
and for let , where is the pro-

jection operator on an origin-centered ball of radius . Then,
for all such that we have

Applying Lemma 5 with as defined in Lemma 2, we
obtain

Taking expectation of both sides and using again Lemma 2, we
obtain that

Now, using convexity we get that

which gives

Picking as in the theorem statement concludes our proof.

B. Proof of Theorem 3

To prove the theorem, we will need a few auxiliary lemmas. In
particular, Lemma 6 is a key technical lemma, which will prove
crucial in connecting the RKHS with respect to , ,
and the RKHS with respect to , . Lemma 8 connects
between the norms of elements in the two RKHS’s.

To state the lemmas and proofs conveniently, recall the short-
hand

Lemma 6: For any , , if we let where
is a Gaussian random vector with covariance matrix ,

then it holds that

Proof: The expectation in the lemma can be written as

(11)

CESA-BIANCHI et al.: ONLINE LEARNING OF NOISY DATA 7921

A purely technical integration exercise reveals that each element
in this product equals . Therefore, (11)

equals

which is exactly .

Lemma 7: Let denote a feature mapping to an arbitrary
RKHS. Let be vectors in , and
scalars, such that for some . Then
it holds that

where is the angle between and
in the RKHS (or if one of these

elements is zero).
We remark that this bound is designed for readability—it is

not the tightest upper bound possible.
Proof: The bound trivially holds if or

are zero, so we will assume w.l.o.g. that they
are both nonzero.

To simplify notation, let

and notice that . By the cosine theorem and the
fact that , we have that

Solving for and taking the larger root in the resulting
quadratic equation, we have that

(12)

(it is easy to verify that the term in the squared root is always
nonnegative). Therefore

From straightforward geometric arguments, we must have
(this is the same reason the term in

the squared root in (12) is nonnegative). Plugging this into the

right-hand side (RHS) of the inequality above, we get an upper
bound of the form

where we used the fact that . A straightforward
upper bounding leads to the lemma statement.

The following lemma is basically a corollary of Lemma 7.

Lemma 8: Let be vectors in , and
scalars, such that .

Then is an element in the RKHS with respect to
, whose norm squared is at most

Here, is the angle between and
in the RKHS (or if one of the

elements is zero).
Proof: Picking some and as in the

lemma statement, we have

(13)
where the last transition is by the fact that is always positive.
Now, by definition of , , it holds for any , that

which is at most . Therefore, we can upper bound (13) by

The lemma follows by noting that according to Lemma 7

With these lemmas in hand, we are now ready to prove the
main theorem.

To make the proof clearer, let denote the value of in
algorithm 3 at the beginning of round .

7922 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

The first step of the proof consists of applying Lemma 5, since
our algorithm follows the protocol outlined in that lemma, using
kernels. We therefore have that for any in the RKHS corre-
sponding to , such that , it holds that

(14)

In particular, consider from the theorem’s
statement, and define

This is an element in the RKHS corresponding to , but it
shares the same set of weights as , which is an element in the
RKHS corresponding to . Since , it follows
from Lemma 8 and the definition of that .
Therefore, (14) applies, and we get

This inequality holds for any . In particular, it
will remain valid if we take expectations of both sides with re-
spect to the Gaussian noise injected into the unperturbed data

(15)

Starting with the RHS, we note that by definition of
from the algorithm’s pseudocode, and the fact that

by definition of the kernel

in (5)

Plugging this back into (15), and choosing as in the the-
orem’s statement, we finally get

(16)

We now turn to analyze the more interesting LHS of (16). The
LHS of (16) can be written as

(17)
In order to analyze the first sum inside the expectation, recall
that can be written as . Therefore, we have
that

where the last transition is by the fact that , , are mutu-
ally independent, and therefore is independent of con-
ditioned on .

We now make two crucial observations, which are really the
heart of our proof: First, by Lemma 6, we have that

Second, using Lemma 6 in a similar manner, we also have

Define this expression as . Notice that it is exactly the gradient
of with respect to .

As a result of these two observations, we get overall that

(18)

Moving to the second sum in the LHS of (17), recall that there
exist some such that .

Therefore

As before, we have by Lemma 6 that

, and that is conditionally independent with

CESA-BIANCHI et al.: ONLINE LEARNING OF NOISY DATA 7923

expected value . Substituting
this into the expression above, we get that it is equal to

Combining this and (18), and summing over , we get that

(19)

Remarkably, this equation links between classifiers in the
RKHS corresponding to , and the classifiers in another
RKHS, corresponding to .

Substituting (19) into (16), we get that

Now, since is a
convex function of , and since is the gradient at ,
we can lower bound the LHS as

from which the theorem follows.

C. Proof of Theorem 5

The proof follows the same lines as the proof of Theorem 3
in the previous subsection. The changes mostly have to do with
the auxiliary lemmas, which we present below. The proof of the
theorem itself is virtually identical to the one of Theorem 3, and
is thus skipped.

The auxiliary lemmas below modify the parallel lemmas in
Section VIII-B, based on the new definitions of the feature map-
ping and the surrogate feature mapping . But before that, we
begin with a lemma which explicitly upper bounds for
any . With Gaussian kernels, this was trivial, but now we need
to work a bit harder.

Lemma 9: For any vector , we have

Proof: By (8)

(20)

Also, by a Taylor expansion of the log function, and using the
fact that by the assumption that , we get

(21)

Plugging this into (20), we get the upper bound

Lemma 10: For any , , if we let where
is a Gaussian random vector with covariance matrix ,

then it holds that

Proof: On one hand, based on the definition of in (7), it
can be verified that equals

(22)

On the other hand, using the proof of Lemma 6 and Fubini’s
theorem, the expectation in the lemma can be written as

Lemma 11: Let be vectors in , and
scalars, such that . Then

is an element in the RKHS with respect to ,
whose norm squared is at most

Here, is the angle between and
in the RKHS (or is one of the

elements is zero).
Proof: Picking some and as in the

lemma statement, we have

(23)

7924 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

Now, by definition of in (8), and the representation of
as in (22), it holds for any , that

equals

where the last transition can be verified as in (21). Therefore,
we can upper bound (23) by

The lemma follows by noting that

which according to Lemma 7 is at most .

D. Preliminary Result for Proving Theorem 6 and Theorem 7

To prove Theorem 6 and Theorem 7, we need a theorem
which basically states that if all subroutines in algorithm 4 be-
have as they should, then one can achieve an regret
bound. This is provided in the following theorem, which is an
adaptation of a standard result of online convex optimization
(see, e.g., [11]).

Theorem 10: Assume the following conditions hold with re-
spect to Algorithm 4:

1) For all , and are independent of each other (as
random variables induced by the randomness of Algorithm
4) as well as independent of any and for .

2) For all , , and there exists a constant
such that

3) For all , , and there exists a
constant such that .

4) For any pair of instances ,

If Algorithm 4 is run with , then

Here the expectation is with respect to both the randomness of
the oracles and of the algorithm throughout its run.

Proof: Our algorithm corresponds to Zinkevich’s on-
line gradient descent algorithm [11] in a finite horizon
setting, where we assume the sequence of examples is

, the cost function is linear, and
the learning rate at round is . By a straightforward
adaptation of the standard regret bound for that algorithm (see
[11]), we have that for any such that

We now take expectation of both sides in the inequality above.
The expectation of the RHS is simply

As to the LHS, note that

Also

Plugging in these expectations and choosing as in the state-
ment of the theorem, we get that for any such that

To get the theorem, we note that by convexity of , the LHS
above can be lower bounded by

CESA-BIANCHI et al.: ONLINE LEARNING OF NOISY DATA 7925

E. Proof of Theorem 6

Based on the preliminary result of Section VIII-D, we present
in this subsection the proof of Theorem 6. We first show how to
implement the subroutines of Algorithm 4, and prove the rele-
vant results on their behavior. Then, we prove the theorem itself.

We start by constructing an explicit feature mapping cor-
responding to the RKHS induced by our kernel. For any , ,
we have that

This suggests the following feature representation: for any
, returns an infinite-dimensional vector, indexed by

and , with the entry corresponding
to being . The inner product
between and is similar to a standard dot product
between two vectors, and by the derivation above equals

as required.
We now use a slightly more elaborate variant of our unbiased

estimate technique, to derive an unbiased estimate of .
First, we sample according to .
Then, we query the oracle for for times to get

, and formally define as

(24)
where represents the unit vector in the direction in-
dexed by as explained above. Since the oracle
queries are i.i.d., the expectation of this expression is

which is exactly . We formalize the needed properties of
in the following lemma.

Lemma 12: Assuming is constructed as in the discus-
sion above, it holds that for any . More-
over, if the noisy samples returned by the oracle satisfy

, then

where we recall that defines the kernel by
.

Proof: The first part of the lemma follows from the discus-
sion above. As to the second part, note that by (24)

where the second-to-last step used the fact that for all
.

Of course, explicitly storing as defined above is infea-
sible, since the number of entries is huge. Fortunately, this is not
needed: we just need to store . The representa-
tion above is used implicitly when we calculate inner products
between and other elements in the RKHS. We note that
while is a random quantity which might be unbounded, its
distribution decays exponentially fast, so the number of vectors
to store is essentially bounded.

After the discussion above, the pseudocode for
below should be self-explanatory.

Subroutine 2

Sample nonnegative integer according to

Query for times to get

Return as .

We now turn to the subroutine , which given two ele-
ments , in the RKHS, returns their inner product.

Subroutine 3

Let be the vectors comprising

Let be the vectors comprising

If return 0, else return

Lemma 13: returns .

7926 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

Proof: Using the formal representation of , in

(24), we have that is 0 whenever (be-
cause then these two elements are composed of different unit
vectors with respect to an orthogonal basis). Otherwise, we have
that

which is exactly what the algorithm returns, hence the lemma
follows.

As discussed in the main text, in order to apply the learned
predictor on a new given instance , we present another
subroutine , which calculates the inner product

. The pseudocode is very similar to the
subroutine, and the proof of correctness is essentially the same.

Subroutine 4

Let be the vectors comprising

Return

We are now ready to prove Theorem 6. First, regarding
the expected number of queries, notice that to run Algorithm
4, we invoke and
once at round . uses a random number
of queries distributed as , and

invokes a random
number of times, distributed as .
The total number of queries is therefore , where

for all are i.i.d. copies of . The expected value of this
expression, using a standard result on the expected value of a
sum of a random number of independent random variables, is
equal to , or .

In terms of running time, we note that the expected run-
ning time of is , this because it performs

multiplications of inner products, each one with running
time , and . The expected running time of

is . The expected running time of
is

Since Algorithm 4 at each of rounds calls
once, once, for times,
and performs other operations, we get that the overall run-
time is

Since , we can upper bound this by

The regret bound in the theorem follows from Theorem 10,
with the expressions for constants following from Lemma 4,
Lemma 12, and Lemma 13.

F. Proof of Theorem 7

The proof here is based on the preliminary result of
Section VIII-D. The analysis in the Gaussian kernel case is
rather similar to the one for inner product kernel case (in
Section VIII-E), with some technical changes. Thus, we pro-
vide the proof here mostly for completeness.

We start by constructing an explicit feature mapping cor-
responding to the RKHS induced by our kernel. For any , ,
we have that

This suggests the following feature representation: for any
, returns an infinite-dimensional vector, indexed by

and , with the entry corresponding
to being . The inner
product between and is similar to a standard inner
product between two vectors, and by the derivation above
equals as required.

The idea of deriving an unbiased estimate of is the fol-
lowing: first, we sample , independently according to

. Then, we query

CESA-BIANCHI et al.: ONLINE LEARNING OF NOISY DATA 7927

the oracle for for times to get ,
and formally define as

(25)

where represents the unit vector in the direction
indexed by as explained above. Since the oracle
calls are i.i.d., it is not hard to verify that the expectation of the
expression above is

which is exactly as defined above.
To actually store in memory, we simply keep and

. The representation above is used implic-
itly when we calculate inner products between and other
elements in the RKHS, via the subroutine Prod. We formalize
the needed properties of in the following lemma.

Lemma 14: Assuming the construction of as in the dis-
cussion above, it holds that for all . More-
over, if the noisy sample returned by the oracle satisfies

, then

Proof: The first part of the lemma follows from the discus-
sion above. As to the second part, note that by (25), we have that

equals

The expectation of this expression over , is equal to

After the discussion above, the pseudocode for
below should be self-explanatory.

Subroutine 5

Sample according to

Sample according to

Query for times to get

Return as .

7928 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

We now turn to the subroutine (Subroutine 10), which
given the two elements in the RKHS, returns their
inner product.

Subroutine 6

Let be the vectors comprising

Let be the vectors comprising

If return 0, else return

The proof of the following lemma is a straightforward alge-
braic exercise, similar to the proof of Lemma 13.

Lemma 15: returns .
As described in the main text, when we wish to apply our

learned predictor on a given instance , we also need a subrou-
tine to compute , where is an explicitly given
vector. The pseudocode is described in Subroutine 11. It is very
similar to Subroutine 10, and the proof is essentially the same.

Subroutine 7

Let be the vectors comprising

Return

We are now ready to prove Theorem 7. First, regarding
the expected number of queries, notice that to run Algorithm
4, we invoke and
once at round . uses a random number

of queries, where , are independent and
distributed as .

invokes a random
number of times, where . The
total number of queries is therefore ,
where , are i.i.d. copies of , , respectively. The
expected value of this expression, using a standard result on
the expected value of a sum of a random number of random
variables, is equal to , or

.
In terms of running time, the analysis is completely identical

to the one performed in the proof of Theorem 6, and the expected
running time is the same up to constants.

The regret bound in the theorem follows from Theorem 10,
with the expressions for constants following from Lemma 4,
Lemma 14, and Lemma 15.

G. Proof of Examples 3 and 4

Examples 3 and 4 use the error function in order to
construct analytic approximations of the hinge loss and the ab-
solute loss (see Fig. 2). The error function is useful for our pur-
poses, since it is analytic in all of , and smoothly interpolates
between for and 1 for . Thus, it can be used
to approximate derivative of losses which are piecewise linear,
such as the hinge loss and the absolute
loss .

To approximate the absolute loss, we use the antiderivative
of . This function represents an analytic upper bound on
the absolute loss, which becomes tighter as increases. It can be
verified that the antiderivative (with the constant free parameter
fixed so the function has the desired behavior) is

While this loss function may seem to have slightly complex
form, we note that our algorithm only needs to calculate the
derivative of this loss function at various points (namely
for various values of), which can be easily done.

By a Taylor expansion of the error function, we have that

Therefore, in this case is at most

We now turn to deal with Example 4. This time, we use the an-
tiderivative of . This function smoothly in-
terpolates between for and 0 for . Therefore,
its antiderivative with respect to represents an analytic upper
bound on the hinge loss, which becomes tighter as increases.
It can be verified that the antiderivative (with the constant free
parameter fixed so the function has the desired behavior) is

By a Taylor expansion of the error function, we have that

Thus, in this case can be upper bounded by

CESA-BIANCHI et al.: ONLINE LEARNING OF NOISY DATA 7929

H. Proof of Theorem 8

Fix a large enough to be specified later. Let
and let to be the uniform distribution on

. To prove the result then we just need to show that

and

(26)
are disjoint, for some appropriately chosen .

First, we show that the first set above is a subset of
for some fixed which does not depend on .

We do a case-by-case analysis, depending on how looks
like.

1) monotonically increases in . Impossible by as-
sumption (2).

2) monotonically decreases in . First, recall that
since is convex, it is differentiable almost any-
where, and its derivative is monotonically increasing.
Now, since is convex and bounded from below,

must tend to 0 as (wherever is
differentiable, which is almost everywhere by convexity).
Moreover, by assumption (2), is upper bounded
by a strictly negative constant for any . As a re-
sult, the gradient of , which equals

, must be positive for large enough
, and negative for large enough , so the

minimizers of are in some bounded
subset of .

3) There is some such that monotonically de-
creases in and monotonically increases in .
If the function is constant in or in , we
are back to one of the two previous cases. Otherwise, by
convexity of , we must have some , ,
, such that is strictly decreasing at , and

strictly increasing at . In that case, it is not hard to
see that must be strictly increasing
for any , and strictly decreasing for
any . So again, the minimizers of

are in some bounded subset of .
We are now ready to show that the two sets in (26) must be dis-
joint. Suppose we pick large enough so that the first set in
(26) is strictly inside . Assume on the con-
trary that there is some , , which belongs to both
sets in (26). By assumption (2) and the fact that minimizes

, we may assume . Therefore, as
well as , where is the (closed and
convex) subgradient set of a convex function . By subgradient
calculus, this means there is some and

such that . This implies that
. Now, suppose that . This

would mean that . But then is strictly
decreasing at , and in particular ,
contradicting the assumption that minimizes . So we
must have . Moreover,
(because minimizes and). Since the subgra-
dient set is closed and convex, it follows that .
Therefore, both and minimize . But this means that

, in contradiction to assumption (2).

I. Proof of Theorem 9

Let be a distribution which satisfies (9). The idea of the
proof is that the learner cannot know if is the real distribu-
tion (on which regret is measured) or the distribution which in-
cludes noise. Specifically, consider the following two adversary
strategies:

1) At each round, draw an example from , and present it to
the learner (with the label 1) without adding noise.

2) At each round, pick the example , add to it zero-mean
noise sampled from , where is distributed
according to , and present the noisy example (with the
label 1) to the learner.

In both cases the examples presented to a learner appear to come
from the same distribution . Hence, any learner observing one
copy of each example cannot know which of the two strategies is
played by the adversary. Since (9) implies that the set of optimal
learner strategies for each of the two adversary strategies are
disjoint, by picking an appropriate strategy the adversary can
force a constant regret.

To formalize this argument, fix any learning algorithm that
observes one copy of each example and let be the
sequence of generated predictors. Then it is sufficient to show
that at least one of the following two holds

(27)

(28)

with probability 1, where in both cases the expectation is with
respect to and “w.p. 1” refers to the randomness of the noise.
First note that (27) is implied by

(29)
with probability 1. Since is compact, is assumed to be
supported on a compact subset, and is convex and hence
continuous, then is almost surely bounded. So by
Azuma’s inequality

is finite for all , where the expectation is condi-
tioned on the randomness in the previous rounds. Letting

(which belongs to for all since it is a convex
set), we have

7930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

where the first inequality holds with probability 1 as by
the Borel-Cantelli lemma, and the second one holds for every
because is convex.

Similarly,

Hence (28)–(29) are obtained if we show that no single sequence
of predictors simultaneously satisfies

(30)
where

and

Suppose on the contrary that there was such a sequence.
Since for all , and is compact, the sequence

has at least a cluster point . Moreover, it
is easy to verify that the functions and are continuous.
Indeed, is continuous by convexity of and

is continuous by the compactness assumptions.
Hence, any cluster point of is also a cluster point
of both and . Since , by construction, and
we are assuming that neither nor for
any cluster point , we must have .
But this means that belongs to both sets appearing in (9),
in contradiction to the assumption they are disjoint. Thus, no
sequence of predictors satisfies (30), as desired.

APPENDIX

ALTERNATIVE NOTIONS OF REGRET

In the online setting, one may consider notions of regret other
than (1). One choice is

but this is too easy, as it reduces to standard online learning with
respect to examples which happen to be noisy. Another kind of
regret we may want to minimize is

(31)

This is the kind of regret which is relevant for actually pre-
dicting the values well based on the noisy instances. Unfor-
tunately, in general this is too much to hope for. To see why,
assume we deal with a linear kernel (so that , and
assume . Now, suppose that the
adversary picks some in , which might be even

known to the learner, and at each round provides the example
. It is easy to verify that (31) in this case equals

Recall that the learner chooses before is revealed. There-
fore, if the noise which leads to has positive variance, it will
generally be impossible for the learner to choose such that

is arbitrarily close to 1. Therefore, the equation above
cannot grow sublinearly with .

ACKNOWLEDGMENT

The authors would like to thank A. Argyriou for turning our
attention to Schoenberg’s theorem and its applicability in our
setting. This publication only reflects the authors’ views.

REFERENCES

[1] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee, “Toward
privacy in public databases,” in Proc. Theory of Cryptogr. Conf. (TCC),
LNCS, 2005, vol. 2.

[2] D. Nettleton, A. Orriols-Puig, and A. Fornells, “A study of the effect
of different types of noise on the precision of supervised learning tech-
niques,” Artif. Intell. Rev., 2010.

[3] N. Bshouty, J. Jackson, and C. Tamon, “Uniform-distribution attribute
noise learnability,” Inf. Computat., vol. 187, no. 2, pp. 277–290, 2003.

[4] S. Goldman and R. Sloan, “Can pac learning algorithms tolerate
random attribute noise?,” Algorithmica, vol. 14, no. 1, pp. 70–84,
1995.

[5] M. Kearns and M. Li, “Learning in the presence of malicious errors,”
SIAM J. Comput., vol. 22, no. 4, pp. 807–837, 1993.

[6] N. Cesa-Bianchi, E. Dichterman, P. Fischer, E. Shamir, and H. Simon,
“Sample-efficient strategies for learning in the presence of noise,” J.
ACM, vol. 46, no. 5, pp. 684–719, 1999.

[7] N. Littlestone, “Redundant noisy attributes, attribute errors, and linear
threshold learning using Winnow,” in Proc. COLT, 1991, pp. 147–156.

[8] B. Schölkopf and A. Smola, Learning with Kernels. Cambridge: MIT
Press, 2002.

[9] N. Cesa-Bianchi, A. Conconi, and C. Gentile, “On the generalization
ability of on-line learning algorithms,” IEEE Trans. Inf. Theory, vol.
50, no. 9, pp. 2050–2057, Sep. 2004.

[10] I. Steinwart and A. Christmann, Support Vector Machines. New
York: Springer, 2008.

[11] M. Zinkevich, “Online convex programming and generalized infinites-
imal gradient ascent,” in Proc. ICML, 2003, pp. 928–936.

[12] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge, U.K.: Cambridge Univ. Press, 2006.

[13] A. Flaxman, A. Kalai, and H. McMahan, “Online convex optimization
in the bandit setting: Gradient descent without a gradient,” in Proc.
SODA, 2005, pp. 385–394.

[14] J. Abernethy, E. Hazan, and A. Rakhlin, “Competing in the dark: An
efficient algorithm for bandit linear optimization,” in COLT, 2008, pp.
263–274.

[15] L. Paninski, “Estimation of entropy and mutual information,” Neural
Computat., vol. 15, no. 6, pp. 1191–1253, 2003.

[16] R. Singh, “Existence of unbiased estimates,” Sankhyā: The Indian J.
Statist., vol. 26, no. 1, pp. 93–96, 1964.

[17] S. Bhandari and A. Bose, “Existence of unbiased estimators in sequen-
tial binomial experiments,” Sankhyā: The Indian J. Statist., vol. 52, no.
1, pp. 127–130, 1990.

[18] I. Schoenberg, “Metric spaces and completely monotone functions,”
Ann. Math., vol. 39, no. 4, pp. 811–841, Oct. 1938.

[19] P. Ressel, “A short proof of Schoenberg’s theorem,” Proc. AMS, vol.
57, no. 1, pp. 66–68, May 1976.

[20] C. Micchelli, Y. Xu, and H. Zhang, “Universal kernels,” J. Mach.
Learn. Res., vol. 7, pp. 2651–2667, 2006.

CESA-BIANCHI et al.: ONLINE LEARNING OF NOISY DATA 7931

[21] C. Scovel, D. Hush, I. Steinwart, and J. Theiler, Radial Kernels and
Their Reproducing Kernel Hilbert Spaces Los Alamos Nat. Lab., 2010,
Tech. Rep. LA-UR-09-01900.

[22] W. Rudin, Fourier Analysis on Groups (reprint edition). New York:
Wiley Classics Library, 1994.

[23] P. Bartlett, M. Jordan, and J. McAuliffe, “Convexity, classification and
risk bounds,” J. Amer. Statist. Assoc., vol. 101, no. 473, pp. 138–156,
Mar. 2006.

Nicoló Cesa-Bianchi is professor of Computer Science at the University of
Milano, Italy. His main research interests include statistical learning theory,
game-theoretic learning, and pattern analysis. He is coauthor, with Gabor
Lugosi, of the monography “Prediction, Learning, and Games” (Cambridge
University Press, 2006).

Dr. Cesa-Bianchi was President of the Association for Computational
Learning (2006–2009). He is a member of the steering committee of the
EC-funded Network of Excellence PASCAL2, action editor for the IEEE
TRANSACTIONS ON INFORMATION THEORY and for the Journal of Machine
Learning Research. He is a recipient of a Google Research Award (2010).

Shai Shalev-Shwartz is on the faculty of the Department of Computer Science
and Engineering, The Hebrew University of Jerusalem, Israel. He is interested
in learning theory, online prediction, optimization, and practical algorithms.

Ohad Shamir received the Ph.D. degree from the Department of Computer
Science and Engineering, The Hebrew University of Jerusalem.

He is a Postdoctoral Researcher at Microsoft Research New England, Cam-
bridge, MA. He is broadly interested in statistical and online machine learning,
with emphasis on novel algorithms which combine practical applicability and
theoretical insight.

